File size: 24,312 Bytes
c7bfc07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
"""pitchshift.py"""
# import math
import numpy as np
# from scipy import special
from einops import rearrange
from typing import Optional, Literal, Dict, List, Tuple, Callable

import torch
from torch import nn
import torchaudio
from torchaudio import transforms
# from torchaudio import functional as F
# from torchaudio.functional.functional import (
#     _fix_waveform_shape,
#     _stretch_waveform,
# )
# from model.ops import adjust_b_to_gcd, check_all_elements_equal


class PitchShiftLayer(nn.Module):
    """Applying batch-wise pitch-shift to time-domain audio signals.

    Args:
        pshift_range (List[int]): Range of pitch shift in semitones. Default: ``[-2, 2]``.
        resample_source_fs (int): Default is 4000.
        stretch_n_fft (int): Default is 2048.
        window: (Optional[Literal['kaiser']]) Default is None.
        beta: (Optional[float]): Parameter for 'kaiser' filter. Default: None.
    """

    def __init__(
        self,
        pshift_range: List[int] = [-2, 2],
        resample_source_fs: int = 4000,
        strecth_n_fft: int = 512,
        win_length: Optional[int] = None,
        hop_length: Optional[int] = None,
        window: Optional[Literal['kaiser']] = None,
        beta: Optional[float] = None,
        expected_input_shape: Optional[Tuple[int]] = None,
        device: Optional[torch.device] = None,
        **kwargs,
    ) -> None:
        super().__init__()
        self.pshift_range = pshift_range
        self.resample_source_fs = resample_source_fs
        self.strecth_n_fft = strecth_n_fft
        self.win_length = win_length
        self.hop_length = hop_length

        if window is None:
            self.window_fn = torch.hann_window
            self.window_kwargs = None
        elif 'kaiser' in window:

            def custom_kaiser_window(window_length, beta, **kwargs):
                return torch.kaiser_window(window_length, periodic=True, beta=beta, **kwargs)

            self.window_fn = custom_kaiser_window
            self.window_kwargs = {'beta': beta}

        # Initialize pitch shifters for every semitone
        self.pshifters = None
        self.frame_gaps = None
        self._initialize_pshifters(expected_input_shape, device=device)
        self.requires_grad_(False)

    def _initialize_pshifters(self,
                              expected_input_shape: Optional[Tuple[int]] = None,
                              device: Optional[torch.device] = None) -> None:
        # DDP requires initializing parameters with a dummy input
        if expected_input_shape is not None:
            if device is not None:
                dummy_input = torch.randn(expected_input_shape, requires_grad=False).to(device)
            else:
                dummy_input = torch.randn(expected_input_shape, requires_grad=False)
        else:
            dummy_input = None

        pshifters = nn.ModuleDict()
        for semitone in range(self.pshift_range[0], self.pshift_range[1] + 1):
            if semitone == 0:
                # No need to shift and resample
                pshifters[str(semitone)] = None
            else:
                pshifter = transforms.PitchShift(self.resample_source_fs,
                                                 n_steps=semitone,
                                                 n_fft=self.strecth_n_fft,
                                                 win_length=self.win_length,
                                                 hop_length=self.hop_length,
                                                 window_fn=self.window_fn,
                                                 wkwargs=self.window_kwargs)
                pshifters[str(semitone)] = pshifter
                # Pass dummy input to initialize parameters
                with torch.no_grad():
                    if dummy_input is not None:
                        _ = pshifter.initialize_parameters(dummy_input)
        self.pshifters = pshifters

    def calculate_frame_gaps(self) -> Dict[int, float]:
        """Calculate the expected gap between the original and the stretched audio."""
        frame_gaps = {}  # for debugging
        for semitone in range(self.pshift_range[0], self.pshift_range[1] + 1):
            if semitone == 0:
                # No need to shift and resample
                frame_gaps[semitone] = 0.
            else:
                pshifter = self.pshifters[str(semitone)]
                gap_in_ms = 1000. * (pshifter.kernel.shape[2] -
                                     pshifter.kernel.shape[0] / 2.0**(-float(semitone) / 12)) / self.resample_source_fs
                frame_gaps[semitone] = gap_in_ms
        return frame_gaps

