File size: 29,365 Bytes
c7bfc07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 |
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
# ==============================================================================
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from typing import Optional, Tuple, Union, Dict
from einops import rearrange
from model.ops import count_parameters
import torch
from torch import nn
from torch.utils.checkpoint import checkpoint
from transformers.utils import logging
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
from transformers.models.t5.modeling_t5 import (T5LayerNorm, T5LayerSelfAttention, T5LayerCrossAttention, T5LayerFF)
from transformers.modeling_outputs import (BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions)
from transformers import T5Config, T5PreTrainedModel
from model.positional_encoding import FixedSinusoidalPositionalEmbedding
from model.ff_layer import get_ff_layer
logger = logging.get_logger(__name__)
class T5BlockYMT3(nn.Module):
"""T5 Block, modified to allow using different types of FF layers."""
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.is_decoder = config.is_decoder
self.layer = nn.ModuleList()
self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
if self.is_decoder:
self.layer.append(T5LayerCrossAttention(config))
# FF layer
if config.ff_layer_type == 't5_gmlp':
self.layer.append(T5LayerFF(config))
elif config.ff_layer_type == 'moe':
config.moe_num_experts = 8
config.moe_topk = 2
config.hidden_act = 'silu'
moe = get_ff_layer(config, input_size=config.d_model, widening_factor=config.ff_widening_factor)
self.layer.append(moe)
else:
raise ValueError(f"Unknown FF layer type: {config.ff_layer_type}.")
self.ff_layer_type = config.ff_layer_type
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
return_dict=True,
):
if past_key_value is not None:
if not self.is_decoder:
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
if len(past_key_value) != expected_num_past_key_values:
raise ValueError(
f"There should be {expected_num_past_key_values} past states. "
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
f"Got {len(past_key_value)} past key / value states")
self_attn_past_key_value = past_key_value[:2]
cross_attn_past_key_value = past_key_value[2:]
else:
self_attn_past_key_value, cross_attn_past_key_value = None, None
self_attention_outputs = self.layer[0](
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=self_attn_past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states, present_key_value_state = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
if do_cross_attention:
# the actual query length is unknown for cross attention
# if using past key value states. Need to inject it here
if present_key_value_state is not None:
query_length = present_key_value_state[0].shape[2]
else:
query_length = None
cross_attention_outputs = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
query_length=query_length,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = cross_attention_outputs[0]
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
# Combine self attn and cross attn key value states
if present_key_value_state is not None:
present_key_value_state = present_key_value_state + cross_attention_outputs[1]
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[2:]
# Apply Feed Forward layer - Modified for MoE
if self.ff_layer_type == 't5_gmlp':
hidden_states = self.layer[-1](hidden_states)
elif self.ff_layer_type == 'moe':
hidden_states = hidden_states + self.layer[-1](hidden_states)[0] # residual connection outside the MoE
else:
raise ValueError(f"Unknown FF layer type: {self.ff_layer_type}.")
