Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- config/__pycache__/config.cpython-310.pyc +0 -0
- config/__pycache__/vocabulary.cpython-310.pyc +0 -0
- config/config.py +272 -0
- config/data_presets.py +811 -0
- config/vocabulary.py +384 -0
- content/model_output/test.mid +0 -0
- extras/.DS_Store +0 -0
- extras/Dockerfile +18 -0
- extras/demo_cross_augmentation.py +69 -0
- extras/download_mirst500.py +50 -0
- extras/examples/.DS_Store +0 -0
- extras/examples/1733.mid +0 -0
- extras/examples/2106.mid +0 -0
- extras/examples/803_002_167s95.mid +0 -0
- extras/examples/piano_converted.mid +0 -0
- extras/inspecting_slakh_bass.py +34 -0
- extras/rotary_positional_embedding.py +191 -0
- extras/run_spleeter_mirst500_cmedia.sh +13 -0
- extras/swap_channel.py +122 -0
- extras/t5_dev.py +41 -0
- extras/t5perceiver.py +443 -0
- extras/unimax_sampler/README.md +45 -0
- extras/unimax_sampler/demo.py +15 -0
- extras/unimax_sampler/unimax_sampler.py +168 -0
- model/__pycache__/conv_block.cpython-310.pyc +0 -0
- model/__pycache__/ff_layer.cpython-310.pyc +0 -0
- model/__pycache__/init_train.cpython-310.pyc +0 -0
- model/__pycache__/lm_head.cpython-310.pyc +0 -0
- model/__pycache__/lr_scheduler.cpython-310.pyc +0 -0
- model/__pycache__/ops.cpython-310.pyc +0 -0
- model/__pycache__/optimizers.cpython-310.pyc +0 -0
- model/__pycache__/projection_layer.cpython-310.pyc +0 -0
- model/__pycache__/spectrogram.cpython-310.pyc +0 -0
- model/__pycache__/ymt3.cpython-310.pyc +0 -0
- model/conformer_helper.py +169 -0
- model/conformer_mod.py +439 -0
- model/ff_layer.py +238 -0
- model/init_train.py +281 -0
- model/lm_head.py +40 -0
- model/ops.py +111 -0
- model/perceiver_helper.py +290 -0
- model/perceiver_mod.py +912 -0
- model/projection_layer.py +331 -0
- model/ymt3.py +967 -0
- tests/model/spectrogram_test.py +29 -0
- utils/README.md +22 -0
- utils/__pycache__/event2note.cpython-310.pyc +0 -0
- utils/__pycache__/midi.cpython-310.pyc +0 -0
- utils/__pycache__/note_event_dataclasses.cpython-310.pyc +0 -0
- utils/audio.py +309 -0
config/__pycache__/config.cpython-310.pyc
ADDED
Binary file (4.81 kB). View file
|
|
config/__pycache__/vocabulary.cpython-310.pyc
ADDED
Binary file (8.02 kB). View file
|
|
config/config.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""config.py"""
|
2 |
+
import numpy as np
|
3 |
+
# yapf: disable
|
4 |
+
"""
|
5 |
+
audio_cfg:
|
6 |
+
- Used by 'ymt3' to create a spectrogram layer.
|
7 |
+
- Input shape of model is determined by audio_cfg.
|
8 |
+
- 'train.py' arguments can override these defaults.
|
9 |
+
"""
|
10 |
+
audio_cfg = {
|
11 |
+
# Overwrittable by args in train.py
|
12 |
+
"codec": "melspec", # {melspec, spec} melspec for MT3, spec for PerceiverTF
|
13 |
+
"hop_length": 128, # {128, 300} 128 for MT3, 300 for PerceiverTF
|
14 |
+
# Shared audio parameters
|
15 |
+
"audio_backend": "torchaudio", # {torchaudio, nnAudio}
|
16 |
+
"sample_rate": 16000,
|
17 |
+
"input_frames": 32767, # number of input frames (~=2.048 s), determining in-/output shape of front layers.
|
18 |
+
"n_fft": 2048,
|
19 |
+
"n_mels": 512, # only for melspec
|
20 |
+
"f_min": 50.0,
|
21 |
+
"f_max": 8000.0,
|
22 |
+
} # TODO: currently dataloader is not updated by "input_frames"
|
23 |
+
|
24 |
+
"""
|
25 |
+
model_cfg:
|
26 |
+
- Encoder type dictates use of T5_CFG or PERCEIVER_TF_CFG.
|
27 |
+
- 'train.py' arguments can override these defaults.
|
28 |
+
"""
|
29 |
+
model_cfg = {
|
30 |
+
"encoder_type": "t5", # {"t5", "perceiver-tf", "conformer"}
|
31 |
+
"decoder_type": "t5", # {"t5", "multi-t5"}
|
32 |
+
"pre_encoder_type": "default", # {None, "default", "conv", "conv1d", "conv2d_avpt"} by default, t5:None, perceiver:conv.
|
33 |
+
"pre_encoder_type_default": {"t5": None, "perceiver-tf": "conv", "conformer": None},
|
34 |
+
"pre_decoder_type": "default", # {None, 'linear', 'conv1', 'mlp', 'group_linear'} see model/projection_layer.py
|
35 |
+
"pre_decoder_type_default": { # [enc_type][dec_type]
|
36 |
+
"t5": {"t5": None,},
|
37 |
+
"perceiver-tf": {"t5": "linear", "multi-t5": "mc_shared_linear"},
|
38 |
+
"conformer": {"t5": None,},
|
39 |
+
},
|
40 |
+
"conv_out_channels": 128, # number of filters for 'conv' pre_encoder. Otherwise ignored.
|
41 |
+
"t5_basename": "google/t5-v1_1-small",
|
42 |
+
"pretrained": False, # bool, if True, load pretrained weights from t5_basename. Mismatched layers are ignored.
|
43 |
+
"use_task_conditional_encoder": True, # True by default, but default task is None. So not activated by default.
|
44 |
+
"use_task_conditional_decoder": True, # True by default, but default task is None. So not activated by default.
|
45 |
+
"d_feat": "auto", # Input audio feature dimension for encoder. Automatically inferred by audio_cfg and existence of pre_encoders.
|
46 |
+
"tie_word_embeddings": True, # If True, weights of embed_tokens and lm_head are tied for stabilizing gradients.
|
47 |
+
"vocab_size": "auto", # int or "auto", automatically inferred by task manager.
|
48 |
+
"num_max_positions": "auto", # int or "auto". Length of positional encoding. Automatically inferred by "feat_length", "event_length" and task_manager.max_task_token_length.
|
49 |
+
# 'vocab_size', 'tie_word_embeddings' and 'num_max_positions' are auto-copied to encoder and decoder configs in the below.
|
50 |
+
"encoder": {
|
51 |
+
"t5": {
|
52 |
+
"d_model": 512, # Hidden size of T5 encoder.
|
53 |
+
"num_heads": 6,
|
54 |
+
"num_layers": 8,
|
55 |
+
"dropout_rate": 0.05,
|
56 |
+
"position_encoding_type": "sinusoidal", # {'sinusoidal', 'trainable'}.
|
57 |
+
"ff_widening_factor": 2, # wideening factor for MLP/MoE layers. Default is 2 in T5.
|
58 |
+
"ff_layer_type": "t5_gmlp", # {'t5_gmlp', 'moe', 'mlp', 'gmlp'}. 'moe' for mixture of experts, 'mlp' for standard transformer dense layer, 'gmlp' for simple gated MLP.
|
59 |
+
},
|
60 |
+
"perceiver-tf": {
|
61 |
+
"num_latents": 24, # number of latents in Perceiver. 24 in perceiver-tf paper.
|
62 |
+
"d_latent": 128, # latent dimension of Perceiver. 128 in perceiver-tf paper.
|
63 |
+
"d_model": "q", # int or "q" or "kv". Inner-dim of sca and local/temporal self-att.
|
64 |
+
# "q" follows "latent_dim". "kv" follows "d_feat". Best practice is to inc-/decrease 'd_latent', instead of 'd_model'.
|
65 |
+
"num_blocks": 3, # number of Perceiver-TF blocks in encoder. L in the paper.
|
66 |
+
"num_local_transformers_per_block": 2, # N in the paper.
|
67 |
+
"num_temporal_transformers_per_block": 2, # M in the paper.
|
68 |
+
"sca_use_query_residual": False,
|
69 |
+
"dropout_rate": 0.1,
|
70 |
+
"position_encoding_type": "trainable", # {'trainable', 'rotary', 'alibi', 'alibit', None, 'tkd','td', 'tk', 'kdt'}. alibit is alibi with trainable slopes.
|
71 |
+
"attention_to_channel": True, # Whether to use channel attention in sca.
|
72 |
+
"layer_norm_type": "layer_norm", # {'layer_norm', 'rms_norm'}
|
73 |
+
"ff_layer_type": "mlp", # {'moe', 'mlp', gmlp}. 'moe' for mixture of experts, 'mlp' for standard transformer dense layer, 'gmlp' for simple gated MLP.
|
74 |
+
"ff_widening_factor": 1, # wideening factor for MLP/MoE layers. Default is 1.
|
75 |
+
"moe_num_experts": 4, # number of experts in MoE layer. Default is 4. Disabled if ff_layer_type is not 'moe'.
|
76 |
+
"moe_topk": 2, # top-k routing in MoE layer. Default is 2. Disabled if ff_layer_type is not 'moe'.
|
77 |
+
"hidden_act": 'gelu', # activation function in MLP/MoE layer. Default is 'gelu'. {'gelu', 'silu', 'relu'}
|
78 |
+
"rotary_type_sca": "pixel", # {'l'|'lang', 'p'|'pixel'}. Default is 'pixel'.
|
79 |
+
"rotary_type_latent": "pixel", # {'l'|'lang', 'p'|'pixel'}. Default is 'pixel'.
|
80 |
+
"rotary_type_temporal": "lang", # {'l'|'lang', 'p'|'pixel'}. Default is 'lang'.
|
81 |
+
"rotary_apply_to_keys": False, # Whether to apply rotary to keys. Default is False.
|
82 |
+
"rotary_partial_pe": False, # Whether to use partial positional encoding. Default is False.
|
83 |
+
},
|
84 |
+
"conformer": {
|
85 |
+
"d_model": 512, # Hidden size of T5 encoder.
|
86 |
+
"intermediate_size": 512, # or 2048. size of the intermediate feed forward layer in each T5Block
|
87 |
+
"num_heads": 8,
|
88 |
+
"num_layers": 8,
|
89 |
+
"dropout_rate": 0.1,
|
90 |
+
"layerdrop": 0.1, # see https://arxiv.org/abs/1909.11556
|
91 |
+
"position_encoding_type": "rotary", # {'rotary', 'relative'}.
|
92 |
+
"conv_dim": (512, 512, 512, 512, 512, 512, 512),
|
93 |
+
"conv_stride": (5, 2, 2, 2, 2, 2, 2),
|
94 |
+
"conv_kernel": (10, 3, 3, 3, 3, 3, 3),
|
95 |
+
"conv_depthwise_kernel_size": 31,
|
96 |
+
},
|
97 |
+
|
98 |
+
},
|
99 |
+
"decoder": {
|
100 |
+
"t5": {
|
101 |
+
"d_model": 512, # Hidden size of T5 encoder. If encoder has lower dim, it is projected to this dim for enc-dec cross att.
|
102 |
+
"num_heads": 6,
|
103 |
+
"num_layers": 8,
|
104 |
+
"dropout_rate": 0.05,
|
105 |
+
"position_encoding_type": "sinusoidal", # {'sinusoidal', 'trainable'}.
|
106 |
+
"ff_widening_factor": 2, # wideening factor for MLP/MoE layers. Default is 2 in T5.
|
107 |
+
"ff_layer_type": "t5_gmlp", # {'t5_gmlp', 'moe', 'mlp', 'gmlp'}. 'moe' for mixture of experts, 'mlp' for standard transformer dense layer, 'gmlp' for simple gated MLP.
|
108 |
+
},
|
109 |
+
"multi-t5": {
|
110 |
+
"d_model": 512, # Hidden size of T5 encoder. Recommended: {256 or 512}
|
111 |
+
"num_heads": 6,
|
112 |
+
"num_layers": 8,
|
113 |
+
"dropout_rate": 0.05,
|
114 |
+
"position_encoding_type": "sinusoidal", # {'sinusoidal', 'trainable'}.
|
115 |
+
"ff_widening_factor": 2, # wideening factor for MLP/MoE layers. Default is 2 in T5.
|
116 |
+
"ff_layer_type": "t5_gmlp", # {'t5_gmlp', 'moe', 'mlp', 'gmlp'}. 'moe' for mixture of experts, 'mlp' for standard transformer dense layer, 'gmlp' for simple gated MLP.
|
117 |
+
"num_channels": 13,
|
118 |
+
},
|
119 |
+
},
|
120 |
+
"feat_length": "auto", # Input audio feature length for encoder. Automatically inferred by audio_cfg.
|
121 |
+
# mt3: 256 time steps
|
122 |
+
"event_length": 1024, # max length of event tokens excluding task tokens <-- 128 for multi-t5
|
123 |
+
"init_factor": 1.0, # initialization factor for embedding layers
|
124 |
+
}
|
125 |
+
|
126 |
+
# yapf: enable
|
127 |
+
shared_cfg = {
|
128 |
+
"PATH": {
|
129 |
+
"data_home": "../../data", # path to the data directory. If using relative path, it is relative to /src directory.
|
130 |
+
},
|
131 |
+
"BSZ": { # global batch size is local_bsz * n_GPUs in DDP mode
|
132 |
+
"train_sub": 12, #20, # sub-batch size is per CPU worker
|
133 |
+
"train_local": 24, #40, # local batch size is per GPU in DDP mode
|
134 |
+
"validation": 64, # validation batch size is per GPU in DDP mode
|
135 |
+
"test": 64,
|
136 |
+
},
|
137 |
+
"AUGMENTATION": {
|
138 |
+
"train_random_amp_range": [0.8, 1.1], # min and max amplitude scaling factor
|
139 |
+
"train_stem_iaug_prob": 0.7, # probability of stem activation in intra-stem augmentation
|
140 |
+
"train_stem_xaug_policy": {
|
141 |
+
"max_k": 3,
|
142 |
+
"tau": 0.3,
|
143 |
+
"alpha": 1.0,
|
144 |
+
"max_subunit_stems": 12, # the number of subunit stems to be reduced to this number of stems
|
145 |
+
"p_include_singing": None, # NOT IMPLEMENTED; probability of including singing for cross augmented examples. if None, use base probaility.