    @torch.no_grad()
    def forward(self, x: torch.Tensor, semitone: int) -> torch.Tensor:
        """
        Args:
            x (torch.Tensor): (B, 1, T) or (B, T)
        Returns:
            torch.Tensor: (B, 1, T) or (B, T)
        """
        if semitone == 0:
            return x
        elif semitone >= min(self.pshift_range) and semitone <= max(self.pshift_range):
            return self.pshifters[str(semitone)](x)
        else:
            raise ValueError(f"semitone must be in range {self.pshift_range}")


def test_resampler_sinewave():
    # x: {440Hz, 220Hz} sine wave at 16kHz
    t = torch.arange(0, 2, 1 / 16000)  # 2 seconds at 16kHz
    x0 = torch.sin(2 * torch.pi * 440 * t) * 0.5
    x1 = torch.sin(2 * torch.pi * 220 * t) * 0.5
    x = torch.stack((x0, x1), dim=0)  # (2, 32000)

    # Resample
    psl = PitchShiftLayer(pshift_range=[-2, 2], resample_source_fs=4000)
    y = psl(x, 2)  # (2, 24000)

    # Export to wav
    torchaudio.save("x.wav", x, 16000, bits_per_sample=16)
    torchaudio.save("y.wav", y, 12000, bits_per_sample=16)


# class Resampler(nn.Module):
#     """
#     Resampling using conv1d operations, more memory-efficient than torchaudio's resampler.

#     Based on Dan Povey's resampler.py:
#     https://github.com/danpovey/filtering/blob/master/lilfilter/resampler.py
#     """

#     def __init__(self,
#                  input_sr: int,
#                  output_sr: int,
#                  dtype: torch.dtype = torch.float32,
#                  filter_width: int = 16,
#                  cutoff_ratio: float = 0.85,
#                  filter: Literal['kaiser', 'kaiser_best', 'kaiser_fast', 'hann'] = 'kaiser_fast',
#                  beta: float = 8.555504641634386) -> None:
#         super().__init__()  # init the base class
#         """
#         Initialize the Resampler.

#         Args:
#         - input_sr (int): Input sampling rate.
#         - output_sr (int): Output sampling rate.
#         - dtype (torch.dtype): Computation data type. Default: torch.float32.
#         - filter_width (int): Number of zeros per side in the sinc function. Default: 16.
#         - cutoff_ratio (float): Filter rolloff point as a fraction of Nyquist freq. Default: 0.95.
#         - filter (str): Filter type. One of ['kaiser', 'kaiser_best', 'kaiser_fast', 'hann']. Default: 'kaiser_fast'.
#         - beta (float): Parameter for 'kaiser' filter. Default: 8.555504641634386.

#         Note: Ratio between input_sr and output_sr should be reduced to simplest form.
#         """
#         assert isinstance(input_sr, int) and isinstance(output_sr, int)
#         if input_sr == output_sr:
#             self.resample_type = 'trivial'
#             return

#         d = math.gcd(input_sr, output_sr)
#         input_sr, output_sr = input_sr // d, output_sr // d

#         assert dtype in [torch.float32, torch.float64]
#         assert filter_width > 3  # a reasonable bare minimum
#         np_dtype = np.float32 if dtype == torch.float32 else np.float64

#         assert filter in ['hann', 'kaiser', 'kaiser_best', 'kaiser_fast']

#         if filter == 'kaiser_best':
#             filter_width = 64
#             beta = 14.769656459379492
#             cutoff_ratio = 0.9475937167399596
#             filter = 'kaiser'
#         elif filter == 'kaiser_fast':
#             filter_width = 16
#             beta = 8.555504641634386
#             cutoff_ratio = 0.85
#             filter = 'kaiser'
#         """
#         - Define a sample 'block' correlating `input_sr` input samples to `output_sr` output samples.
#         - Dividing samples into these blocks allows corresponding block alignment.
#         - On average, `zeros_per_block` zeros per block are present in the sinc function.
#         """
#         zeros_per_block = min(input_sr, output_sr) * cutoff_ratio
#         """
#         - Define conv kernel size n = (blocks_per_side*2 + 1), adding blocks to each side of the center.
#         - `blocks_per_side` blocks as window radius ensures each central block sample accesses its window.
#         - `blocks_per_side` is determined, rounding up if needed, as 1 + int(filter_width / zeros_per_block).
#         """
#         blocks_per_side = int(np.ceil(filter_width / zeros_per_block))