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (present_key_value_state,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
class T5StackYMT3(T5PreTrainedModel):
"""
T5Stack, modified for YMT3 with:
- absolute sinusoidal absolute positional encoding
"""
def __init__(
self,
config,
):
super().__init__(config)
self.is_decoder = config.is_decoder
# Positional encoding (modified)
self.use_t5_trainable_pe = False
self.additive_pe = None
pos_enc_type = getattr(config, 'position_encoding_type', 'sinusoidal')
if pos_enc_type in ['sinusoidal']:
self.additive_pe = FixedSinusoidalPositionalEmbedding(config.num_max_positions,
embedding_dim=config.d_model)
self.block = nn.ModuleList(
[T5BlockYMT3(config, has_relative_attention_bias=False) for i in range(config.num_layers)])
elif pos_enc_type == 'trainable':
self.use_t5_trainable_pe = True
# Stack blocks
self.block = nn.ModuleList(
[T5BlockYMT3(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)])
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.gradient_checkpointing = False
def forward(
self,
# input_ids=None,
inputs_embeds=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else self.config.output_hidden_states)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(f"You have to specify {err_msg_prefix}inputs_embeds")
batch_size, seq_length = input_shape
# required mask seq length can be calculated via length of past
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
# mod: required for additive PE
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if use_cache is True:
assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder"
if attention_mask is None:
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
encoder_seq_length = encoder_hidden_states.shape[1]
encoder_attention_mask = torch.ones(batch_size,
encoder_seq_length,
device=inputs_embeds.device,
dtype=torch.long)
# initialize past_key_values with `None` if past does not exist
if past_key_values is None:
past_key_values = [None] * len(self.block)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
use_cache = False
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
present_key_value_states = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
position_bias = None
encoder_decoder_position_bias = None
# mod: additive absolute PE (sinusoidal)
if self.additive_pe is not None:
inputs_embeds = inputs_embeds + self.additive_pe(inputs_embeds.shape[1], past_key_values_length)
else:
pass # trinable PE is implemented in T5Block
hidden_states = self.dropout(inputs_embeds)
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return tuple(module(*inputs, use_cache, output_attentions))
return custom_forward
layer_outputs = checkpoint(
create_custom_forward(layer_module),
hidden_states,
extended_attention_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=extended_attention_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, present_key_value_state = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
if self.is_decoder and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
# append next layer key value states
if use_cache:
present_key_value_states = present_key_value_states + (present_key_value_state,)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [
hidden_states,
present_key_value_states,
all_hidden_states,
all_attentions,
all_cross_attentions,
] if v is not None)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
class T5EncoderYMT3(T5PreTrainedModel):
# _keys_to_ignore_on_load_missing = [r"encoder.embed_tokens.weight"]
def __init__(self, encoder_config: Optional[Dict] = None, config: Optional[T5Config] = None):
if config is None:
config = T5Config()
if encoder_config is not None:
config = copy.deepcopy(config)
config.update(encoder_config)
if hasattr(config, "ff_widening_factor"):
config.d_ff = int(config.d_model) * int(config.ff_widening_factor)
config.is_decoder = False
config.use_cache = False
config.is_encoder_decoder = False
super().__init__(config)
self.model_dim = config.d_model
self.encoder = T5StackYMT3(config)
# Initialize weights and apply final processing
self.post_init()
"""temporary fix for torch.compile issue"""
def forward(self, **kwargs):
if self.training is True:
return self._forward_compile(**kwargs)
else:
return self._forward_no_compile(**kwargs)
def _forward_no_compile(self, **kwargs):
return self._forward(**kwargs)
@torch.compile
def _forward_compile(self, **kwargs):
return self._forward(**kwargs)
def _forward(
self,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode
encoder_outputs = self.encoder(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return encoder_outputs
else:
return BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
class T5DecoderYMT3(T5PreTrainedModel):
def __init__(self, decoder_config: Optional[Dict] = None, config: Optional[T5Config] = None):
if config is None:
config = T5Config()
if decoder_config is not None:
config = copy.deepcopy(config)
config.update(decoder_config)
if hasattr(config, "ff_widening_factor"):