|
146 |
+
"no_instr_overlap": True,
|
147 |
+
"no_drum_overlap": True,
|
148 |
+
"uhat_intra_stem_augment": True,
|
149 |
+
},
|
150 |
+
"train_pitch_shift_range": [-2, 2], # [min, max] in semitones. None or [0, 0] for no pitch shift.
|
151 |
+
},
|
152 |
+
"DATAIO": { # do not set `shuffle` here.
|
153 |
+
"num_workers": 4, # num_worker is per GPU in DDP mode
|
154 |
+
"prefetch_factor": 2, #2,
|
155 |
+
"pin_memory": True,
|
156 |
+
"persistent_workers": False,
|
157 |
+
},
|
158 |
+
"CHECKPOINT": {
|
159 |
+
"save_top_k": 4, # max top k checkpoints to save
|
160 |
+
"monitor": 'validation/macro_onset_f',
|
161 |
+
"mode": 'max',
|
162 |
+
# "every_n_epochs": 20, # only working when check_val_every_n_epoch is 0
|
163 |
+
"save_last": True, # save last model
|
164 |
+
"filename": "{epoch}-{step}",
|
165 |
+
},
|
166 |
+
"TRAINER": { # do not coverwrite args in this section
|
167 |
+
"limit_train_batches": 1.0, # How much of training dataset to check (float = fraction, int = num_batches)
|
168 |
+
"limit_val_batches": 1.0,
|
169 |
+
"limit_test_batches": 1.0,
|
170 |
+
"gradient_clip_val": 1.0, # {0 or None} means don't clip.
|
171 |
+
"accumulate_grad_batches": 1, #1, # Accumulates grads every k batches. If set to 1, no effect.
|
172 |
+
"check_val_every_n_epoch": 1, #5, 1 for very large dataset such as EGMD
|
173 |
+
"num_sanity_val_steps": 0,
|
174 |
+
},
|
175 |
+
"WANDB": {
|
176 |
+
"save_dir": "../logs",
|
177 |
+
"cache_dir": "../logs/.wandb_cache",
|
178 |
+
"resume": "allow",
|
179 |
+
"anonymous": "allow", # {never, allow, must}
|
180 |
+
"mode": "online", # {online, offline, disabled}
|
181 |
+
},
|
182 |
+
"LR_SCHEDULE": {
|
183 |
+
# "scheduler_type": "cosine", # {legacy, cosine, constant}
|
184 |
+
"warmup_steps": 1000, # only for cosine scheduler, legacy scheduler follows T5's legacy schedule
|
185 |
+
"total_steps": 100000, # argparser of train.py can overwrite this
|
186 |
+
"final_cosine": 1e-5, # only for cosine scheduler
|
187 |
+
},
|
188 |
+
"TOKENIZER": {
|
189 |
+
"max_shift_steps": "auto", # max number of shift steps in the model. (int) or "auto". If "auto", it is set by audio_cfg["input_frames"] and shift_steps_ms. 206 with default setup.
|
190 |
+
"shift_step_ms": 10, # shift step in ms
|
191 |
+
},
|
192 |
+
}
|
193 |
+
|
194 |
+
T5_BASE_CFG = {
|
195 |
+
"google/t5-v1_1-small": {
|
196 |
+
"architectures": ["T5ForConditionalGeneration"],
|
197 |
+
"d_ff":
|
198 |
+
1024, # size of the intermediate feed forward layer in each T5Block. Can be overwrten by ff_widening_factor in model_cfg.
|
199 |
+
"d_kv": 64, # d_kv has to be equal to d_model // num_heads.
|
200 |
+
# "d_model": 512, # encoder hiddnen size, defined by model_cfg
|
201 |
+
"decoder_start_token_id": 0,
|
202 |
+
"dense_act_fn": "gelu_new",
|
203 |
+
# "dropout_rate": 0.05, # can be overwritten by args in ymt3
|
204 |
+
"eos_token_id": 1,
|
205 |
+
"feed_forward_proj": "gated-gelu",
|
206 |
+
"initializer_factor": 1.0,
|
207 |
+
"is_encoder_decoder": True,
|
208 |
+
"is_gated_act": True,
|
209 |
+
"layer_norm_epsilon": 1e-06,
|
210 |
+
"model_type": "t5",
|
211 |
+
# "num_decoder_layers": 8, # defined by model_cfg
|
212 |
+
# "num_heads": 6, # defined by model_cfg
|
213 |
+
# "num_layers": 8, # defined by model_cfg
|
214 |
+
"output_past": True,
|
215 |
+
"pad_token_id": 0,
|
216 |
+
"relative_attention_num_buckets": 32,
|
217 |
+
# "tie_word_embeddings": True,
|
218 |
+
"use_cache": True,
|
219 |
+
# "vocab_size": 1391 # vocab_size is automatically set by the task manager...
|
220 |
+
},
|
221 |
+
"google/t5-efficient-small": {
|
222 |
+
"architectures": ["T5ForConditionalGeneration"],
|
223 |
+
"d_ff": 2048,
|
224 |
+
"d_kv": 64,
|
225 |
+
"d_model": 512,
|
226 |
+
"decoder_start_token_id": 0,
|
227 |
+
"dropout_rate": 0.1,
|
228 |
+
"eos_token_id": 1,
|
229 |
+
"feed_forward_proj": "relu",
|
230 |
+
"initializer_factor": 1.0,
|
231 |
+
"is_encoder_decoder": True,
|
232 |
+
"layer_norm_epsilon": 1e-06,
|
233 |
+
"model_type": "t5",
|
234 |
+
"num_decoder_layers": 6,
|
235 |
+
"num_heads": 8,
|
236 |
+
"num_layers": 6,
|
237 |
+
"pad_token_id": 0,
|
238 |
+
"relative_attention_num_buckets": 32,
|
239 |
+
"torch_dtype": "float32",
|
240 |
+
"transformers_version": "4.17.0.dev0",
|
241 |
+
"use_cache": True,
|
242 |
+
},
|
243 |
+
}
|
244 |
+
|
245 |
+
# yapf: enable
|
246 |
+
DEEPSPEED_CFG = {
|
247 |
+
"zero_allow_untested_optimizer": True,
|
248 |
+
"optimizer": {
|
249 |
+
"type": "adam",
|
250 |
+
"params": {
|
251 |
+
"lr": 1e-4,
|
252 |
+
"betas": [0.998, 0.999],
|
253 |
+
"eps": 1e-3,
|
254 |
+
"weight_decay": 0.001,
|
255 |
+
"adam_w_mode": True,
|
256 |
+
}
|
257 |
+
},
|
258 |
+
"scheduler": {
|
259 |
+
"type": "WarmupLR",
|
260 |
+
"params": {
|
261 |
+
"last_batch_iteration": -1,
|
262 |
+
"warmup_min_lr": 0,
|
263 |
+
"warmup_max_lr": 3e-5,
|
264 |
+
"warmup_num_steps": 100,
|
265 |
+
},
|
266 |
+
},
|
267 |
+
"zero_optimization": {
|
268 |
+
"stage": 0, #0,1,2,3
|
269 |
+
# "offload_optimizer":
|
270 |
+
# False, # Enable Offloading optimizer state/calculation to the host CPU
|
271 |
+
},
|
272 |
+
}
|
config/data_presets.py
ADDED
@@ -0,0 +1,811 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" data.py:
|
2 |
+
Data presets for training and evaluation.
|
3 |
+
|
4 |
+
Single Presets:
|
5 |
+
musicnet_mt3
|
6 |
+
musicnet_em
|
7 |
+
musicnet_thickstun
|
8 |
+
slakh
|
9 |
+
guitarset
|
10 |
+
...
|
11 |
+
|
12 |
+
Multi Presets:
|
13 |
+
all_mmegs
|
14 |
+
...
|
15 |
+
|
16 |
+
"""
|
17 |
+
from config.vocabulary import *
|
18 |
+
from config.vocabulary import drum_vocab_presets, program_vocab_presets
|
19 |
+
from utils.utils import deduplicate_splits, merge_splits, merge_vocab
|
20 |
+
|
21 |
+
data_preset_single_cfg = {
|
22 |
+
"musicnet_mt3": {
|
23 |
+
"eval_vocab": [MUSICNET_INSTR_CLASS],
|
24 |
+
"dataset_name": "musicnet",
|
25 |
+
"train_split": "train_mt3",
|
26 |
+
"validation_split": "validation_mt3_acoustic",
|
27 |
+
"test_split": "test_mt3_acoustic",
|
28 |
+
"has_stem": False,
|
29 |
+
},
|
30 |
+
"musicnet_mt3_synth_only": { # sanity-check
|
31 |
+
"eval_vocab": [MUSICNET_INSTR_CLASS],
|
32 |
+
"dataset_name": "musicnet",
|
33 |
+
"train_split": "train_mt3_synth",
|
34 |
+
"validation_split": "validation_mt3_synth",
|
35 |
+
"test_split": "test_mt3_acoustic",
|
36 |
+
"has_stem": False,
|
37 |
+
},
|
38 |
+
"musicnet_mt3_em": {
|
39 |
+
"eval_vocab": [MUSICNET_INSTR_CLASS],
|
40 |
+
"dataset_name": "musicnet",
|
41 |
+
"train_split": "train_mt3_em",
|
42 |
+
"validation_split": "validation_mt3_em",
|
43 |
+
"test_split": "test_mt3_em",
|
44 |
+
"has_stem": False,
|
45 |
+
},
|
46 |
+
"musicnet_thickstun": { # exp4
|
47 |
+
"eval_vocab": [MUSICNET_INSTR_CLASS],
|
48 |
+
"dataset_name": "musicnet",
|
49 |
+
"train_split": "train_thickstun",
|
50 |
+
"validation_split": "test_thickstun",
|
51 |
+
"test_split": "test_thickstun",
|
52 |
+
"has_stem": False,
|
53 |
+
},
|
54 |
+
"musicnet_thickstun_em": { # NOTE: this is not the use of external 'synth' in the paper, but the use of 'synth' within the dataset
|
55 |
+
"eval_vocab": [MUSICNET_INSTR_CLASS],
|
56 |
+
"dataset_name": "musicnet",
|
57 |
+
"train_split": "train_thickstun_em",
|
58 |
+
"validation_split": "test_thickstun_em",
|
59 |
+
"test_split": "test_thickstun_em",
|
60 |
+
"has_stem": False,
|
61 |
+
},
|
62 |
+
"musicnet_thickstun_ext": { # exp4
|
63 |
+
"eval_vocab": [MUSICNET_INSTR_CLASS],
|
64 |
+
"dataset_name": "musicnet",
|
65 |
+
"train_split": "train_thickstun",
|
66 |
+
"validation_split": "test_thickstun_ext",
|
67 |
+
"test_split": "test_thickstun_ext",
|
68 |
+
"has_stem": False,
|
69 |
+
},
|
70 |
+
"musicnet_thickstun_ext_em": { # NOTE: this is not the use of external 'synth' in the paper, but the use of 'synth' within the dataset
|
71 |
+
"eval_vocab": [MUSICNET_INSTR_CLASS],
|
72 |
+
"dataset_name": "musicnet",
|
73 |
+
"train_split": "train_thickstun_em",
|
74 |
+
"validation_split": "test_thickstun_ext_em",
|
75 |
+
"test_split": "test_thickstun_ext_em",
|
76 |
+
"has_stem": False,
|
77 |
+
},
|
78 |
+
"maps_default": {
|
79 |
+
"eval_vocab": [PIANO_SOLO_CLASS],
|
80 |
+
"dataset_name": "maps",
|
81 |
+
"train_split": "train",
|
82 |
+
"validation_split": "test",
|
83 |
+
"test_split": "test",
|
84 |
+
"has_stem": False,
|
85 |
+
},
|
86 |
+
"maps_all": {
|
87 |
+
"eval_vocab": [None],
|
88 |
+
"dataset_name": "maps",
|
89 |
+
"train_split": "all",
|
90 |
+
"validation_split": None,
|
91 |
+
"test_split": None,
|
92 |
+
"has_stem": False,
|
93 |
+
},
|
94 |
+
"maestro": {
|
95 |
+
"eval_vocab": [PIANO_SOLO_CLASS],
|
96 |
+
"dataset_name": "maestro",
|
97 |
+
"train_split": "train",
|
98 |