#         kernel_width = 2 * blocks_per_side + 1

#         # Shape of conv1d weights: (out_channels, in_channels, kernel_width)
#         """ Time computations are in units of 1 block, aligning with the `canonical` time axis,
#         since each block has input_sr input samples, adhering to our time unit."""

#         window_radius_in_blocks = blocks_per_side
#         """`times` will be sinc function arguments, expanding to shape (output_sr, input_sr, kernel_width)
#         via broadcasting. Ensuring t == 0 along the central block diagonal (when input_sr == output_sr)"""
#         times = (
#             np.arange(output_sr, dtype=np_dtype).reshape(
#                 (output_sr, 1, 1)) / output_sr - np.arange(input_sr, dtype=np_dtype).reshape(
#                     (1, input_sr, 1)) / input_sr - (np.arange(kernel_width, dtype=np_dtype).reshape(
#                         (1, 1, kernel_width)) - blocks_per_side))

#         def hann_window(a):
#             """
#             returning 0.5 + 0.5 cos(a*pi) on [-1,1] and 0 outside.
#             """
#             return np.heaviside(1 - np.abs(a), 0.0) * (0.5 + 0.5 * np.cos(a * np.pi))

#         def kaiser_window(a, beta):
#             w = special.i0(beta * np.sqrt(np.clip(1 - (
#                 (a - 0.0) / 1.0)**2.0, 0.0, 1.0))) / special.i0(beta)
#             return np.heaviside(1 - np.abs(a), 0.0) * w

#         """The weights are computed as a sinc function times a Hann-window function, normalized by
#         `zeros_per_block` (sinc) and `input_sr` (input function) to maintain integral and magnitude."""
#         if filter == 'hann':
#             weights = (
#                 np.sinc(times * zeros_per_block) * hann_window(times / window_radius_in_blocks) *
#                 zeros_per_block / input_sr)
#         else:
#             weights = (
#                 np.sinc(times * zeros_per_block) *
#                 kaiser_window(times / window_radius_in_blocks, beta) * zeros_per_block / input_sr)

#         self.input_sr = input_sr
#         self.output_sr = output_sr
#         """If output_sr == 1, merge input_sr into kernel_width for weights (shape: output_sr, input_sr,
#         kernel_width) to optimize convolution speed and avoid extra reshaping."""

#         assert weights.shape == (output_sr, input_sr, kernel_width)
#         if output_sr == 1:
#             self.resample_type = 'integer_downsample'
#             self.padding = input_sr * blocks_per_side
#             weights = torch.tensor(weights, dtype=dtype, requires_grad=False)
#             weights = weights.transpose(1, 2).contiguous().view(1, 1, input_sr * kernel_width)

#         elif input_sr == 1:
#             # For conv_transpose, use weights as if input_sr and output_sr were swapped, simulating downsampling.
#             self.resample_type = 'integer_upsample'
#             self.padding = output_sr * blocks_per_side
#             weights = torch.tensor(weights, dtype=dtype, requires_grad=False)
#             weights = weights.flip(2).transpose(0,
#                                                 2).contiguous().view(1, 1, output_sr * kernel_width)
#         else:
#             self.resample_type = 'general'
#             self.reshaped = False
#             self.padding = blocks_per_side
#             weights = torch.tensor(weights, dtype=dtype, requires_grad=False)

#         self.weights = torch.nn.Parameter(weights, requires_grad=False)

#     @torch.no_grad()
#     def forward(self, x: torch.Tensor) -> torch.Tensor:
#         """
#         Parameters:
#         - x: torch.Tensor, with shape (minibatch_size, sequence_length), dtype should match the instance's dtype.

