File size: 29,365 Bytes
c7bfc07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
# ==============================================================================
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from typing import Optional, Tuple, Union, Dict
from einops import rearrange
from model.ops import count_parameters

import torch
from torch import nn
from torch.utils.checkpoint import checkpoint
from transformers.utils import logging
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
from transformers.models.t5.modeling_t5 import (T5LayerNorm, T5LayerSelfAttention, T5LayerCrossAttention, T5LayerFF)
from transformers.modeling_outputs import (BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions)
from transformers import T5Config, T5PreTrainedModel
from model.positional_encoding import FixedSinusoidalPositionalEmbedding
from model.ff_layer import get_ff_layer

logger = logging.get_logger(__name__)


class T5BlockYMT3(nn.Module):
    """T5 Block, modified to allow using different types of FF layers."""

    def __init__(self, config, has_relative_attention_bias=False):
        super().__init__()
        self.is_decoder = config.is_decoder
        self.layer = nn.ModuleList()
        self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
        if self.is_decoder:
            self.layer.append(T5LayerCrossAttention(config))

        # FF layer
        if config.ff_layer_type == 't5_gmlp':
            self.layer.append(T5LayerFF(config))
        elif config.ff_layer_type == 'moe':
            config.moe_num_experts = 8
            config.moe_topk = 2
            config.hidden_act = 'silu'
            moe = get_ff_layer(config, input_size=config.d_model, widening_factor=config.ff_widening_factor)
            self.layer.append(moe)
        else:
            raise ValueError(f"Unknown FF layer type: {config.ff_layer_type}.")
        self.ff_layer_type = config.ff_layer_type

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        position_bias=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        encoder_decoder_position_bias=None,
        layer_head_mask=None,
        cross_attn_layer_head_mask=None,
        past_key_value=None,
        use_cache=False,
        output_attentions=False,
        return_dict=True,
    ):
        if past_key_value is not None:
            if not self.is_decoder:
                logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
            expected_num_past_key_values = 2 if encoder_hidden_states is None else 4

            if len(past_key_value) != expected_num_past_key_values:
                raise ValueError(
                    f"There should be {expected_num_past_key_values} past states. "
                    f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
                    f"Got {len(past_key_value)} past key / value states")

            self_attn_past_key_value = past_key_value[:2]
            cross_attn_past_key_value = past_key_value[2:]
        else:
            self_attn_past_key_value, cross_attn_past_key_value = None, None

        self_attention_outputs = self.layer[0](
            hidden_states,
            attention_mask=attention_mask,
            position_bias=position_bias,
            layer_head_mask=layer_head_mask,
            past_key_value=self_attn_past_key_value,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        hidden_states, present_key_value_state = self_attention_outputs[:2]
        attention_outputs = self_attention_outputs[2:]  # Keep self-attention outputs and relative position weights

        # clamp inf values to enable fp16 training
        if hidden_states.dtype == torch.float16:
            clamp_value = torch.where(
                torch.isinf(hidden_states).any(),
                torch.finfo(hidden_states.dtype).max - 1000,
                torch.finfo(hidden_states.dtype).max,
            )
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        do_cross_attention = self.is_decoder and encoder_hidden_states is not None
        if do_cross_attention:
            # the actual query length is unknown for cross attention
            # if using past key value states. Need to inject it here
            if present_key_value_state is not None:
                query_length = present_key_value_state[0].shape[2]
            else:
                query_length = None

            cross_attention_outputs = self.layer[1](
                hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                position_bias=encoder_decoder_position_bias,
                layer_head_mask=cross_attn_layer_head_mask,
                past_key_value=cross_attn_past_key_value,
                query_length=query_length,
                use_cache=use_cache,
                output_attentions=output_attentions,
            )
            hidden_states = cross_attention_outputs[0]

            # clamp inf values to enable fp16 training
            if hidden_states.dtype == torch.float16:
                clamp_value = torch.where(
                    torch.isinf(hidden_states).any(),
                    torch.finfo(hidden_states.dtype).max - 1000,
                    torch.finfo(hidden_states.dtype).max,
                )
                hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

            # Combine self attn and cross attn key value states
            if present_key_value_state is not None:
                present_key_value_state = present_key_value_state + cross_attention_outputs[1]

            # Keep cross-attention outputs and relative position weights
            attention_outputs = attention_outputs + cross_attention_outputs[2:]

        # Apply Feed Forward layer - Modified for MoE
        if self.ff_layer_type == 't5_gmlp':
            hidden_states = self.layer[-1](hidden_states)
        elif self.ff_layer_type == 'moe':
            hidden_states = hidden_states + self.layer[-1](hidden_states)[0]  # residual connection outside the MoE
        else:
            raise ValueError(f"Unknown FF layer type: {self.ff_layer_type}.")