+
"validation_split": "validation",
|
99 |
+
"test_split": "test",
|
100 |
+
"has_stem": False,
|
101 |
+
},
|
102 |
+
"maestro_final": {
|
103 |
+
"eval_vocab": [PIANO_SOLO_CLASS],
|
104 |
+
"dataset_name": "maestro",
|
105 |
+
"train_split": merge_splits(["train", "validation"], dataset_name="maestro"),
|
106 |
+
"validation_split": "test",
|
107 |
+
"test_split": "test",
|
108 |
+
"has_stem": False,
|
109 |
+
},
|
110 |
+
"guitarset": { # 4 random players for train, 1 for valid, and 1 for test
|
111 |
+
"eval_vocab": [GUITAR_SOLO_CLASS],
|
112 |
+
"dataset_name": "guitarset",
|
113 |
+
"train_split": "train",
|
114 |
+
"validation_split": "validation",
|
115 |
+
"test_split": "test",
|
116 |
+
"has_stem": False,
|
117 |
+
},
|
118 |
+
"guitarset_pshift": { # guitarset + pitch shift
|
119 |
+
"eval_vocab": [GUITAR_SOLO_CLASS],
|
120 |
+
"dataset_name": "guitarset",
|
121 |
+
"train_split": "train_pshift",
|
122 |
+
"validation_split": "validation",
|
123 |
+
"test_split": "test",
|
124 |
+
"has_stem": False,
|
125 |
+
},
|
126 |
+
"guitarset_progression": { # progression 1 and 2 as train, progression 3 as test
|
127 |
+
"eval_vocab": [GUITAR_SOLO_CLASS],
|
128 |
+
"dataset_name": "guitarset",
|
129 |
+
"train_split": merge_splits(["progression_1", "progression_2"], dataset_name="guitarset"),
|
130 |
+
"validation_split": "progression_3",
|
131 |
+
"test_split": "progression_3",
|
132 |
+
"has_stem": False,
|
133 |
+
},
|
134 |
+
"guitarset_progression_pshift": { # guuitarset_progression + pitch shift
|
135 |
+
"eval_vocab": [GUITAR_SOLO_CLASS],
|
136 |
+
"dataset_name": "guitarset",
|
137 |
+
"train_split": merge_splits(["progression_1_pshift", "progression_2_pshift"], dataset_name="guitarset"),
|
138 |
+
"validation_split": "progression_3",
|
139 |
+
"test_split": "progression_3",
|
140 |
+
"has_stem": False,
|
141 |
+
},
|
142 |
+
"guitarset_minus_bn": { # guuitarset_style + pitch shift
|
143 |
+
"eval_vocab": [GUITAR_SOLO_CLASS],
|
144 |
+
"dataset_name": "guitarset",
|
145 |
+
"train_split": merge_splits(["Funk_pshift", "SS_pshift", "Jazz_pshift", "Rock_pshift"],
|
146 |
+
dataset_name="guitarset"),
|
147 |
+
"validation_split": "BN",
|
148 |
+
"test_split": "BN",
|
149 |
+
"has_stem": False,
|
150 |
+
},
|
151 |
+
"guitarset_minus_funk": { # guuitarset_style + pitch shift
|
152 |
+
"eval_vocab": [GUITAR_SOLO_CLASS],
|
153 |
+
"dataset_name": "guitarset",
|
154 |
+
"train_split": merge_splits(["BN_pshift", "SS_pshift", "Jazz_pshift", "Rock_pshift"],
|
155 |
+
dataset_name="guitarset"),
|
156 |
+
"validation_split": "Funk",
|
157 |
+
"test_split": "Funk",
|
158 |
+
"has_stem": False,
|
159 |
+
},
|
160 |
+
"guitarset_minus_ss": { # guuitarset_style + pitch shift
|
161 |
+
"eval_vocab": GUITAR_SOLO_CLASS,
|
162 |
+
"dataset_name": "guitarset",
|
163 |
+
"train_split": merge_splits(["BN_pshift", "Funk_pshift", "Jazz_pshift", "Rock_pshift"],
|
164 |
+
dataset_name="guitarset"),
|
165 |
+
"validation_split": "SS",
|
166 |
+
"test_split": "SS",
|
167 |
+
"has_stem": False,
|
168 |
+
},
|
169 |
+
"guitarset_minus_jazz": { # guuitarset_style + pitch shift
|
170 |
+
"eval_vocab": [GUITAR_SOLO_CLASS],
|
171 |
+
"dataset_name": "guitarset",
|
172 |
+
"train_split": merge_splits(["BN_pshift", "Funk_pshift", "SS_pshift", "Rock_pshift"],
|
173 |
+
dataset_name="guitarset"),
|
174 |
+
"validation_split": "Jazz",
|
175 |
+
"test_split": "Jazz",
|
176 |
+
"has_stem": False,
|
177 |
+
},
|
178 |
+
"guitarset_minus_rock": { # guuitarset_style + pitch shift
|
179 |
+
"eval_vocab": [GUITAR_SOLO_CLASS],
|
180 |
+
"dataset_name": "guitarset",
|
181 |
+
"train_split": merge_splits(["BN_pshift", "Funk_pshift", "SS_pshift", "Jazz_pshift"],
|
182 |
+
dataset_name="guitarset"),
|
183 |
+
"validation_split": "Rock",
|
184 |
+
"test_split": "Rock",
|
185 |
+
"has_stem": False,
|
186 |
+
},
|
187 |
+
"guitarset_all": {
|
188 |
+
"eval_vocab": [None],
|
189 |
+
"dataset_name": "guitarset",
|
190 |
+
"train_split": "all",
|
191 |
+
"validation_split": None,
|
192 |
+
"test_split": None,
|
193 |
+
"has_stem": False,
|
194 |
+
},
|
195 |
+
"enstdrums_dtp": {
|
196 |
+
"eval_vocab": [None],
|
197 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"],
|
198 |
+
"dataset_name": "enstdrums",
|
199 |
+
"train_split": merge_splits(["drummer_1_dtp", "drummer_2_dtp", "drummer_1_dtp", "drummer_2_dtp"], dataset_name="enstdrums"),
|
200 |
+
"validation_split": "drummer_1_dtp", # for sanity check
|
201 |
+
"test_split": "drummer_3_dtp",
|
202 |
+
"has_stem": False,
|
203 |
+
},
|
204 |
+
"enstdrums_dtm": {
|
205 |
+
"eval_vocab": [None],
|
206 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"],
|
207 |
+
"dataset_name": "enstdrums",
|
208 |
+
"train_split": merge_splits(["drummer_1_dtm", "drummer_2_dtm", "drummer_1_dtp", "drummer_2_dtp"], dataset_name="enstdrums"),
|
209 |
+
"validation_split": "drummer_3_dtm_r2", # 0.6 * drum
|
210 |
+
"test_split": "drummer_3_dtm_r1", # 0.75 * drum
|
211 |
+
"has_stem": True,
|
212 |
+
},
|
213 |
+
"enstdrums_random_dtm": { # single dataset training as a denoising ADT model
|
214 |
+
"eval_vocab": [None],
|
215 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"],
|
216 |
+
"dataset_name": "enstdrums",
|
217 |
+
"train_split": "train_dtm",
|
218 |
+
"validation_split": "validation_dtm",
|
219 |
+
"test_split": "test_dtm",
|
220 |
+
"has_stem": True,
|
221 |
+
},
|
222 |
+
"enstdrums_random": { # multi dataset training with random split of 70:15:15
|
223 |
+
"eval_vocab": [None],
|
224 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"],
|
225 |
+
"dataset_name": "enstdrums",
|
226 |
+
"train_split": "train_dtp",
|
227 |
+
"validation_split": "test_dtm",
|
228 |
+
"test_split": "test_dtm",
|
229 |
+
"has_stem": True,
|
230 |
+
},
|
231 |
+
"enstdrums_random_plus_dtd": { # multi dataset training plus dtd
|
232 |
+
"eval_vocab": [None],
|
233 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"],
|
234 |
+
"dataset_name": "enstdrums",
|
235 |
+
"train_split": merge_splits(["train_dtp", "all_dtd"], dataset_name="enstdrums"),
|
236 |
+
"validation_split": "test_dtm",
|
237 |
+
"test_split": "test_dtm",
|
238 |
+
"has_stem": True,
|
239 |
+
},
|
240 |
+
"mir_st500": {
|
241 |
+
"eval_vocab": [SINGING_SOLO_CLASS],
|
242 |
+
"dataset_name": "mir_st500",
|
243 |
+
"train_split": "train_stem",
|
244 |
+
"validation_split": "test",
|
245 |
+
"test_split": "test",
|
246 |
+
"has_stem": True,
|
247 |
+
},
|
248 |
+
"mir_st500_voc": {
|
249 |
+
"eval_vocab": [SINGING_SOLO_CLASS],
|
250 |
+
"dataset_name": "mir_st500",
|
251 |
+
"train_split": "train_vocal",
|
252 |
+
"validation_split": "test_vocal",
|
253 |
+
"test_split": "test_vocal",
|
254 |
+
"has_stem": False,
|
255 |
+
},
|
256 |
+
"mir_st500_voc_debug": { # using train_vocal for test (for debugging)
|
257 |
+
"eval_vocab": [SINGING_SOLO_CLASS],
|
258 |
+
"dataset_name": "mir_st500",
|
259 |
+
"train_split": "train_vocal",
|
260 |
+
"validation_split": "test_vocal",
|
261 |
+
"test_split": "train_vocal",
|
262 |
+
"has_stem": False,
|
263 |
+
},
|
264 |
+
"slakh": {
|
265 |
+
"eval_vocab": [GM_INSTR_CLASS],
|
266 |
+
"eval_drum_vocab": drum_vocab_presets["gm"],
|
267 |
+
"dataset_name": "slakh",
|
268 |
+
"train_split": "train",
|
269 |
+
"validation_split": "validation",
|
270 |
+
"test_split": "test",
|
271 |
+
"has_stem": True,
|
272 |
+
},
|
273 |
+
"slakh_final": {
|
274 |
+
"eval_vocab": [GM_INSTR_CLASS],
|
275 |
+
"eval_drum_vocab": drum_vocab_presets["gm"],
|
276 |
+
"dataset_name": "slakh",
|
277 |
+
"train_split": merge_splits(["train", "validation"], dataset_name="slakh"),
|
278 |
+
"validation_split": "test",
|
279 |
+
"test_split": "test",
|
280 |
+
"has_stem": True,
|
281 |
+
},
|
282 |
+
"rwc_pop_bass": {
|
283 |
+
"eval_vocab": [BASS_SOLO_CLASS],
|
284 |
+
"add_pitch_class_metric": ["Bass"],
|
285 |
+
"dataset_name": "rwc_pop",
|
286 |
+
"train_split": None,
|
287 |
+
"validation_split": "bass",
|
288 |
+
"test_split": "bass",
|
289 |
+
"has_stem": False,
|
290 |
+
},
|
291 |
+
"rwc_pop_full": {
|
292 |
+
"eval_vocab": [GM_INSTR_CLASS_PLUS],
|
293 |
+
"add_pitch_class_metric": list(GM_INSTR_CLASS_PLUS.keys()),
|
294 |
+
"dataset_name": "rwc_pop",
|
295 |
+
"train_split": None,
|
296 |
+
"validation_split": "full",
|
297 |
+
"test_split": "full",
|
298 |
+
"has_stem": False,
|
299 |
+
},
|
300 |
+
"egmd": {
|
301 |
+
"eval_vocab": [None],
|
302 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"],
|
303 |
+
"dataset_name": "egmd",
|
304 |
+
"train_split": "train",
|
305 |
+
"validation_split": "validation",
|
306 |
+
"test_split": "test_reduced", # EGMD has 5000+ test files, so we reudce it to 200 files to save time