#         Returns:
#         - A torch.Tensor with shape (minibatch_size, (sequence_length//input_sr)*output_sr), dtype matching the input,
#           and content resampled.
#         """
#         if self.resample_type == 'trivial':
#             return x
#         elif self.resample_type == 'integer_downsample':
#             (minibatch_size, seq_len) = x.shape  # (B, in_C, L) with in_C == 1
#             x = x.unsqueeze(1)
#             x = torch.nn.functional.conv1d(
#                 x, self.weights, stride=self.input_sr, padding=self.padding)  # (B, out_C, L)
#             return x.squeeze(1)  # (B, L)

#         elif self.resample_type == 'integer_upsample':
#             x = x.unsqueeze(1)
#             x = torch.nn.functional.conv_transpose1d(
#                 x, self.weights, stride=self.output_sr, padding=self.padding)

#             return x.squeeze(1)
#         else:
#             assert self.resample_type == 'general'
#             (minibatch_size, seq_len) = x.shape
#             num_blocks = seq_len // self.input_sr
#             if num_blocks == 0:
#                 # TODO: pad with zeros.
#                 raise RuntimeError("Signal is too short to resample")
#             # Truncate input
#             x = x[:, 0:(num_blocks * self.input_sr)].view(minibatch_size, num_blocks, self.input_sr)
#         x = x.transpose(1, 2)  # (B, in_C, L)
#         x = torch.nn.functional.conv1d(
#             x, self.weights, padding=self.padding)  # (B, out_C, num_blocks)
#         return x.transpose(1, 2).contiguous().view(minibatch_size, num_blocks * self.output_sr)

# def test_resampler_sinewave():
#     import torchaudio
#     # x: {440Hz, 220Hz} sine wave at 16kHz
#     t = torch.arange(0, 2, 1 / 16000)  # 2 seconds at 16kHz
#     x0 = torch.sin(2 * torch.pi * 440 * t) * 0.5
#     x1 = torch.sin(2 * torch.pi * 220 * t) * 0.5
#     x = torch.stack((x0, x1), dim=0)  # (2, 32000)

#     # Resample
#     resampler = Resampler(input_sr=16000, output_sr=12000)
#     y = resampler(x)  # (2, 24000)

#     # Export to wav
#     torchaudio.save("x.wav", x, 16000, bits_per_sample=16)
#     torchaudio.save("y.wav", y, 12000, bits_per_sample=16)

# def test_resampler_music():
#     import torchaudio
#     # x: music at 16kHz
#     x, _ = torchaudio.load("music.wav")
#     slice_length = 32000
#     n_slices = 80
#     slices = [x[0, i * slice_length:(i + 1) * slice_length] for i in range(n_slices)]
#     x = torch.stack(slices)  # (80, 32000)

#     # Resample
#     filter_width = 32
#     resampler = Resampler(16000, 12000, filter_width=filter_width)
#     y = resampler(x)  # (80, 24000)
#     y = y.reshape(1, -1)  # (1, 1920000)
#     torchaudio.save(f"y_filter_width{filter_width}.wav", y, 12000, bits_per_sample=16)

# class PitchShiftLayer(nn.Module):
#     """Applying batch-wise pitch-shift to time-domain audio signals.

#     Args:
#         expected_input_length (int): Expected input length. Default: ``32767``.
#         pshift_range (List[int]): Range of pitch shift in semitones. Default: ``[-2, 2]``.
#         min_gcd (int): Minimum GCD of input and output sampling rates for resampling. Setting high value can save GPU memory. Default: ``16``.
#         max_timing_error (float): Maximum allowed timing error in seconds. Default: ``0.002``.
#         fs (int): Sample rate of input waveform, x. Default: 16000.
#         bins_per_octave (int, optional): The number of steps per octave (Default : ``12``).
#         n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins (Default: ``512``).
#         win_length (int or None, optional): Window size. If None, then ``n_fft`` is used. (Default: ``None``).
#         hop_length (int or None, optional): Length of hop between STFT windows. If None, then ``win_length // 4``
#             is used (Default: ``None``).
#         window (Tensor or None, optional): Window tensor that is applied/multiplied to each frame/window.
#             If None, then ``torch.hann_window(win_length)`` is used (Default: ``None``).