        # clamp inf values to enable fp16 training
        if hidden_states.dtype == torch.float16:
            clamp_value = torch.where(
                torch.isinf(hidden_states).any(),
                torch.finfo(hidden_states.dtype).max - 1000,
                torch.finfo(hidden_states.dtype).max,
            )
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if use_cache:
            outputs = outputs + (present_key_value_state,) + attention_outputs
        else:
            outputs = outputs + attention_outputs

        return outputs  # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)


class T5StackYMT3(T5PreTrainedModel):
    """
    T5Stack, modified for YMT3 with:
    - absolute sinusoidal absolute positional encoding
    """

    def __init__(
        self,
        config,
    ):
        super().__init__(config)
        self.is_decoder = config.is_decoder

        # Positional encoding (modified)
        self.use_t5_trainable_pe = False
        self.additive_pe = None

        pos_enc_type = getattr(config, 'position_encoding_type', 'sinusoidal')
        if pos_enc_type in ['sinusoidal']:
            self.additive_pe = FixedSinusoidalPositionalEmbedding(config.num_max_positions,
                                                                  embedding_dim=config.d_model)
            self.block = nn.ModuleList(
                [T5BlockYMT3(config, has_relative_attention_bias=False) for i in range(config.num_layers)])
        elif pos_enc_type == 'trainable':
            self.use_t5_trainable_pe = True
            # Stack blocks
            self.block = nn.ModuleList(
                [T5BlockYMT3(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)])

        self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(config.dropout_rate)

        # Initialize weights and apply final processing
        self.post_init()
        # Model parallel
        self.gradient_checkpointing = False

    def forward(
        self,
        # input_ids=None,
        inputs_embeds=None,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        head_mask=None,
        cross_attn_head_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (output_hidden_states
                                if output_hidden_states is not None else self.config.output_hidden_states)
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            err_msg_prefix = "decoder_" if self.is_decoder else ""
            raise ValueError(f"You have to specify {err_msg_prefix}inputs_embeds")

        batch_size, seq_length = input_shape

        # required mask seq length can be calculated via length of past
        mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length

        # mod: required for additive PE
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

        if use_cache is True:
            assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder"

        if attention_mask is None:
            attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
        if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
            encoder_seq_length = encoder_hidden_states.shape[1]
            encoder_attention_mask = torch.ones(batch_size,
                                                encoder_seq_length,
                                                device=inputs_embeds.device,
                                                dtype=torch.long)

        # initialize past_key_values with `None` if past does not exist
        if past_key_values is None:
            past_key_values = [None] * len(self.block)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_extended_attention_mask = None

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
                use_cache = False

        # Prepare head mask if needed
        head_mask = self.get_head_mask(head_mask, self.config.num_layers)
        cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
        present_key_value_states = () if use_cache else None
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        all_cross_attentions = () if (output_attentions and self.is_decoder) else None
        position_bias = None
        encoder_decoder_position_bias = None

        # mod: additive absolute PE (sinusoidal)
        if self.additive_pe is not None:
            inputs_embeds = inputs_embeds + self.additive_pe(inputs_embeds.shape[1], past_key_values_length)
        else:
            pass  # trinable PE is implemented in T5Block

        hidden_states = self.dropout(inputs_embeds)

        for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
            layer_head_mask = head_mask[i]
            cross_attn_layer_head_mask = cross_attn_head_mask[i]