config.d_ff = int(config.d_model) * int(config.ff_widening_factor)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.model_dim = config.d_model
self.decoder = T5StackYMT3(config)
# Initialize weights and apply final processing
self.post_init()
"""temporary fix for torch.compile issue"""
def forward(self, **kwargs):
if self.training is True:
return self._forward_compile(**kwargs)
else:
return self._forward_no_compile(**kwargs)
def _forward_no_compile(self, **kwargs):
return self._forward(**kwargs)
@torch.compile
def _forward_compile(self, **kwargs):
return self._forward(**kwargs)
def _forward(
self,
# input_ids: torch.LongTensor, # removed since embed_tokens is outside the decoder
inputs_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None, # decoder_attention_mask
encoder_attention_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPastAndCrossAttentions]:
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if isinstance(encoder_hidden_states, BaseModelOutput):
encoder_hidden_states = encoder_hidden_states.last_hidden_state
# Decode
decoder_outputs = self.decoder(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
past_key_values=past_key_values,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs
else:
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=decoder_outputs[0],
past_key_values=decoder_outputs[1],
hidden_states=decoder_outputs[2] if len(decoder_outputs) > 2 else None,
attentions=decoder_outputs[3] if len(decoder_outputs) > 3 else None,
cross_attentions=decoder_outputs[4] if len(decoder_outputs) > 4 else None,
)
class MultiChannelT5Decoder(T5PreTrainedModel):
def __init__(self, decoder_config: Optional[Dict] = None, config: Optional[T5Config] = None):
if config is None:
config = T5Config()
if decoder_config is not None:
config = copy.deepcopy(config)
config.update(decoder_config)
if hasattr(config, "ff_widening_factor"):
config.d_ff = int(config.d_model) * int(config.ff_widening_factor)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.model_dim = config.d_model
self.decoder = T5StackYMT3(config)
# Multi-channel parameters
self.num_channels = config.num_channels
# Initialize weights and apply final processing
self.post_init()
"""temporary fix for torch.compile issue"""
def forward(self, **kwargs):
if self.training is True:
return self._forward_compile(**kwargs)
else:
return self._forward_no_compile(**kwargs)
def _forward_no_compile(self, **kwargs):
return self._forward(**kwargs)
@torch.compile
def _forward_compile(self, **kwargs):
return self._forward(**kwargs)
def _forward(
self,
# input_ids: torch.LongTensor, # removed since embed_tokens is outside the decoder
inputs_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None, # decoder_attention_mask
encoder_attention_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPastAndCrossAttentions]:
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
"""
Args:
inputs_embeds: torch.FloatTensor (B, K, T, D), where K is the number of channels
encoder_hidden_states: torch.FloatTensor (B, K, T, D), where K is the number of channels
Returns:
decoder_outputs: BaseModelOutputWithPastAndCrossAttentions
last_hidden_state: torch.FloatTensor (B, K, T, D), where K is the number of channels
past_key_values: Tuple[Tuple[torch.Tensor]]
hidden_states: Tuple[torch.FloatTensor]
attentions: Tuple[torch.FloatTensor]
cross_attentions: Tuple[torch.FloatTensor]
"""
if isinstance(encoder_hidden_states, BaseModelOutput):
encoder_hidden_states = encoder_hidden_states.last_hidden_state
# Reshape input_embeds and encoder_hidden_states
b, k, t, d = inputs_embeds.size()
inputs_embeds = rearrange(inputs_embeds, 'b k t d -> (b k) t d')
encoder_hidden_states = rearrange(encoder_hidden_states, 'b k t d -> (b k) t d')
# K-channel Decoding
decoder_outputs = self.decoder(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
past_key_values=past_key_values,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
# Reshape decoder_outputs
decoder_outputs['last_hidden_state'] = rearrange(decoder_outputs['last_hidden_state'],
'(b k) t d -> b k t d',
b=b,
k=k)
if not return_dict:
# Collecting values from decoder_outputs in a specific order
outputs = (
decoder_outputs['last_hidden_state'],
decoder_outputs.get('past_key_values', None),
decoder_outputs.get('hidden_states', None),
decoder_outputs.get('attentions', None),
decoder_outputs.get('cross_attentions', None),
)
return tuple(v for v in outputs if v is not None)
else:
return decoder_outputs # ['last_hidden_state']: (B, K, T, D)
def test_multi_channel_t5_decoder():
# Test multi-channel decoder
config = T5Config()
config.num_channels = 4
config.d_model = 32
config.num_layers = 2
config.num_heads = 2
config.num_max_positions = 64 # for positional encoding
decoder = MultiChannelT5Decoder(decoder_config=None, config=config)
decoder.eval()
input_emb = torch.rand(2, 4, 64, 32) # (B, K, T, D)
enc_hs = torch.rand(2, 4, 64, 32) # (B, K, T, D)
out = decoder(inputs_embeds=input_emb, encoder_hidden_states=enc_hs, return_dict=True)
# out['last_hidden_state']: (B, K, T, D)
# out['past_key_values']: Tuple[Tuple[torch.Tensor]]
|