#     """

#     def __init__(
#         self,
#         expected_input_length: int = 32767,
#         pshift_range: List[int] = [-2, 2],
#         min_gcd: int = 16,
#         max_timing_error: float = 0.002,
#         fs: int = 16000,
#         bins_per_octave: int = 12,
#         n_fft: int = 2048,
#         win_length: Optional[int] = None,
#         hop_length: Optional[int] = None,
#         window: Optional[torch.Tensor] = None,
#         filter_width: int = 16,
#         filter: Literal['kaiser', 'kaiser_best', 'kaiser_fast', 'hann'] = 'kaiser_fast',
#         cutoff_ratio: float = 0.85,
#         beta: float = 8.555504641634386,
#         **kwargs,
#     ):
#         super().__init__()
#         self.expected_input_length = expected_input_length
#         self.pshift_range = pshift_range
#         self.min_gcd = min_gcd
#         self.max_timing_error = max_timing_error
#         self.fs = fs
#         self.bins_per_octave = bins_per_octave
#         self.n_fft = n_fft
#         self.win_length = win_length
#         self.hop_length = hop_length
#         self.window = window
#         self.resample_args = {
#             "filter_width": filter_width,
#             "filter": filter,
#             "cutoff_ratio": cutoff_ratio,
#             "beta": beta,
#         }

#         # Initialize Resamplers
#         self._initialize_resamplers()

#     def _initialize_resamplers(self):
#         resamplers = nn.ModuleDict()
#         self.frame_gaps = {}  # for debugging
#         for i in range(self.pshift_range[0], self.pshift_range[1] + 1):
#             if i == 0:
#                 # No need to shift and resample
#                 resamplers[str(i)] = None
#             else:
#                 # Find optimal reconversion frames meeting the min_gcd
#                 stretched_frames, recon_frames, gap = self._find_optimal_reconversion_frames(i)
#                 self.frame_gaps[i] = gap
#                 resamplers[str(i)] = Resampler(stretched_frames, recon_frames, **self.resample_args)
#         self.resamplers = resamplers

#     def _find_optimal_reconversion_frames(self, semitone: int):
#         """
#         Find the optimal reconversion frames for a given source sample rate, input length, and semitone for strech.

#         Parameters:
#         - sr (int): Input audio sample rate, which should be power of 2
#         - n_step (int): The number of pitch-shift steps in semi-tone.
#         - min_gcd (int): The minimum desired GCD, power of 2. Defaults to 16. 16 or 32 are good choices.
#         - max_timing_error (float): The maximum allowed timing error, in seconds. Defaults to 5 ms

#         Returns:
#         - int: The optimal target sample rate
#         """
#         stretch_rate = 1 / 2.0**(-float(semitone) / self.bins_per_octave)
#         stretched_frames = round(self.expected_input_length * stretch_rate)

#         gcd = math.gcd(self.expected_input_length, stretched_frames)
#         if gcd >= self.min_gcd:
#             return stretched_frames, self.expected_input_length, 0
#         else:
#             reconversion_frames = adjust_b_to_gcd(stretched_frames, self.expected_input_length,
#                                                   self.min_gcd)
#             gap = reconversion_frames - self.expected_input_length
#             gap_sec = gap / self.fs
#             if gap_sec > self.max_timing_error:
#                 # TODO: modifying vocoder of stretch_waveform to adjust pitch-shift rate in cents
#                 raise ValueError(
#                     gap_sec < self.max_timing_error,
#                     f"gap_sec={gap_sec} > max_timing_error={self.max_timing_error} with semitone={semitone}, stretched_frames={stretched_frames}, recon_frames={reconversion_frames}. Try adjusting input lenght or decreasing min_gcd."
#                 )
#             else:
#                 return stretched_frames, reconversion_frames, gap_sec