            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):

                    def custom_forward(*inputs):
                        return tuple(module(*inputs, use_cache, output_attentions))

                    return custom_forward

                layer_outputs = checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    extended_attention_mask,
                    position_bias,
                    encoder_hidden_states,
                    encoder_extended_attention_mask,
                    encoder_decoder_position_bias,
                    layer_head_mask,
                    cross_attn_layer_head_mask,
                    None,  # past_key_value is always None with gradient checkpointing
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask=extended_attention_mask,
                    position_bias=position_bias,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_extended_attention_mask,
                    encoder_decoder_position_bias=encoder_decoder_position_bias,
                    layer_head_mask=layer_head_mask,
                    cross_attn_layer_head_mask=cross_attn_layer_head_mask,
                    past_key_value=past_key_value,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )

            # layer_outputs is a tuple with:
            # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
            if use_cache is False:
                layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]

            hidden_states, present_key_value_state = layer_outputs[:2]

            # We share the position biases between the layers - the first layer store them
            # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
            # (cross-attention position bias), (cross-attention weights)
            position_bias = layer_outputs[2]
            if self.is_decoder and encoder_hidden_states is not None:
                encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
            # append next layer key value states
            if use_cache:
                present_key_value_states = present_key_value_states + (present_key_value_state,)

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[3],)
                if self.is_decoder:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[5],)

        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.dropout(hidden_states)

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [
                hidden_states,
                present_key_value_states,
                all_hidden_states,
                all_attentions,
                all_cross_attentions,
            ] if v is not None)
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=present_key_value_states,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
            cross_attentions=all_cross_attentions,
        )


class T5EncoderYMT3(T5PreTrainedModel):
    # _keys_to_ignore_on_load_missing = [r"encoder.embed_tokens.weight"]

    def __init__(self, encoder_config: Optional[Dict] = None, config: Optional[T5Config] = None):
        if config is None:
            config = T5Config()
        if encoder_config is not None:
            config = copy.deepcopy(config)
            config.update(encoder_config)

        if hasattr(config, "ff_widening_factor"):
            config.d_ff = int(config.d_model) * int(config.ff_widening_factor)

        config.is_decoder = False
        config.use_cache = False
        config.is_encoder_decoder = False

        super().__init__(config)
        self.model_dim = config.d_model

        self.encoder = T5StackYMT3(config)

        # Initialize weights and apply final processing
        self.post_init()

    """temporary fix for torch.compile issue"""

    def forward(self, **kwargs):
        if self.training is True:
            return self._forward_compile(**kwargs)
        else:
            return self._forward_no_compile(**kwargs)

    def _forward_no_compile(self, **kwargs):
        return self._forward(**kwargs)

    @torch.compile
    def _forward_compile(self, **kwargs):
        return self._forward(**kwargs)

    def _forward(
        self,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Encode
        encoder_outputs = self.encoder(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return encoder_outputs
        else:
            return BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )


class T5DecoderYMT3(T5PreTrainedModel):

    def __init__(self, decoder_config: Optional[Dict] = None, config: Optional[T5Config] = None):
        if config is None:
            config = T5Config()
        if decoder_config is not None:
            config = copy.deepcopy(config)
            config.update(decoder_config)

        if hasattr(config, "ff_widening_factor"):
            config.d_ff = int(config.d_model) * int(config.ff_widening_factor)

        config.is_decoder = True
        config.is_encoder_decoder = False

        super().__init__(config)
        self.model_dim = config.d_model

        self.decoder = T5StackYMT3(config)

        # Initialize weights and apply final processing
        self.post_init()

    """temporary fix for torch.compile issue"""

    def forward(self, **kwargs):
        if self.training is True:
            return self._forward_compile(**kwargs)
        else:
            return self._forward_no_compile(**kwargs)

    def _forward_no_compile(self, **kwargs):
        return self._forward(**kwargs)

    @torch.compile
    def _forward_compile(self, **kwargs):
        return self._forward(**kwargs)

    def _forward(
        self,
        # input_ids: torch.LongTensor, # removed since embed_tokens is outside the decoder
        inputs_embeds: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,  # decoder_attention_mask
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPastAndCrossAttentions]:
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if isinstance(encoder_hidden_states, BaseModelOutput):
            encoder_hidden_states = encoder_hidden_states.last_hidden_state