|
307 |
+
# "train_limit_num_files": 4402, #8804, # 17608, # limit the number of files for training to random choice of half.
|
308 |
+
"has_stem": False,
|
309 |
+
},
|
310 |
+
"urmp": {
|
311 |
+
"eval_vocab": [GM_INSTR_CLASS],
|
312 |
+
"dataset_name": "urmp",
|
313 |
+
"train_split": "train",
|
314 |
+
"validation_split": "test",
|
315 |
+
"test_split": "test",
|
316 |
+
"has_stem": True,
|
317 |
+
},
|
318 |
+
"cmedia": {
|
319 |
+
"eval_vocab": [SINGING_SOLO_CLASS],
|
320 |
+
"dataset_name": "cmedia",
|
321 |
+
"train_split": "train_stem",
|
322 |
+
"validation_split": "train",
|
323 |
+
"test_split": "train",
|
324 |
+
"has_stem": True,
|
325 |
+
},
|
326 |
+
"cmedia_voc": {
|
327 |
+
"eval_vocab": [SINGING_SOLO_CLASS],
|
328 |
+
"dataset_name": "cmedia",
|
329 |
+
"train_split": "train_vocal",
|
330 |
+
"validation_split": "train_vocal",
|
331 |
+
"test_split": "train_vocal",
|
332 |
+
"has_stem": False,
|
333 |
+
},
|
334 |
+
"idmt_smt_bass": {
|
335 |
+
"eval_vocab": [BASS_SOLO_CLASS],
|
336 |
+
"dataset_name": "idmt_smt_bass",
|
337 |
+
"train_split": "train",
|
338 |
+
"validation_split": "validation",
|
339 |
+
"test_split": "validation",
|
340 |
+
"has_stem": False,
|
341 |
+
},
|
342 |
+
"geerdes": { # full mix dataset for evaluation
|
343 |
+
"eval_vocab": [GM_INSTR_CLASS_PLUS],
|
344 |
+
"dataset_name": "geerdes",
|
345 |
+
"train_split": None,
|
346 |
+
"validation_split": None,
|
347 |
+
"test_split": "all",
|
348 |
+
"has_stem": False,
|
349 |
+
},
|
350 |
+
"geerdes_sep": { # Using vocal/accomp separation for evalutation
|
351 |
+
"eval_vocab": [GM_INSTR_CLASS_PLUS],
|
352 |
+
"dataset_name": "geerdes",
|
353 |
+
"train_split": None,
|
354 |
+
"validation_split": None,
|
355 |
+
"test_split": "all_sep",
|
356 |
+
"has_stem": False,
|
357 |
+
},
|
358 |
+
"geerdes_half": { # Using half dataset for train/val
|
359 |
+
"eval_vocab": [GM_INSTR_CLASS_PLUS],
|
360 |
+
"dataset_name": "geerdes",
|
361 |
+
"train_split": "train",
|
362 |
+
"validation_split": "validation",
|
363 |
+
"test_split": "validation",
|
364 |
+
"has_stem": False,
|
365 |
+
},
|
366 |
+
"geerdes_half_sep": { # Using half dataset with vocal/accomp separation for train/val
|
367 |
+
"eval_vocab": [GM_INSTR_CLASS_PLUS],
|
368 |
+
"dataset_name": "geerdes",
|
369 |
+
"train_split": "train_sep",
|
370 |
+
"validation_split": "validation_sep",
|
371 |
+
"test_split": "validation_sep",
|
372 |
+
"has_stem": False,
|
373 |
+
},
|
374 |
+
}
|
375 |
+
|
376 |
+
data_preset_multi_cfg = {
|
377 |
+
"musicnet_mt3_em_synth_plus_maps": {
|
378 |
+
"presets": ["musicnet_mt3_em_synth", "maps_all"],
|
379 |
+
"weights": [0.6, 0.4],
|
380 |
+
"eval_vocab": [MUSICNET_INSTR_CLASS],
|
381 |
+
},
|
382 |
+
"musicnet_em_synth_table2_plus_maps": {
|
383 |
+
"presets": ["musicnet_em_synth_table2", "maps_all"],
|
384 |
+
"weights": [0.6, 0.4],
|
385 |
+
"eval_vocab": [MUSICNET_INSTR_CLASS],
|
386 |
+
},
|
387 |
+
"musicnet_em_synth_table2_plus_maps_multi": {
|
388 |
+
"presets": ["musicnet_em_synth_table2", "maps_default"],
|
389 |
+
"weights": [0.6, 0.4],
|
390 |
+
"eval_vocab": [MUSICNET_INSTR_CLASS],
|
391 |
+
},
|
392 |
+
"guitarset_progression_plus_maps": {
|
393 |
+
"presets": ["guitarset_progression", "maps_all"],
|
394 |
+
"weights": [0.5, 0.5],
|
395 |
+
"eval_vocab": [GUITAR_SOLO_CLASS],
|
396 |
+
},
|
397 |
+
"guitarset_pshift_plus_maps": {
|
398 |
+
"presets": ["guitarset_pshift", "maps_default"],
|
399 |
+
"weights": [0.6, 0.4],
|
400 |
+
"eval_vocab": [merge_vocab([GUITAR_SOLO_CLASS, PIANO_SOLO_CLASS])],
|
401 |
+
},
|
402 |
+
"guitarset_pshift_plus_musicnet_thick": {
|
403 |
+
"presets": ["guitarset_pshift", "musicnet_thickstun_em"],
|
404 |
+
"weights": [0.5, 0.5],
|
405 |
+
"eval_vocab": [merge_vocab([GUITAR_SOLO_CLASS, PIANO_SOLO_CLASS])],
|
406 |
+
},
|
407 |
+
"multi_sanity_check": {
|
408 |
+
"presets": ["musicnet_mt3_synth_only", "musicnet_mt3_synth_only"],
|
409 |
+
"weights": [0.6, 0.4],
|
410 |
+
"eval_vocab": [MUSICNET_INSTR_CLASS],
|
411 |
+
},
|
412 |
+
"all_mmegs": {
|
413 |
+
"presets": [
|
414 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp", "guitarset_pshift"
|
415 |
+
],
|
416 |
+
"weights": [0.2, 0.2, 0.2, 0.2, 0.2],
|
417 |
+
"eval_vocab": [None] * 5, # None means instrument-agnostic F1 for each dataset
|
418 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
419 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
420 |
+
"test_max_num_files": None,
|
421 |
+
},
|
422 |
+
"all_gt_cv0": {
|
423 |
+
"presets": [
|
424 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp", "guitarset_minus_bn"
|
425 |
+
],
|
426 |
+
"weights": [0.2, 0.2, 0.2, 0.2, 0.2],
|
427 |
+
"eval_vocab": [None] * 5, # None means instrument-agnostic F1 for each dataset
|
428 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
429 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
430 |
+
"test_max_num_files": None,
|
431 |
+
},
|
432 |
+
"all_gt_cv1": {
|
433 |
+
"presets": [
|
434 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp",
|
435 |
+
"guitarset_minus_funk"
|
436 |
+
],
|
437 |
+
"weights": [0.2, 0.2, 0.2, 0.2, 0.2],
|
438 |
+
"eval_vocab": [None] * 5, # None means instrument-agnostic F1 for each dataset
|
439 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
440 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
441 |
+
"test_max_num_files": None,
|
442 |
+
},
|
443 |
+
"all_gt_cv2": {
|
444 |
+
"presets": [
|
445 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp", "guitarset_minus_ss"
|
446 |
+
],
|
447 |
+
"weights": [0.2, 0.2, 0.2, 0.2, 0.2],
|
448 |
+
"eval_vocab": [None] * 5, # None means instrument-agnostic F1 for each dataset
|
449 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
450 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
451 |
+
"test_max_num_files": None,
|
452 |
+
},
|
453 |
+
"all_gt_cv3": {
|
454 |
+
"presets": [
|
455 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp",
|
456 |
+
"guitarset_minus_rock"
|
457 |
+
],
|
458 |
+
"weights": [0.2, 0.2, 0.2, 0.2, 0.2],
|
459 |
+
"eval_vocab": [None] * 5, # None means instrument-agnostic F1 for each dataset
|
460 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
461 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
462 |
+
"test_max_num_files": None,
|
463 |
+
},
|
464 |
+
"all_gt_cv4": {
|
465 |
+
"presets": [
|
466 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp",
|
467 |
+
"guitarset_minus_jazz"
|
468 |
+
],
|
469 |
+
"weights": [0.2, 0.2, 0.2, 0.2, 0.2],
|
470 |
+
"eval_vocab": [None] * 5, # None means instrument-agnostic F1 for each dataset
|
471 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
472 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
473 |
+
"test_max_num_files": None,
|
474 |
+
},
|
475 |
+
"all_enstdrums_random": {
|
476 |
+
"presets": [
|
477 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_random", "guitarset"
|
478 |
+
],
|
479 |
+
"weights": [0.2, 0.2, 0.2, 0.2, 0.2],
|
480 |
+
"eval_vocab": [None] * 5, # None means instrument-agnostic F1 for each dataset
|
481 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
482 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
483 |
+
"test_max_num_files": None,
|
484 |
+
},
|
485 |
+
"all_plus_egmd": {
|
486 |
+
"presets": [
|
487 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_random_plus_dtd",
|
488 |
+
"guitarset", "egmd"
|
489 |
+
],
|
490 |
+
"weights": [0.2, 0.2, 0.2, 0.1, 0.1, 0.2],
|
491 |
+
"eval_vocab": [None] * 6, # None means instrument-agnostic F1 for each dataset
|
492 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
493 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
494 |
+
"test_max_num_files": None,
|
495 |
+
},
|
496 |
+
"all_dtp_egmd": {
|
497 |
+
"presets": [
|
498 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp", "guitarset", "egmd"
|
499 |
+
],
|
500 |
+
"weights": [0.2, 0.2, 0.2, 0.1, 0.1, 0.2],
|
501 |
+
"eval_vocab": [None] * 6, # None means instrument-agnostic F1 for each dataset
|
502 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
503 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
504 |
+
"test_max_num_files": None,
|
505 |
+
},
|
506 |
+
"all_weighted_slakh": {
|
507 |
+
"presets": [
|
508 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp", "guitarset_pshift", "egmd"
|
509 |
+
],
|
510 |
+
"weights": [0.5, 0.1, 0.1, 0.05, 0.05, 0.2],
|
511 |
+
"eval_vocab": [None] * 6, # None means instrument-agnostic F1 for each dataset
|
512 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
513 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
514 |
+
"test_max_num_files": None,
|
515 |
+
},
|
516 |
+
"all_weighted_mt3": { # for comparison with MT3
|
517 |
+
"presets": [
|
518 |
+
"slakh", "musicnet_mt3", "mir_st500_voc", "enstdrums_dtp",
|
519 |
+
"guitarset_progression_pshift", "egmd"
|
520 |
+
],
|
521 |
+
"weights": [0.5, 0.1, 0.1, 0.05, 0.05, 0.2],
|
522 |
+
"eval_vocab": [None] * 6, # None means instrument-agnostic F1 for each dataset
|
523 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
524 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
525 |
+
"test_max_num_files": None,
|
526 |
+
},
|
527 |
+
"all_weighted_mt3_em": { # musicnet_mt3_em
|
528 |
+
"presets": [
|
529 |
+
"slakh", "musicnet_mt3_em", "mir_st500_voc", "enstdrums_dtp",
|
530 |
+
"guitarset_progression_pshift", "egmd"
|
531 |
+
],
|
532 |
+
"weights": [0.5, 0.1, 0.1, 0.05, 0.05, 0.2],
|
533 |
+
"eval_vocab": [None] * 6, # None means instrument-agnoßstic F1 for each dataset
|
534 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
535 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
536 |
+
"test_max_num_files": None,
|
537 |
+
},
|
538 |
+
"all_urmp": {
|
539 |
+
"presets": [
|
540 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp",
|
541 |
+
"guitarset_pshift", "egmd", "urmp"
|
542 |
+
],
|
543 |
+
"weights": [0.5, 0.2, 0.1, 0.05, 0.05, 0.05, 0.1],
|
544 |
+
"eval_vocab": [None] * 7, # None means instrument-agnostic F1 for each dataset
|
545 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
546 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
547 |
+
"test_max_num_files": None,
|
548 |
+
},
|
549 |
+
"all_urmp_mt3": { # for comparison with MT3 including URMP
|
550 |
+
"presets": [
|
551 |
+
"slakh", "musicnet_mt3", "mir_st500_voc", "enstdrums_dtp",
|
552 |
+
"guitarset_progression", "egmd", "urmp"
|
553 |
+
],
|
554 |
+
"weights": [0.5, 0.2, 0.1, 0.05, 0.05, 0.0125, 0.1],
|
555 |
+
"eval_vocab": [None] * 7, # None means instrument-agnostic F1 for each dataset
|
556 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
557 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
558 |
+
"test_max_num_files": None,
|
559 |
+
},
|
560 |
+
"all_urmp_mt3_em": { # musicnet_mt3_em including URMP
|
561 |
+
"presets": [
|
562 |
+
"slakh", "musicnet_mt3_em", "mir_st500_voc", "enstdrums_dtp",
|
563 |
+
"guitarset_progression", "egmd", "urmp"
|
564 |
+
],
|
565 |
+
"weights": [0.5, 0.2, 0.1, 0.05, 0.05, 0.0125, 0.1],
|
566 |
+
"eval_vocab": [None] * 7, # None means instrument-agnostic F1 for each dataset
|
567 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
568 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
569 |
+
"test_max_num_files": None,
|
570 |
+
},
|
571 |
+
"all_maestro": { # including Mestro and URMP
|
572 |
+
"presets": [
|
573 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp",
|
574 |
+
"guitarset_pshift", "egmd", "urmp", "maestro"
|
575 |
+
],
|
576 |
+
"weights": [0.5, 0.1, 0.125, 0.075, 0.025, 0.01, 0.1, 0.1],
|
577 |
+
"eval_vocab": [None] * 8, # None means instrument-agnostic F1 for each dataset
|
578 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
579 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
580 |
+
"test_max_num_files": None,
|
581 |
+
},
|
582 |
+
"all_maestro_mt3": { # for comparison with MT3 including URMP
|
583 |
+
"presets": [
|
584 |
+
"slakh", "musicnet_mt3", "mir_st500_voc", "enstdrums_dtp",
|
585 |
+
"guitarset_progression", "egmd", "urmp", "maestro"
|
586 |
+
],
|
587 |
+
"weights": [0.5, 0.1, 0.1, 0.05, 0.05, 0.0125, 0.1, 0.1],
|
588 |
+
"eval_vocab": [None] * 8, # None means instrument-agnostic F1 for each dataset
|
589 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
590 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
591 |
+
"test_max_num_files": None,
|
592 |
+
},
|
593 |
+
"all_maestro_mt3_em": { # musicnet_mt3_em including URMP
|
594 |
+
"presets": [
|
595 |
+
"slakh", "musicnet_mt3_em", "mir_st500_voc", "enstdrums_dtp",
|
596 |
+
"guitarset_progression", "egmd", "urmp", "maestro"
|
597 |
+
],
|
598 |
+
"weights": [0.5, 0.1, 0.1, 0.05, 0.05, 0.0125, 0.1, 0.1],
|
599 |
+
"eval_vocab": [None] * 8, # None means instrument-agnostic F1 for each dataset
|
600 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
601 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
602 |
+
"test_max_num_files": None,
|
603 |
+
},
|
604 |
+
"singing_v1": { # slakh + mir_st500 without spleeter
|
605 |
+
"presets": ["slakh", "mir_st500"],
|
606 |
+
"weights": [0.8, 0.2],
|
607 |
+
"eval_vocab": [None, SINGING_SOLO_CLASS], # None means instrument-agnostic F1 for each dataset
|
