RicardoRei commited on
Commit
7ed04dd
1 Parent(s): 078ca15

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md CHANGED
@@ -1,3 +1,65 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ size_categories:
4
+ - 1M<n<10M
5
+ language:
6
+ - cs
7
+ - de
8
+ - en
9
+ - hr
10
+ - ja
11
+ - liv
12
+ - ru
13
+ - sah
14
+ - uk
15
+ - zh
16
+ tags:
17
+ - mt-evaluation
18
+ - WMT
19
+ - 12-lang-pairs
20
  ---
21
+
22
+ # Dataset Summary
23
+
24
+ In 2022, several changes were made to the annotation procedure used in the WMT Translation task. In contrast to the standard DA (sliding scale from 0-100) used in previous years, in 2022 annotators performed DA+SQM (Direct Assessment + Scalar Quality Metric). In DA+SQM, the annotators still provide a raw score between 0 and 100, but also are presented with seven labeled tick marks. DA+SQM helps to stabilize scores across annotators (as compared to DA).
25
+
26
+ The data is organised into 8 columns:
27
+ - lp: language pair
28
+ - src: input text
29
+ - mt: translation
30
+ - ref: reference translation
31
+ - score: direct assessment
32
+ - system: MT engine that produced the `mt`
33
+ - annotators: number of annotators
34
+ - domain: domain of the input text (e.g. news)
35
+ - year: collection year
36
+
37
+ You can also find the original data [here](https://www.statmt.org/wmt22/results.html)
38
+
39
+ ## Python usage:
40
+
41
+ ```python
42
+ from datasets import load_dataset
43
+ dataset = load_dataset("RicardoRei/wmt-sqm-human-evaluation", split="train")
44
+ ```
45
+
46
+ There is no standard train/test split for this dataset but you can easily split it according to year, language pair or domain. E.g. :
47
+
48
+ ```python
49
+ # split by year
50
+ data = dataset.filter(lambda example: example["year"] == 2022)
51
+
52
+ # split by LP
53
+ data = dataset.filter(lambda example: example["lp"] == "en-de")
54
+
55
+ # split by domain
56
+ data = dataset.filter(lambda example: example["domain"] == "news")
57
+ ```
58
+
59
+ Note that, so far, all data is from [2022 General Translation task](https://www.statmt.org/wmt22/translation-task.html)
60
+
61
+ ## Citation Information
62
+
63
+ If you use this data please cite the WMT findings:
64
+ - [Findings of the 2022 Conference on Machine Translation (WMT22)](https://aclanthology.org/2022.wmt-1.1.pdf)
65
+