        # Decode
        decoder_outputs = self.decoder(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            head_mask=head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs
        else:
            return BaseModelOutputWithPastAndCrossAttentions(
                last_hidden_state=decoder_outputs[0],
                past_key_values=decoder_outputs[1],
                hidden_states=decoder_outputs[2] if len(decoder_outputs) > 2 else None,
                attentions=decoder_outputs[3] if len(decoder_outputs) > 3 else None,
                cross_attentions=decoder_outputs[4] if len(decoder_outputs) > 4 else None,
            )


class MultiChannelT5Decoder(T5PreTrainedModel):

    def __init__(self, decoder_config: Optional[Dict] = None, config: Optional[T5Config] = None):
        if config is None:
            config = T5Config()
        if decoder_config is not None:
            config = copy.deepcopy(config)
            config.update(decoder_config)

        if hasattr(config, "ff_widening_factor"):
            config.d_ff = int(config.d_model) * int(config.ff_widening_factor)

        config.is_decoder = True
        config.is_encoder_decoder = False

        super().__init__(config)
        self.model_dim = config.d_model
        self.decoder = T5StackYMT3(config)

        # Multi-channel parameters
        self.num_channels = config.num_channels

        # Initialize weights and apply final processing
        self.post_init()

    """temporary fix for torch.compile issue"""

    def forward(self, **kwargs):
        if self.training is True:
            return self._forward_compile(**kwargs)
        else:
            return self._forward_no_compile(**kwargs)

    def _forward_no_compile(self, **kwargs):
        return self._forward(**kwargs)

    @torch.compile
    def _forward_compile(self, **kwargs):
        return self._forward(**kwargs)

    def _forward(
        self,
        # input_ids: torch.LongTensor, # removed since embed_tokens is outside the decoder
        inputs_embeds: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,  # decoder_attention_mask
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPastAndCrossAttentions]:
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        """
        Args:
            inputs_embeds: torch.FloatTensor (B, K, T, D), where K is the number of channels
            encoder_hidden_states: torch.FloatTensor (B, K, T, D), where K is the number of channels
        
        Returns:
            decoder_outputs: BaseModelOutputWithPastAndCrossAttentions
                last_hidden_state: torch.FloatTensor (B, K, T, D), where K is the number of channels
                past_key_values: Tuple[Tuple[torch.Tensor]]
                hidden_states: Tuple[torch.FloatTensor]
                attentions: Tuple[torch.FloatTensor]
                cross_attentions: Tuple[torch.FloatTensor]

        """
        if isinstance(encoder_hidden_states, BaseModelOutput):
            encoder_hidden_states = encoder_hidden_states.last_hidden_state

        # Reshape input_embeds and encoder_hidden_states
        b, k, t, d = inputs_embeds.size()
        inputs_embeds = rearrange(inputs_embeds, 'b k t d -> (b k) t d')
        encoder_hidden_states = rearrange(encoder_hidden_states, 'b k t d -> (b k) t d')

        # K-channel Decoding
        decoder_outputs = self.decoder(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            head_mask=head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=True,
        )

        # Reshape decoder_outputs
        decoder_outputs['last_hidden_state'] = rearrange(decoder_outputs['last_hidden_state'],
                                                         '(b k) t d -> b k t d',
                                                         b=b,
                                                         k=k)

        if not return_dict:
            # Collecting values from decoder_outputs in a specific order
            outputs = (
                decoder_outputs['last_hidden_state'],
                decoder_outputs.get('past_key_values', None),
                decoder_outputs.get('hidden_states', None),
                decoder_outputs.get('attentions', None),
                decoder_outputs.get('cross_attentions', None),
            )
            return tuple(v for v in outputs if v is not None)
        else:
            return decoder_outputs  # ['last_hidden_state']: (B, K, T, D)


def test_multi_channel_t5_decoder():
    # Test multi-channel decoder
    config = T5Config()
    config.num_channels = 4
    config.d_model = 32
    config.num_layers = 2
    config.num_heads = 2
    config.num_max_positions = 64  # for positional encoding

    decoder = MultiChannelT5Decoder(decoder_config=None, config=config)
    decoder.eval()

    input_emb = torch.rand(2, 4, 64, 32)  # (B, K, T, D)
    enc_hs = torch.rand(2, 4, 64, 32)  # (B, K, T, D)
    out = decoder(inputs_embeds=input_emb, encoder_hidden_states=enc_hs, return_dict=True)
    # out['last_hidden_state']: (B, K, T, D)
    # out['past_key_values']: Tuple[Tuple[torch.Tensor]]