608 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
609 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
610 |
+
"test_max_num_files": None,
|
611 |
+
},
|
612 |
+
"all_singing_v1": { # for singing-only task
|
613 |
+
"presets": [
|
614 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_stem", "enstdrums_dtp",
|
615 |
+
"guitarset_pshift", "egmd", "urmp", "maestro"
|
616 |
+
],
|
617 |
+
"weights": [0.5, 0.1, 0.1, 0.05, 0.05, 0.0125, 0.1, 0.1],
|
618 |
+
"eval_vocab": [None, None, SINGING_SOLO_CLASS, None, None, None, None, None], # None means instrument-agnostic F1 for each dataset
|
619 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
620 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
621 |
+
"test_max_num_files": None,
|
622 |
+
},
|
623 |
+
"all_singing_drum_v1": { # for singing-only and drum-only tasks
|
624 |
+
"presets": [
|
625 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_stem", "enstdrums_dtm",
|
626 |
+
"guitarset_pshift", "egmd", "urmp", "maestro"
|
627 |
+
],
|
628 |
+
"weights": [0.5, 0.1, 0.1, 0.05, 0.05, 0.0125, 0.1, 0.1],
|
629 |
+
"eval_vocab": [None, None, SINGING_SOLO_CLASS, None, None, None, None, None], # None means instrument-agnostic F1 for each dataset
|
630 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
631 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
632 |
+
"test_max_num_files": None,
|
633 |
+
},
|
634 |
+
"all_cross": { # including Mestro and URMP
|
635 |
+
"presets": [
|
636 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp",
|
637 |
+
"guitarset_pshift", "egmd", "urmp", "maestro"
|
638 |
+
],
|
639 |
+
"weights": [0.5, 0.1, 0.125, 0.075, 0.025, 0.01, 0.1, 0.1],
|
640 |
+
"eval_vocab": [None, None, SINGING_SOLO_CLASS, None, None, None, None, None], # None means instrument-agnostic F1 for each dataset
|
641 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
642 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
643 |
+
"test_max_num_files": None,
|
644 |
+
},
|
645 |
+
"all_cross_rebal": { # rebalanced for cross-augment, using spleeter
|
646 |
+
"presets": [
|
647 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp",
|
648 |
+
"guitarset_pshift", "egmd", "urmp", "maestro"
|
649 |
+
],
|
650 |
+
"weights": [0.4, 0.15, 0.15, 0.075, 0.025, 0.01, 0.1, 0.1],
|
651 |
+
"eval_vocab": [None, None, SINGING_SOLO_CLASS, None, None, None, None, None], # None means instrument-agnostic F1 for each dataset
|
652 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
653 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
654 |
+
"test_max_num_files": None,
|
655 |
+
},
|
656 |
+
"all_cross_rebal2": { # rebalanced for cross-augment, using spleeter
|
657 |
+
"presets": [
|
658 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp",
|
659 |
+
"guitarset_pshift", "egmd", "urmp", "maestro"
|
660 |
+
],
|
661 |
+
"weights": [0.275, 0.19, 0.19, 0.1, 0.025, 0.02, 0.1, 0.1],
|
662 |
+
"eval_vocab": [None, None, SINGING_SOLO_CLASS, None, None, None, None, None], # None means instrument-agnostic F1 for each dataset
|
663 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
664 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
665 |
+
"test_max_num_files": None,
|
666 |
+
},
|
667 |
+
"all_cross_rebal4": { # rebalanced for cross-augment, using spleeter
|
668 |
+
"presets": [
|
669 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp",
|
670 |
+
"guitarset_pshift", "egmd", "urmp", "maestro"
|
671 |
+
],
|
672 |
+
"weights": [0.258, 0.19, 0.2, 0.125, 0.022, 0.005, 0.1, 0.1],
|
673 |
+
"eval_vocab": [None, None, SINGING_SOLO_CLASS, None, None, None, None, None], # None means instrument-agnostic F1 for each dataset
|
674 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
675 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
676 |
+
"test_max_num_files": None,
|
677 |
+
},
|
678 |
+
"all_cross_rebal5": { # rebalanced for cross-augment, using spleeter
|
679 |
+
"presets": [
|
680 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp",
|
681 |
+
"guitarset_pshift", "egmd", "urmp", "maestro"
|
682 |
+
],
|
683 |
+
"weights": [0.295, 0.19, 0.24, 0.05, 0.02, 0.005, 0.1, 0.1],
|
684 |
+
"eval_vocab": [None, None, SINGING_SOLO_CLASS, None, None, None, None, None], # None means instrument-agnostic F1 for each dataset
|
685 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
686 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
687 |
+
"test_max_num_files": None,
|
688 |
+
},
|
689 |
+
"all_cross_stem": { # accomp stem for sub-task learning + rebalanced for cross-augment
|
690 |
+
"presets": [
|
691 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_stem", "enstdrums_dtm",
|
692 |
+
"guitarset_pshift", "egmd", "urmp", "maestro"
|
693 |
+
],
|
694 |
+
"weights": [0.4, 0.15, 0.15, 0.075, 0.025, 0.01, 0.1, 0.1],
|
695 |
+
"eval_vocab": [None, None, SINGING_SOLO_CLASS, None, None, None, None, None], # None means instrument-agnostic F1 for each dataset
|
696 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
697 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
698 |
+
"test_max_num_files": None,
|
699 |
+
},
|
700 |
+
"all_cross_stem_rebal3": { # accomp stem for sub-task learning + rebalanced for cross-augment
|
701 |
+
"presets": [
|
702 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_stem", "enstdrums_dtm",
|
703 |
+
"guitarset_pshift", "egmd", "urmp", "maestro"
|
704 |
+
],
|
705 |
+
"weights": [0.265, 0.18, 0.21, 0.1, 0.025, 0.02, 0.1, 0.1],
|
706 |
+
"eval_vocab": [None, None, SINGING_SOLO_CLASS, None, None, None, None, None], # None means instrument-agnostic F1 for each dataset
|
707 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
708 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
709 |
+
"test_max_num_files": None,
|
710 |
+
},
|
711 |
+
"all_cross_v6": { # +cmeida +idmt_smt_bass
|
712 |
+
"presets": [
|
713 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp",
|
714 |
+
"guitarset", "egmd", "urmp", "maestro", "idmt_smt_bass", "cmedia_voc",
|
715 |
+
],
|
716 |
+
"weights": [0.295, 0.19, 0.19, 0.05, 0.01, 0.005, 0.1, 0.1, 0.01, 0.05],
|
717 |
+
"eval_vocab": [None, None, SINGING_SOLO_CLASS, None, None, None, None, None, BASS_SOLO_CLASS, SINGING_SOLO_CLASS], # None means instrument-agnostic F1 for each dataset
|
718 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
719 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
720 |
+
"test_max_num_files": None,
|
721 |
+
},
|
722 |
+
"all_cross_v6_geerdes": { # +geerdes_half
|
723 |
+
"presets": [
|
724 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp",
|
725 |
+
"guitarset", "egmd", "urmp", "maestro", "idmt_smt_bass", "cmedia_voc",
|
726 |
+
"geerdes_half", "geerdes_half_sep"
|
727 |
+
],
|
728 |
+
"weights": [0.295, 0.19, 0.19, 0.05, 0.01, 0.005, 0.075, 0.075, 0.01, 0.05, 0.025, 0.025],
|
729 |
+
"eval_vocab": [None, None, SINGING_SOLO_CLASS, None, None, None, None, None, BASS_SOLO_CLASS,
|
730 |
+
SINGING_SOLO_CLASS, GM_INSTR_CLASS_PLUS, GM_INSTR_CLASS_PLUS], # None means instrument-agnostic F1 for each dataset
|
731 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
732 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
733 |
+
"test_max_num_files": None,
|
734 |
+
},
|
735 |
+
"all_cross_v6_geerdes_rebal": { # +geerdes_half
|
736 |
+
"presets": [
|
737 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp",
|
738 |
+
"guitarset", "egmd", "urmp", "maestro", "idmt_smt_bass", "cmedia_voc",
|
739 |
+
"geerdes_half", "geerdes_half_sep"
|
740 |
+
],
|
741 |
+
"weights": [0.245, 0.175, 0.19, 0.05, 0.01, 0.005, 0.075, 0.05, 0.01, 0.05, 0.075, 0.075],
|
742 |
+
"eval_vocab": [None, None, SINGING_SOLO_CLASS, None, None, None, None, None, BASS_SOLO_CLASS,
|
743 |
+
SINGING_SOLO_CLASS, GM_INSTR_EXT_CLASS_PLUS, GM_INSTR_EXT_CLASS_PLUS], # None means instrument-agnostic F1 for each dataset
|
744 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
745 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
746 |
+
"test_max_num_files": None,
|
747 |
+
},
|
748 |
+
"all_cross_v7": {
|
749 |
+
"presets": [
|
750 |
+
"slakh", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp",
|
751 |
+
"guitarset_progression_pshift", "egmd", "urmp", "maestro", "idmt_smt_bass", "cmedia_voc",
|
752 |
+
],
|
753 |
+
"weights": [0.295, 0.19, 0.191, 0.05, 0.01, 0.004, 0.1, 0.1, 0.01, 0.05],
|
754 |
+
"eval_vocab": [None, None, SINGING_SOLO_CLASS, None, None, None, None, None, BASS_SOLO_CLASS, SINGING_SOLO_CLASS], # None means instrument-agnostic F1 for each dataset
|
755 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
756 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
757 |
+
"test_max_num_files": None,
|
758 |
+
},
|
759 |
+
"all_cross_final": {
|
760 |
+
"presets": [
|
761 |
+
"slakh_final", "musicnet_thickstun_em", "mir_st500_voc", "enstdrums_dtp",
|
762 |
+
"guitarset_progression_pshift", "egmd", "urmp", "maestro_final", "idmt_smt_bass", "cmedia_voc",
|
763 |
+
],
|
764 |
+
"weights": [0.295, 0.19, 0.191, 0.05, 0.01, 0.004, 0.1, 0.1, 0.01, 0.05],
|
765 |
+
"eval_vocab": [None, None, SINGING_SOLO_CLASS, None, None, None, None, None, BASS_SOLO_CLASS, SINGING_SOLO_CLASS], # None means instrument-agnostic F1 for each dataset
|
766 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
767 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
768 |
+
"test_max_num_files": None,
|
769 |
+
},
|
770 |
+
"all_eval_final": { # The final evaluation set
|
771 |
+
"presets": [
|
772 |
+
"slakh", "musicnet_thickstun", "musicnet_thickstun_em", "musicnet_thickstun_ext",
|
773 |
+
"musicnet_thickstun_ext_em", "mir_st500_voc", "mir_st500", "enstdrums_dtp",
|
774 |
+
"enstdrums_dtm", "guitarset_progression_pshift", "rwc_pop_bass", "maestro", "urmp",
|
775 |
+
"maps_default", "rwc_pop_full", # "geerdes", "geerdes_sep",
|
776 |
+
],
|
777 |
+
"eval_vocab": [
|
778 |
+
GM_INSTR_CLASS, MUSICNET_INSTR_CLASS, MUSICNET_INSTR_CLASS, MUSICNET_INSTR_CLASS,
|
779 |
+
MUSICNET_INSTR_CLASS, SINGING_SOLO_CLASS, SINGING_SOLO_CLASS, None,
|
780 |
+
None, None, BASS_SOLO_CLASS, PIANO_SOLO_CLASS, GM_INSTR_CLASS,
|
781 |
+
PIANO_SOLO_CLASS, GM_INSTR_CLASS_PLUS, # GM_INSTR_CLASS_PLUS, GM_INSTR_CLASS_PLUS
|
782 |
+
],
|
783 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"],
|
784 |
+
},
|
785 |
+
"geerdes_eval": { # Geerdes evaluation sets for models trained without Geerdes.
|
786 |
+
"presets": ["geerdes_sep", "geerdes"],
|
787 |
+
"eval_vocab": [GM_INSTR_CLASS_PLUS, GM_INSTR_CLASS_PLUS],
|
788 |
+
"eval_drum_vocab": drum_vocab_presets["gm"],
|
789 |
+
},
|
790 |
+
"geerdes_half_eval": { # Geerdes evaluation sets for models trained with Geerdes-half
|
791 |
+
"presets": ["geerdes_half_sep", "geerdes_half"],
|
792 |
+
"eval_vocab": [GM_INSTR_CLASS_PLUS, GM_INSTR_CLASS_PLUS],
|
793 |
+
"eval_drum_vocab": drum_vocab_presets["gm"],
|
794 |
+
},
|
795 |
+
"minimal": { # slakh + mir_st500 with spleeter
|
796 |
+
"presets": ["slakh", "mir_st500_voc"],
|
797 |
+
"weights": [0.8, 0.2],
|
798 |
+
"eval_vocab": [None, SINGING_SOLO_CLASS], # None means instrument-agnostic F1 for each dataset
|
799 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
800 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
801 |
+
"test_max_num_files": None,
|
802 |
+
},
|
803 |
+
"singing_debug": { # slakh + mir_st500 with spleeter
|
804 |
+
"presets": ["mir_st500_voc_debug"],
|
805 |
+
"weights": [1.0],
|
806 |
+
"eval_vocab": [SINGING_SOLO_CLASS], # None means instrument-agnostic F1 for each dataset
|
807 |
+
"eval_drum_vocab": drum_vocab_presets["ksh"], # for drums, kick-snare-hihat metric
|
808 |
+
"val_max_num_files": 20, # max 20 files per dataset
|
809 |
+
"test_max_num_files": None,
|
810 |
+
},
|
811 |
+
}
|
config/vocabulary.py
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
"""vocabulary.py
|
11 |
+
|
12 |
+
Vocabulary for instrument classes. Vocabulary can be used as train_vocab
|
13 |
+
or test_vocab in data_presets.py or train.py arguments.
|
14 |
+
|
15 |
+
- When it is used as train_vocab, it maps the instrument classes to the first
|
16 |
+
program number of the class. For example, if you use 'GM_INSTR_CLASS' as
|
17 |
+
train_vocab, then the program number of 'Piano' is [0,1,2,3,4,5,6,7]. These
|
18 |
+
program numbers are trained as program [0] in the model.
|
19 |
+
|
20 |
+
- When it is used as eval_vocab, any program number in the instrument class
|
21 |
+
is considered as correct.
|
22 |
+
|
23 |
+
|
24 |
+
MUSICNET_INSTR_CLASS: 3 classes used for MusicNet benchmark
|
25 |
+
GM_INSTR_CLASS: equivalent to 'MIDI Class' defined by MT3.
|
26 |
+
GM_INSTR_CLASS_PLUS: GM_INSTR_CLASS + singing voice
|
27 |
+
GM_INSTR_FULL: 128 GM instruments, which is extended from 'MT3_FULL'
|
28 |
+
MT3_FULL: this matches the class names in Table 3 of MT3 paper
|
29 |
+
ENST_DRUM_NOTES: 20 drum notes used in ENST dataset
|
30 |
+
GM_DRUM_NOTES: 45 GM drum notes with percussions
|
31 |
+
|
32 |
+
Program 128 is reserved for 'drum' internally.
|
33 |
+
Program 129 is reserved for 'unannotated', internally.
|
34 |
+
Program 100 is reserved for 'singing voice (melody)' in GM_INSTR_CLASS_PLUS.
|
35 |
+
Program 101 is reserved for 'singing voice (chorus)' in GM_INSTR_CLASS_PLUS.