#     @torch.no_grad()
#     def forward(self,
#                 x: torch.Tensor,
#                 semitone: int,
#                 resample: bool = True,
#                 fix_shape: bool = True) -> torch.Tensor:
#         """
#         Args:
#             x (torch.Tensor): (B, 1, T)
#         Returns:
#             torch.Tensor: (B, 1, T)
#         """
#         if semitone == 0:
#             return x
#         elif semitone >= min(self.pshift_range) and semitone <= max(self.pshift_range):
#             x = x.squeeze(1)  # (B, T)
#             original_x_size = x.size()
#             x = _stretch_waveform(
#                 x,
#                 semitone,
#                 self.bins_per_octave,
#                 self.n_fft,
#                 self.win_length,
#                 self.hop_length,
#                 self.window,
#             )
#             if resample:
#                 x = self.resamplers[str(semitone)].forward(x)
#             # Fix waveform shape
#             if fix_shape:
#                 if x.size(1) != original_x_size[1]:
#                     # print(f"Warning: {x.size(1)} != {original_x_length}")
#                     x = _fix_waveform_shape(x, original_x_size)
#             return x.unsqueeze(1)  # (B, 1, T)
#         else:
#             raise ValueError(f"semitone must be in range {self.pshift_range}")

# def test_pitchshift_layer():
#     import torchaudio
#     # music
#     # x, _ = torchaudio.load("music.wav")
#     # slice_length = 32767
#     # n_slices = 80
#     # slices = [x[0, i * slice_length:(i + 1) * slice_length] for i in range(n_slices)]
#     # x = torch.stack(slices).unsqueeze(1)  # (80, 1, 32767)

#     # sine wave
#     t = torch.arange(0, 2.0479, 1 / 16000)  # 2.05 seconds at 16kHz
#     x = torch.sin(2 * torch.pi * 440 * t) * 0.5
#     x = x.reshape(1, 1, 32767).tile(80, 1, 1)

#     # Resample
#     pos = 0
#     ps = PitchShiftLayer(
#         pshift_range=[-3, 4],
#         expected_input_length=32767,
#         fs=16000,
#         min_gcd=16,
#         max_timing_error=0.002,
#         # filter_width=64,
#         filter='kaiser_fast',
#         n_fft=2048)
#     y = []
#     for i in range(-3, 4):
#         y.append(ps(x[[pos], :, :], i, resample=False, fix_shape=False)[0, 0, :])
#     y = torch.cat(y).unsqueeze(0)  # (1, 32767 * 7)
#     torchaudio.save("y_2048_kaiser_fast.wav", y, 16000, bits_per_sample=16)

#     # TorchAudio PitchShifter fopr comparision
#     y_ta = []
#     for i in range(-3, 4):
#         ta_transform = torchaudio.transforms.PitchShift(16000, n_steps=i)
#         y_ta.append(ta_transform(x[[pos], :, :])[0, 0, :])
#     y_ta = torch.cat(y_ta).unsqueeze(0)  # (1, 32767 * 7)
#     torchaudio.save("y_ta.wav", y_ta, 16000, bits_per_sample=16)

# def test_min_gcd_mem_usage():
#     min_gcd = 16
#     for i in range(-3, 4):
#         stretched_frames = _stretch_waveform(x, i).shape[1]
#         adjusted = adjust_b_to_gcd(stretched_frames, 32767, min_gcd)
#         gcd_val = math.gcd(adjusted, stretched_frames)
#         gap = adjusted - 32767
#         gap_ms = (gap / 16000) * 1000
#         mem_mb = (stretched_frames / gcd_val) * (adjusted / gcd_val) * 3 * 4 / 1000 / 1000
#         print(f'\033[92mmin_gcd={min_gcd}\033[0m', f'ps={i}', f'frames={stretched_frames}',
#               f'adjusted_frames={adjusted}', f'gap={gap}', f'\033[91mgap_ms={gap_ms}\033[0m',
#               f'gcd={gcd_val}', f'mem_MB={mem_mb}')