from utils.datasets_eval import AudioFileDataset | |
from torch.utils.data import DataLoader | |
import pytorch_lightning as pl | |
def test(): | |
ds = AudioFileDataset() | |
dl = DataLoader( | |
ds, batch_size=None, collate_fn=lambda k: k | |
) # empty collate_fn is required to use mixed types. | |
for x, y in dl: | |
break | |
class MyModel(pl.LightningModule): | |
def __init__(self, **kwargs): | |
super().__init__() | |
def forward(self, x): | |
return x | |
def training_step(self, batch, batch_idx): | |
return 0 | |
def validation_step(self, batch, batch_idx): | |
print(batch) | |
return 0 | |
def train_dataloader(self): | |
return dl | |
def val_dataloader(self): | |
return dl | |
def configure_optimizers(self): | |
return None | |
model = MyModel() | |
trainer = pl.Trainer() | |
trainer.validate(model) |