|
36 |
+
|
37 |
+
|
38 |
+
"""
|
39 |
+
# yapf: disable
|
40 |
+
import numpy as np
|
41 |
+
|
42 |
+
PIANO_SOLO_CLASS = {
|
43 |
+
"Piano": np.arange(0, 8),
|
44 |
+
}
|
45 |
+
|
46 |
+
GUITAR_SOLO_CLASS = {
|
47 |
+
"Guitar": np.arange(24, 32),
|
48 |
+
}
|
49 |
+
|
50 |
+
SINGING_SOLO_CLASS = {
|
51 |
+
"Singing Voice": [100, 101],
|
52 |
+
}
|
53 |
+
|
54 |
+
SINGING_CHORUS_SEP_CLASS = {
|
55 |
+
"Singing Voice": [100],
|
56 |
+
"Singing Voice (chorus)": [101],
|
57 |
+
}
|
58 |
+
|
59 |
+
BASS_SOLO_CLASS = {
|
60 |
+
"Bass": np.arange(32, 40),
|
61 |
+
}
|
62 |
+
|
63 |
+
MUSICNET_INSTR_CLASS = {
|
64 |
+
"Piano": np.arange(0, 8),
|
65 |
+
"Strings": np.arange(40, 52), # Solo strings + ensemble strings
|
66 |
+
"Winds": np.arange(64, 80), # Reed + Pipe
|
67 |
+
}
|
68 |
+
|
69 |
+
GM_INSTR_CLASS = {
|
70 |
+
"Piano": np.arange(0, 8),
|
71 |
+
"Chromatic Percussion": np.arange(8, 16),
|
72 |
+
"Organ": np.arange(16, 24),
|
73 |
+
"Guitar": np.arange(24, 32),
|
74 |
+
"Bass": np.arange(32, 40),
|
75 |
+
"Strings": np.arange(40, 56), # Strings + Ensemble
|
76 |
+
# "Strings": np.arange(40, 48),
|
77 |
+
# "Ensemble": np.arange(48, 56),
|
78 |
+
"Brass": np.arange(56, 64),
|
79 |
+
"Reed": np.arange(64, 72),
|
80 |
+
"Pipe": np.arange(72, 80),
|
81 |
+
"Synth Lead": np.arange(80, 88),
|
82 |
+
"Synth Pad": np.arange(88, 96),
|
83 |
+
}
|
84 |
+
|
85 |
+
GM_INSTR_CLASS_PLUS = GM_INSTR_CLASS.copy()
|
86 |
+
GM_INSTR_CLASS_PLUS["Singing Voice"] = [100, 101]
|
87 |
+
|
88 |
+
GM_INSTR_EXT_CLASS = { # Best for enjoyable MIDI file generation
|
89 |
+
"Acoustic Piano": [0, 1, 3, 6, 7],
|
90 |
+
"Electric Piano": [2, 4, 5],
|
91 |
+
"Chromatic Percussion": np.arange(8, 16),
|
92 |
+
"Organ": np.arange(16, 24),
|
93 |
+
"Guitar (clean)": np.arange(24, 28),
|
94 |
+
"Guitar (distortion)": [30, 28, 29, 31], # np.arange(28, 32),
|
95 |
+
"Bass": [33, 32, 34, 35, 36, 37, 38, 39], # np.arange(32, 40),
|
96 |
+
"Strings": [48, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55], # np.arange(40, 56),
|
97 |
+
"Brass": np.arange(56, 64),
|
98 |
+
"Reed": np.arange(64, 72),
|
99 |
+
"Pipe": np.arange(72, 80),
|
100 |
+
"Synth Lead": np.arange(80, 88),
|
101 |
+
"Synth Pad": np.arange(88, 96),
|
102 |
+
}
|
103 |
+
GM_INSTR_EXT_CLASS_PLUS = GM_INSTR_EXT_CLASS.copy()
|
104 |
+
GM_INSTR_EXT_CLASS_PLUS["Singing Voice"] = [100]
|
105 |
+
GM_INSTR_EXT_CLASS_PLUS["Singing Voice (chorus)"] = [101]
|
106 |
+
|
107 |
+
GM_INSTR_FULL = {
|
108 |
+
"Acoustic Grand Piano": [0],
|
109 |
+
"Bright Acoustic Piano": [1],
|
110 |
+
"Electric Grand Piano": [2],
|
111 |
+
"Honky-tonk Piano": [3],
|
112 |
+
"Electric Piano 1": [4],
|
113 |
+
"Electric Piano 2": [5],
|
114 |
+
"Harpsichord": [6],
|
115 |
+
"Clavinet": [7],
|
116 |
+
"Celesta": [8],
|
117 |
+
"Glockenspiel": [9],
|
118 |
+
"Music Box": [10],
|
119 |
+
"Vibraphone": [11],
|
120 |
+
"Marimba": [12],
|
121 |
+
"Xylophone": [13],
|
122 |
+
"Tubular Bells": [14],
|
123 |
+
"Dulcimer": [15],
|
124 |
+
"Drawbar Organ": [16],
|
125 |
+
"Percussive Organ": [17],
|
126 |
+
"Rock Organ": [18],
|
127 |
+
"Church Organ": [19],
|
128 |
+
"Reed Organ": [20],
|
129 |
+
"Accordion": [21],
|
130 |
+
"Harmonica": [22],
|
131 |
+
"Tango Accordion": [23],
|
132 |
+
"Acoustic Guitar (nylon)": [24],
|
133 |
+
"Acoustic Guitar (steel)": [25],
|
134 |
+
"Electric Guitar (jazz)": [26],
|
135 |
+
"Electric Guitar (clean)": [27],
|
136 |
+
"Electric Guitar (muted)": [28],
|
137 |
+
"Overdriven Guitar": [29],
|
138 |
+
"Distortion Guitar": [30],
|
139 |
+
"Guitar Harmonics": [31],
|
140 |
+
"Acoustic Bass": [32],
|
141 |
+
"Electric Bass (finger)": [33],
|
142 |
+
"Electric Bass (pick)": [34],
|
143 |
+
"Fretless Bass": [35],
|
144 |
+
"Slap Bass 1": [36],
|
145 |
+
"Slap Bass 2": [37],
|
146 |
+
"Synth Bass 1": [38],
|
147 |
+
"Synth Bass 2": [39],
|
148 |
+
"Violin": [40],
|
149 |
+
"Viola": [41],
|
150 |
+
"Cello": [42],
|
151 |
+
"Contrabass": [43],
|
152 |
+
"Tremolo Strings": [44],
|
153 |
+
"Pizzicato Strings": [45],
|
154 |
+
"Orchestral Harp": [46],
|
155 |
+
"Timpani": [47],
|
156 |
+
"String Ensemble 1": [48],
|
157 |
+
"String Ensemble 2": [49],
|
158 |
+
"Synth Strings 1": [50],
|
159 |
+
"Synth Strings 2": [51],
|
160 |
+
"Choir Aahs": [52],
|
161 |
+
"Voice Oohs": [53],
|
162 |
+
"Synth Choir": [54],
|
163 |
+
"Orchestra Hit": [55],
|
164 |
+
"Trumpet": [56],
|
165 |
+
"Trombone": [57],
|
166 |
+
"Tuba": [58],
|
167 |
+
"Muted Trumpet": [59],
|
168 |
+
"French Horn": [60],
|
169 |
+
"Brass Section": [61],
|
170 |
+
"Synth Brass 1": [62],
|
171 |
+
"Synth Brass 2": [63],
|
172 |
+
"Soprano Sax": [64],
|
173 |
+
"Alto Sax": [65],
|
174 |
+
"Tenor Sax": [66],
|
175 |
+
"Baritone Sax": [67],
|
176 |
+
"Oboe": [68],
|
177 |
+
"English Horn": [69],
|
178 |
+
"Bassoon": [70],
|
179 |
+
"Clarinet": [71],
|
180 |
+
"Piccolo": [72],
|
181 |
+
"Flute": [73],
|
182 |
+
"Recorder": [74],
|
183 |
+
"Pan Flute": [75],
|
184 |
+
"Bottle Blow": [76],
|
185 |
+
"Shakuhachi": [77],
|
186 |
+
"Whistle": [78],
|
187 |
+
"Ocarina": [79],
|
188 |
+
"Lead 1 (square)": [80],
|
189 |
+
"Lead 2 (sawtooth)": [81],
|
190 |
+
"Lead 3 (calliope)": [82],
|
191 |
+
"Lead 4 (chiff)": [83],
|
192 |
+
"Lead 5 (charang)": [84],
|
193 |
+
"Lead 6 (voice)": [85],
|
194 |
+
"Lead 7 (fifths)": [86],
|
195 |
+
"Lead 8 (bass + lead)": [87],
|
196 |
+
"Pad 1 (new age)": [88],
|
197 |
+
"Pad 2 (warm)": [89],
|
198 |
+
"Pad 3 (polysynth)": [90],
|
199 |
+
"Pad 4 (choir)": [91],
|
200 |
+
"Pad 5 (bowed)": [92],
|
201 |
+
"Pad 6 (metallic)": [93],
|
202 |
+
"Pad 7 (halo)": [94],
|
203 |
+
"Pad 8 (sweep)": [95],
|
204 |
+
# "FX 1 (rain)": [96],
|
205 |
+
# "FX 2 (soundtrack)": [97],
|
206 |
+
# "FX 3 (crystal)": [98],
|
207 |
+
# "FX 4 (atmosphere)": [99],
|
208 |
+
# "FX 5 (brightness)": [100],
|
209 |
+
# "FX 6 (goblins)": [101],
|
210 |
+
# "FX 7 (echoes)": [102],
|
211 |
+
# "FX 8 (sci-fi)": [103],
|
212 |
+
# "Sitar": [104],
|
213 |
+
# "Banjo": [105],
|
214 |
+
# "Shamisen": [106],
|
215 |
+
# "Koto": [107],
|
216 |
+
# "Kalimba": [108],
|
217 |
+
# "Bagpipe": [109],
|
218 |
+
# "Fiddle": [110],
|
219 |
+
# "Shanai": [111],
|
220 |
+
# "Tinkle Bell": [112],
|
221 |
+
# "Agogo": [113],
|
222 |
+
# "Steel Drums": [114],
|
223 |
+
# "Woodblock": [115],
|
224 |
+
# "Taiko Drum": [116],
|
225 |
+
# "Melodic Tom": [117],
|
226 |
+
# "Synth Drum": [118],
|
227 |
+
# "Reverse Cymbal": [119],
|
228 |
+
# "Guitar Fret Noise": [120],
|
229 |
+
# "Breath Noise": [121],
|
230 |
+
# "Seashore": [122],
|
231 |
+
# "Bird Tweet": [123],
|
232 |
+
# "Telephone Ring": [124],
|
233 |
+
# "Helicopter": [125],
|
234 |
+
# "Applause": [126],
|
235 |
+
# "Gunshot": [127]
|
236 |
+
}
|
237 |
+
|
238 |
+
MT3_FULL = { # this matches the class names in Table 3 of MT3 paper
|
239 |
+
"Acoustic Piano": [0, 1, 3, 6, 7],
|
240 |
+
"Electric Piano": [2, 4, 5],
|
241 |
+
"Chromatic Percussion": np.arange(8, 16),
|
242 |
+
"Organ": np.arange(16, 24),
|
243 |
+
"Acoustic Guitar": np.arange(24, 26),
|
244 |
+
"Clean Electric Guitar": np.arange(26, 29),
|
245 |
+
"Distorted Electric Guitar": np.arange(29, 32),
|
246 |
+
"Acoustic Bass": [32, 35],
|
247 |
+
"Electric Bass": [33, 34, 36, 37, 38, 39],
|
248 |
+
"Violin": [40],
|
249 |
+
"Viola": [41],
|
250 |
+
"Cello": [42],
|
251 |
+
"Contrabass": [43],
|
252 |
+
"Orchestral Harp": [46],
|
253 |
+
"Timpani": [47],
|
254 |
+
"String Ensemble": [48, 49, 44, 45],
|
255 |
+
"Synth Strings": [50, 51],
|
256 |
+
"Choir and Voice": [52, 53, 54],
|
257 |
+
"Orchestra Hit": [55],
|
258 |
+
"Trumpet": [56, 59],
|
259 |
+
"Trombone": [57],
|
260 |
+
"Tuba": [58],
|
261 |
+
"French Horn": [60],
|
262 |
+
"Brass Section": [61, 62, 63],
|
263 |
+
"Soprano/Alto Sax": [64, 65],
|
264 |
+
"Tenor Sax": [66],
|
265 |
+
"Baritone Sax": [67],
|
266 |
+
"Oboe": [68],
|
267 |
+
"English Horn": [69],
|
268 |
+
"Bassoon": [70],
|
269 |
+
"Clarinet": [71],
|
270 |
+
"Pipe": [73, 72, 74, 75, 76, 77, 78, 79],
|
271 |
+
"Synth Lead": np.arange(80, 88),
|
272 |
+
"Synth Pad": np.arange(88, 96),
|
273 |
+
}
|
274 |
+
|
275 |
+
MT3_FULL_PLUS = MT3_FULL.copy()
|
276 |
+
MT3_FULL_PLUS["Singing Voice"] = [100]
|
277 |
+
MT3_FULL_PLUS["Singing Voice (chorus)"] = [101]
|
278 |
+
|
279 |
+
ENST_DRUM_NOTES = {
|
280 |
+
"bd": [36], # Kick Drum
|
281 |
+
"sd": [38], # Snare Drum
|
282 |
+
"sweep": [0], # Brush sweep
|
283 |
+
"sticks": [1], # Sticks
|
284 |
+
"rs": [2], # Rim shot
|
285 |
+
"cs": [37], # X-stick
|
286 |
+
"chh": [42], # Closed Hi-Hat
|
287 |
+
"ohh": [46], # Open Hi-Hat
|
288 |
+
"cb": [56], # Cowbell
|
289 |
+
"c": [3], # Other Cymbals
|
290 |
+
"lmt": [47], # Low Mid Tom
|
291 |
+
"mt": [48], # Mid Tom
|
292 |
+
"mtr": [58], # Mid Tom Rim
|
293 |
+
"lt": [45], # Low Tom
|
294 |
+
"ltr": [50], # Low Tom Rim
|
295 |
+
"lft": [41], # Low Floor Tom
|
296 |
+
"rc": [51], # Ride Cymbal
|
297 |
+
"ch": [52], # Chinese Cymbal
|
298 |
+
"cr": [49], # Crash Cymbal
|
299 |
+
"spl": [55], # Splash Cymbal
|
300 |
+
}
|
301 |
+
|
302 |
+
EGMD_DRUM_NOTES = {
|
303 |
+
"Kick Drum": [36], # Listed by order of most common annotation
|
304 |
+
"Snare X-stick": [37], # Snare X-Stick, https://youtu.be/a2KFrrKaoYU?t=80
|
305 |
+
"Snare Drum": [38], # Snare (head) and Electric Snare
|
306 |
+
"Closed Hi-Hat": [42, 44, 22], # 44 is pedal hi-hat
|
307 |
+
"Open Hi-Hat": [46, 26],
|
308 |
+
"Cowbell": [56],
|
309 |
+
"High Floor Tom": [43],
|
310 |
+
"Low Floor Tom": [41], # Lowest Tom
|
311 |
+
"Low Tom": [45],
|
312 |
+
"Low-Mid Tom": [47],
|
313 |
+
"Mid Tom": [48],
|
314 |
+
"Low Tom (Rim)": [50], # TD-17: 47, 50, 58
|
315 |
+
"Mid Tom (Rim)": [58],
|
316 |
+
# "Ride Cymbal": [51, 53, 59],
|
317 |
+
"Ride": [51],
|
318 |
+
"Ride (Bell)": [53], # https://youtu.be/b94hZoM5s3k?t=323
|
319 |
+
"Ride (Edge)": [59],
|
320 |
+
"Chinese Cymbal": [52],
|
321 |
+
"Crash Cymbal": [49, 57],
|
322 |
+
"Splash Cymbal": [55],
|
323 |
+
}
|
324 |
+
|
325 |
+
# Inspired by Roland TD-17 MIDI note map, https://rolandus.zendesk.com/hc/en-us/articles/360005173411-TD-17-Default-Factory-MIDI-Note-Map
|
326 |
+
GM_DRUM_NOTES = {
|
327 |
+
"Kick Drum": [36, 35], # Listed by order of most common annotation
|
328 |
+
"Snare X-stick": [37, 2], # Snare X-Stick, https://youtu.be/a2KFrrKaoYU?t=80
|
329 |
+
"Snare Drum": [38, 40], # Snare (head) and Electric Snare
|
330 |
+
"Closed Hi-Hat": [42, 44, 22], # 44 is pedal hi-hat
|
331 |
+
"Open Hi-Hat": [46, 26],
|
332 |
+
"Cowbell": [56],
|
333 |
+
"High Floor Tom": [43],
|
334 |
+
"Low Floor Tom": [41], # Lowest Tom
|
335 |
+
"Low Tom": [45],
|
336 |
+
"Low-Mid Tom": [47],
|
337 |
+
"Mid Tom": [48],
|
338 |
+
"Low Tom (Rim)": [50], # TD-17: 47, 50, 58
|
339 |
+
"Mid Tom (Rim)": [58],
|
340 |
+
# "Ride Cymbal": [51, 53, 59],
|
341 |
+
"Ride": [51],
|
342 |
+
"Ride (Bell)": [53], # https://youtu.be/b94hZoM5s3k?t=323
|
343 |
+
"Ride (Edge)": [59],
|
344 |
+
"Chinese Cymbal": [52],
|
345 |
+
"Crash Cymbal": [49, 57],
|
346 |
+
"Splash Cymbal": [55],
|
347 |
+
}
|
348 |
+
|
349 |
+
KICK_SNARE_HIHAT = {
|
350 |
+
"Kick Drum": [36, 35],
|
351 |
+
"Snare Drum": [38, 40],
|
352 |
+
# "Snare Drum + X-Stick": [38, 40, 37, 2],
|
353 |
+
# "Snare X-stick": [37, 2], # Snare X-Stick, https://youtu.be/a2KFrrKaoYU?t=80
|
354 |
+
"Hi-Hat": [42, 44, 46, 22, 26],
|
355 |
+
# "Ride Cymbal": [51, 53, 59],
|
356 |
+
# "Hi-Hat + Ride": [42, 44, 46, 22, 26, 51, 53, 59],
|
357 |
+
# "HiHat + all Cymbals": [42, 44, 46, 22, 26, 51, 53, 59, 52, 49, 57, 55],
|
358 |
+
# "Kick Drum + Low Tom": [36, 35, 45],
|
359 |
+
# "All Cymbal": [51, 53, 59, 52, 49, 57, 55]
|
360 |
+
# "all": np.arange(30, 60)
|
361 |
+
}
|
362 |
+
|
363 |
+
drum_vocab_presets = {
|
364 |
+
"gm": GM_DRUM_NOTES,
|
365 |
+
"egmd": EGMD_DRUM_NOTES,
|
366 |
+
"enst": ENST_DRUM_NOTES,
|
367 |
+
"ksh": KICK_SNARE_HIHAT,
|
368 |
+
"kshr": {
|
369 |
+
"Kick Drum": [36, 35],
|
370 |
+
"Snare Drum": [38, 40],
|
371 |
+
"Hi-Hat": [42, 44, 46, 22, 26, 51, 53, 59],
|
372 |
+
}
|
373 |
+
}
|
374 |
+
|
375 |
+
program_vocab_presets = {
|
376 |
+
"gm_full": GM_INSTR_FULL, # 96 classes (except drums)
|
377 |
+
"mt3_full": MT3_FULL, # 34 classes (except drums) as in MT3 paper
|
378 |
+
"mt3_midi": GM_INSTR_CLASS, # 11 classes (except drums) as in MT3 paper
|
379 |
+
"mt3_midi_plus": GM_INSTR_CLASS_PLUS, # 11 classes + singing (except drums)
|
380 |
+
"mt3_full_plus": MT3_FULL_PLUS, # 34 classes (except drums) mt3_full + singing (except drums)
|
381 |
+
"gm": GM_INSTR_CLASS, # 11 classes (except drums)
|
382 |
+
"gm_plus": GM_INSTR_CLASS_PLUS, # 11 classes + singing (except drums)
|
383 |
+
"gm_ext_plus": GM_INSTR_EXT_CLASS_PLUS, # 13 classes + singing + chorus (except drums)
|
384 |
+
}
|
content/model_output/test.mid
ADDED
Binary file (2.94 kB). View file
|
|
extras/.DS_Store
ADDED
Binary file (10.2 kB). View file
|
|
extras/Dockerfile
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel
|
2 |
+
LABEL maintainer="https://github.com/mimbres/YourMT3"
|
3 |
+
|
4 |
+
ENV TZ=Europe/London \
|
5 |
+
DEBIAN_FRONTEND=noninteractive
|
6 |
+
RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone
|
7 |
+
|
8 |
+
RUN apt-get update
|
9 |
+
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
|
10 |
+
|
11 |
+
RUN apt-get update --fix-missing && apt-get install -y wget curl \
|
12 |
+
nano git ffmpeg sox tmux htop
|
13 |
+
RUN pip3 install --upgrade pip
|
14 |
+
RUN pip3 install mirdata mido git+https://github.com/craffel/mir_eval.git \
|
15 |
+
matplotlib lightning>=2.0.2 pytest-timeout pytest deprecated librosa \
|
16 |
+
einops transformers wandb
|
17 |
+
|
18 |
+
CMD [ "/bin/bash" ]
|
extras/demo_cross_augmentation.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
from typing import Dict, Tuple
|
11 |
+
from copy import deepcopy
|
12 |
+
import soundfile as sf
|
13 |
+
import torch
|
14 |
+
from utils.data_modules import AMTDataModule
|
15 |
+
from config.data_presets import data_preset_single_cfg, data_preset_multi_cfg
|
16 |
+
from utils.augment import intra_stem_augment_processor
|
17 |
+
|
18 |
+
|
19 |
+
def get_ds(data_preset_multi: Dict, train_num_samples_per_epoch: int = 90000):
|
20 |
+
dm = AMTDataModule(data_preset_multi=data_preset_multi, train_num_samples_per_epoch=train_num_samples_per_epoch)
|
21 |
+
dm.setup('fit')
|
22 |
+
dl = dm.train_dataloader()
|
23 |
+
ds = dl.flattened[0].dataset
|
24 |
+
return ds
|
25 |
+
|
26 |
+
|
27 |
+
def debug_func(num_segments: int = 10):
|
28 |
+
sampled_data, sampled_ids = ds._get_rand_segments_from_cache(num_segments)
|
29 |
+
ux_sampled_data, _ = ds._get_rand_segments_from_cache(ux_count_sum, False, sampled_ids)
|
30 |
+
s = deepcopy(sampled_data)
|
31 |
+
intra_stem_augment_processor(sampled_data, submix_audio=False)
|
32 |
+
|
33 |
+
|
34 |
+
def gen_audio(index: int = 0):
|
35 |
+
# audio_arr: (b, 1, nframe), note_token_arr: (b, l), task_token_arr: (b, task_l)
|
36 |
+
audio_arr, note_token_arr, task_token_arr = ds.__getitem__(index)
|
37 |
+
|
38 |
+
# merge all the segments into one audio file
|
39 |
+
audio = audio_arr.permute(0, 2, 1).reshape(-1).squeeze().numpy()
|
40 |
+
|
41 |
+
# save the audio file
|
42 |
+
sf.write('xaug_demo_audio.wav', audio, 16000, subtype='PCM_16')
|
43 |
+
|
44 |
+
|
45 |
+
data_preset_multi = data_preset_multi_cfg["all_cross_rebal5"]
|
46 |
+
ds = get_ds(data_preset_multi)
|
47 |
+
ds.random_amp_range = [0.8, 1.1]
|
48 |
+
ds.stem_xaug_policy = {
|
49 |
+
"max_k": 5,
|
50 |
+
"tau": 0.3,
|
51 |
+
"alpha": 1.0,
|
52 |
+
"max_subunit_stems": 12,
|
53 |
+
"no_instr_overlap": True,
|
54 |
+
"no_drum_overlap": True,
|
55 |
+
"uhat_intra_stem_augment": True,
|
56 |
+
}
|
57 |
+
gen_audio(3)
|
58 |
+
|
59 |
+
# for k in ds.cache.keys():
|
60 |
+
# arr = ds.cache[k]['audio_array']
|
61 |
+
# arr = np.sum(arr, axis=1).reshape(-1)
|
62 |
+
# # sf.write(f'xxx/{k}.wav', arr, 16000, subtype='PCM_16')
|
63 |
+
# if np.min(arr) > -0.5:
|
64 |
+
# print(k)
|
65 |
+
|
66 |
+
# arr = ds.cache[52]['audio_array']
|
67 |
+
# for i in range(arr.shape[1]):
|
68 |
+
# a = arr[:, i, :].reshape(-1)
|
69 |
+
# sf.write(f'xxx52/52_{i}.wav', a, 16000, subtype='PCM_16')
|
extras/download_mirst500.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
from pytube import YouTube
|
5 |
+
|
6 |
+
|
7 |
+
def downloadMp3(yt, idx, askPath=0):
|
8 |
+
# extract only audio
|
9 |
+
video = yt.streams.filter(only_audio=True).first()
|
10 |
+
|
11 |
+
destination = 'mp3File'
|
12 |
+
# check for destination to save file
|
13 |
+
if (askPath == 1):
|
14 |
+
print("Enter the destination (leave blank for default dir mp3File)")
|
15 |
+
destination = str(input(">> ")) or 'mp3File'
|
16 |
+
|
17 |
+
# download the file
|
18 |
+
out_file = video.download(output_path=destination)
|
19 |
+
|
20 |
+
# save the file
|
21 |
+
# base, ext = os.path.splitext(out_file)
|
22 |
+
dir_path, file_base = os.path.split(out_file)
|
23 |
+
|
24 |
+
new_file = os.path.join(dir_path, f'{idx}.mp3')
|
25 |
+
os.rename(out_file, new_file)
|
26 |
+
# result of success
|
27 |
+
print(yt.title + " has been successfully downloaded.")
|
28 |
+
|
29 |
+
|
30 |
+
MISSING_FILE_IDS = [
|
31 |
+
16, 26, 33, 38, 40, 50, 53, 55, 60, 81, 82, 98, 107, 122, 126, 127, 129, 141, 145, 150, 172,
|
32 |
+
201, 205, 206, 215, 216, 221, 226, 232, 240, 243, 245, 255, 257, 267, 273, 278, 279, 285, 287,
|
33 |
+
291, 304, 312, 319, 321, 325, 329, 332, 333, 336, 337, 342, 359, 375, 402, 417, 438, 445, 454,
|
34 |
+
498
|
35 |
+
]
|
36 |
+
|
37 |
+
data_link_file = '../../../data/mir_St500_yourmt3_16k/MIR-ST500_20210206/MIR-ST500_link.json'
|
38 |
+
data_link = json.load(open(data_link_file, 'r'))
|
39 |
+
download_fail = []
|
40 |
+
|
41 |
+
for i in MISSING_FILE_IDS:
|
42 |
+
print(f'Downloading {i}...')
|
43 |
+
yt = YouTube(data_link[str(i)])
|
44 |
+
try:
|
45 |
+
downloadMp3(yt, idx=i)
|
46 |
+
except:
|
47 |
+
download_fail.append(i)
|
48 |
+
print(f'Failed to download {i}.')
|
49 |
+
|
50 |
+
print(f'Failed to download {len(download_fail)} files: {download_fail}')
|
extras/examples/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
extras/examples/1733.mid
ADDED
Binary file (16 kB). View file
|
|
extras/examples/2106.mid
ADDED
Binary file (12.9 kB). View file
|
|
extras/examples/803_002_167s95.mid
ADDED
Binary file (9.94 kB). View file
|
|
extras/examples/piano_converted.mid
ADDED
Binary file (42.9 kB). View file
|
|
extras/inspecting_slakh_bass.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import mirdata
|
2 |
+
from utils.mirdata_dev.datasets import slakh16k
|
3 |
+
|
4 |
+
ds = slakh16k.Dataset(data_home='../../data', version='2100-yourmt3-16k')
|
5 |
+
mtrack_ids = ds.mtrack_ids
|
6 |
+
|
7 |
+
# Collect plugin names
|
8 |
+
plugin_names = set()
|
9 |
+
cnt = 0
|
10 |
+
for mtrack_id in mtrack_ids:
|
11 |
+
mtrack = ds.multitrack(mtrack_id)
|
12 |
+
for track_id in mtrack.track_ids:
|
13 |
+
track = ds.track(track_id)
|
14 |
+
if track.instrument.lower() == 'bass':
|
15 |
+
if track.plugin_name == 'upright_bass.nkm':
|
16 |
+
print(f'{str(cnt)}: {track_id}: {track.plugin_name}')
|
17 |
+
# if track.plugin_name not in plugin_names:
|
18 |
+
# plugin_names.add(track.plugin_name)
|
19 |
+
# print(f'{str(cnt)}: {track_id}: {track.plugin_name}')
|
20 |
+
# cnt += 1
|
21 |
+
"""
|
22 |
+
0: Track00001-S03: scarbee_rickenbacker_bass_palm_muted.nkm
|
23 |
+
1: Track00002-S01: classic_bass.nkm
|
24 |
+
2: Track00004-S01: scarbee_rickenbacker_bass.nkm
|
25 |
+
3: Track00005-S04: scarbee_jay_bass_both.nkm
|
26 |
+
4: Track00006-S03: pop_bass.nkm
|
27 |
+
5: Track00008-S00: scarbee_pre_bass.nkm
|
28 |
+
6: Track00013-S00: jazz_upright.nkm
|
29 |
+
7: Track00014-S01: funk_bass.nkm
|
30 |
+
8: Track00016-S01: scarbee_mm_bass.nkm
|
31 |
+
9: Track00024-S07: upright_bass.nkm
|
32 |
+
10: Track00027-S03: scarbee_jay_bass_slap_both.nkm
|
33 |
+
11: Track00094-S08: upright_bass2.nkm
|
34 |
+
"""
|
extras/rotary_positional_embedding.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""rotary_positional_embedding.py - Rotary Positional Embedding
|
2 |
+
|
3 |
+
code from github.com/lucidrains/rotary-embedding-torch
|
4 |
+
|
5 |
+
MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
from math import pi, log
|
9 |
+
import torch
|
10 |
+
from torch import nn, einsum
|
11 |
+
from einops import rearrange, repeat
|
12 |
+
|
13 |
+
|
14 |
+
def exists(val):
|
15 |
+
return val is not None
|
16 |
+
|
17 |
+
|
18 |
+
def broadcat(tensors, dim=-1):
|
19 |
+
num_tensors = len(tensors)
|
20 |
+
shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
|
21 |
+
assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
|
22 |
+
shape_len = list(shape_lens)[0]
|
23 |
+
|
24 |
+
dim = (dim + shape_len) if dim < 0 else dim
|
25 |
+
dims = list(zip(*map(lambda t: list(t.shape), tensors)))
|
26 |
+
|
27 |
+
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
|
28 |
+
assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)
|
29 |
+
]), 'invalid dimensions for broadcastable concatentation'
|
30 |
+
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
|
31 |
+
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
|
32 |
+
expanded_dims.insert(dim, (dim, dims[dim]))
|
33 |
+
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
|
34 |
+
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
|
35 |
+
return torch.cat(tensors, dim=dim)
|
36 |
+
|
37 |
+
|
38 |
+
# rotary embedding helper functions
|
39 |
+
def rotate_half(x):
|
40 |
+
x = rearrange(x, '... (d r) -> ... d r', r=2)
|
41 |
+
x1, x2 = x.unbind(dim=-1)
|
42 |
+
x = torch.stack((-x2, x1), dim=-1)
|
43 |
+
return rearrange(x, '... d r -> ... (d r)')
|
44 |
+
|
45 |
+
|
46 |
+
def apply_rotary_emb(freqs, t, start_index=0, scale=1.):
|
47 |
+
rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
|
48 |
+
freqs = freqs[-seq_len:, :]
|
49 |
+
|
50 |
+
freqs = freqs.to(t)
|
51 |
+
end_index = start_index + rot_dim
|
52 |
+
assert rot_dim <= t.shape[
|
53 |
+
-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
|
54 |
+
t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
|
55 |
+
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
|
56 |
+
return torch.cat((t_left, t, t_right), dim=-1)
|
57 |
+
|
58 |
+
|
59 |
+
# learned rotation helpers
|
60 |
+
def apply_learned_rotations(rotations, t, start_index=0, freq_ranges=None):
|
61 |
+
if exists(freq_ranges):
|
62 |
+
rotations = einsum('..., f -> ... f', rotations, freq_ranges)
|
63 |
+
rotations = rearrange(rotations, '... r f -> ... (r f)')
|
64 |
+
|
65 |
+
rotations = repeat(rotations, '... n -> ... (n r)', r=2)
|
66 |
+
return apply_rotary_emb(rotations, t, start_index=start_index)
|
67 |
+
|
68 |
+
|
69 |
+
# classes
|
70 |
+
class RotaryEmbedding(nn.Module):
|
71 |
+
|
72 |
+
def __init__(self,
|
73 |
+
dim,
|
74 |
+
custom_freqs=None,
|
75 |
+
freqs_for='lang',
|
76 |
+
theta=10000,
|
77 |
+
max_freq=10,
|
78 |
+
num_freqs=1,
|
79 |
+
learned_freq=False,
|
80 |
+
use_xpos=False,
|
81 |
+
xpos_scale_base=512,
|
82 |
+
interpolate_factor=1.,
|
83 |
+
theta_rescale_factor=1.):
|
84 |
+
super().__init__()
|
85 |
+
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
86 |
+
# has some connection to NTK literature
|
87 |
+
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
88 |
+
theta *= theta_rescale_factor**(dim / (dim - 2))
|
89 |
+
|
90 |
+
if exists(custom_freqs):
|
91 |
+
freqs = custom_freqs
|
92 |
+
elif freqs_for == 'lang':
|
93 |
+
freqs = 1. / (theta**(torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
94 |
+
elif freqs_for == 'pixel':
|
95 |
+
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
96 |
+
elif freqs_for == 'constant':
|
97 |
+
freqs = torch.ones(num_freqs).float()
|
98 |
+
else:
|
99 |
+
raise ValueError(f'unknown modality {freqs_for}')
|
100 |
+
|
101 |
+
self.cache = dict()
|
102 |
+
self.cache_scale = dict()
|
103 |
+
self.freqs = nn.Parameter(freqs, requires_grad=learned_freq)
|
104 |
+
|
105 |
+
# interpolation factors
|
106 |
+
|
107 |
+
assert interpolate_factor >= 1.
|
108 |
+
self.interpolate_factor = interpolate_factor
|
109 |
+
|
110 |
+
# xpos
|
111 |
+
|
112 |
+
self.use_xpos = use_xpos
|
113 |
+
if not use_xpos:
|
114 |
+
self.register_buffer('scale', None)
|
115 |
+
return
|
116 |
+
|
117 |
+
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
|
118 |
+
self.scale_base = xpos_scale_base
|
119 |
+
self.register_buffer('scale', scale)
|
120 |
+
|
121 |
+
def get_seq_pos(self, seq_len, device, dtype, offset=0):
|
122 |
+
return (torch.arange(seq_len, device=device, dtype=dtype) +
|
123 |
+
offset) / self.interpolate_factor
|
124 |
+
|
125 |
+
def rotate_queries_or_keys(self, t, seq_dim=-2, offset=0, freq_seq_len=None):
|
126 |
+
assert not self.use_xpos, 'you must use `.rotate_queries_and_keys` method instead and pass in both queries and keys, for length extrapolatable rotary embeddings'
|
127 |
+
|
128 |
+
device, dtype, seq_len = t.device, t.dtype, t.shape[seq_dim]
|
129 |
+
|
130 |
+
if exists(freq_seq_len):
|
131 |
+
assert freq_seq_len >= seq_len
|
132 |
+
seq_len = freq_seq_len
|
133 |
+
|
134 |
+
freqs = self.forward(
|
135 |
+
lambda: self.get_seq_pos(seq_len, device=device, dtype=dtype, offset=offset),
|
136 |
+
cache_key=f'freqs:{seq_len}|offset:{offset}')
|
137 |
+
return apply_rotary_emb(freqs, t)
|
138 |
+
|
139 |
+
def rotate_queries_with_cached_keys(self, q, k, seq_dim=-2):
|
140 |
+
q_len, k_len = q.shape[seq_dim], k.shape[seq_dim]
|
141 |
+
assert q_len <= k_len
|
142 |
+
q = self.rotate_queries_or_keys(q, seq_dim=seq_dim, freq_seq_len=k_len)
|
143 |
+
k = self.rotate_queries_or_keys(k, seq_dim=seq_dim)
|
144 |
+
return q, k
|
145 |
+
|
146 |
+
def rotate_queries_and_keys(self, q, k, seq_dim=-2):
|
147 |
+
assert self.use_xpos
|
148 |
+
device, dtype, seq_len = q.device, q.dtype, q.shape[seq_dim]
|
149 |
+
seq = self.get_seq_pos(seq_len, dtype=dtype, device=device)
|
150 |
+
freqs = self.forward(lambda: seq, cache_key=f'freqs:{seq_len}')
|
151 |
+
scale = self.get_scale(lambda: seq, cache_key=f'scale:{seq_len}').to(dtype)
|
152 |
+
rotated_q = apply_rotary_emb(freqs, q, scale=scale)
|
153 |
+
rotated_k = apply_rotary_emb(freqs, k, scale=scale**-1)
|
154 |
+
return rotated_q, rotated_k
|
155 |
+
|
156 |
+
def get_scale(self, t, cache_key=None):
|
157 |
+
assert self.use_xpos
|
158 |
+
|
159 |
+
if exists(cache_key) and cache_key in self.cache:
|
160 |
+
return self.cache[cache_key]
|
161 |
+
|
162 |
+
if callable(t):
|
163 |
+
t = t()
|
164 |
+
|
165 |
+
scale = 1.
|
166 |
+
if self.use_xpos:
|
167 |
+
power = (t - len(t) // 2) / self.scale_base
|
168 |
+
scale = self.scale**rearrange(power, 'n -> n 1')
|
169 |
+
scale = torch.cat((scale, scale), dim=-1)
|
170 |
+
|
171 |
+
if exists(cache_key):
|
172 |
+
self.cache[cache_key] = scale
|
173 |
+
|
174 |
+
return scale
|
175 |
+
|
176 |
+
def forward(self, t, cache_key=None):
|
177 |
+
if exists(cache_key) and cache_key in self.cache:
|
178 |
+
return self.cache[cache_key]
|
179 |
+
|
180 |
+
if callable(t):
|
181 |
+
t = t()
|
182 |
+
|
183 |
+
freqs = self.freqs
|
184 |
+
|
185 |
+
freqs = einsum('..., f -> ... f', t.type(freqs.dtype), freqs)
|
186 |
+
freqs = repeat(freqs, '... n -> ... (n r)', r=2)
|
187 |
+
|
188 |
+
if exists(cache_key):
|
189 |
+
self.cache[cache_key] = freqs
|
190 |
+
|
191 |
+
return freqs
|
extras/run_spleeter_mirst500_cmedia.sh
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
shopt -s globstar
|
3 |
+
for file in "$1"/**/*.wav; do
|
4 |
+
output_dir="${file%/*}"
|
5 |
+
input_file="$output_dir/converted_Mixture.wav"
|
6 |
+
spleeter separate -p spleeter:2stems -o $output_dir $input_file -f {instrument}.{codec}
|
7 |
+
ffmpeg -i "$output_dir/vocals.wav" -acodec pcm_s16le -ac 1 -ar 16000 -y "$output_dir/vocals_16k.wav"
|
8 |
+
ffmpeg -i "$output_dir/accompaniment.wav" -acodec pcm_s16le -ac 1 -ar 16000 -y "$output_dir/accompaniment_16k.wav"
|
9 |
+
rm "$output_dir/vocals.wav"
|
10 |
+
rm "$output_dir/accompaniment.wav"
|
11 |
+
mv "$output_dir/vocals_16k.wav" "$output_dir/vocals.wav"
|
12 |
+
mv "$output_dir/accompaniment_16k.wav" "$output_dir/accompaniment.wav"
|
13 |
+
done
|
extras/swap_channel.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
a = np.arange(12).reshape(2, 3, 2) # (batch, channel, dim)
|
4 |
+
print(a)
|
5 |
+
array([[[0, 1], [2, 3], [4, 5]], [[6, 7], [8, 9], [10, 11]]])
|
6 |
+
|
7 |
+
swap_mat = create_swap_channel_mat(input_shape, swap_channel=(1, 2))
|
8 |
+
|
9 |
+
# will swap channel 1 and 2 of batch 0 with channel 1 and 2 of batch 1
|
10 |
+
b = a @ swap_mat
|
11 |
+
print(b)
|
12 |
+
# expected output
|
13 |
+
array([[[0, 1], [8, 9], [10, 11]], [[6, 7], [2, 3], [4, 5]]])
|
14 |
+
|
15 |
+
import torch
|
16 |
+
|
17 |
+
|
18 |
+
def swap_channels_between_batches(a_tensor, swap_channels):
|
19 |
+
# Copy the tensor to avoid modifying the original tensor
|
20 |
+
result_tensor = a_tensor.clone()
|
21 |
+
|
22 |
+
# Unpack the channels to be swapped
|
23 |
+
ch1, ch2 = swap_channels
|
24 |
+
|
25 |
+
# Swap the specified channels between batches
|
26 |
+
result_tensor[0, ch1, :], result_tensor[1, ch1, :] = a_tensor[1, ch1, :].clone(), a_tensor[0, ch1, :].clone()
|
27 |
+
result_tensor[0, ch2, :], result_tensor[1, ch2, :] = a_tensor[1, ch2, :].clone(), a_tensor[0, ch2, :].clone()
|
28 |
+
|
29 |
+
return result_tensor
|
30 |
+
|
31 |
+
|
32 |
+
# Define a sample tensor 'a_tensor'
|
33 |
+
a_tensor = torch.tensor([[[0, 1], [2, 3], [4, 5]], [[6, 7], [8, 9], [10, 11]]], dtype=torch.float32)
|
34 |
+
|
35 |
+
# Define channels to swap
|
36 |
+
swap_channels = (1, 2) # Channels to swap between batches
|
37 |
+
|
38 |
+
# Swap the channels between batches
|
39 |
+
swapped_tensor = swap_channels_between_batches(a_tensor, swap_channels)
|
40 |
+
|
41 |
+
# Print the original tensor and the tensor after swapping channels between batches
|
42 |
+
print("Original Tensor 'a_tensor':")
|
43 |
+
print(a_tensor)
|
44 |
+
print("\nTensor after swapping channels between batches:")
|
45 |
+
print(swapped_tensor)
|
46 |
+
|
47 |
+
#-------------------------------------------------
|
48 |
+
|
49 |
+
import torch
|
50 |
+
from einops import rearrange
|
51 |
+
|
52 |
+
|
53 |
+
def shift(arr, num, fill_value=np.nan):
|
54 |
+
result = np.empty_like(arr)
|
55 |
+
if num > 0:
|
56 |
+
result[:num] = fill_value
|
57 |
+
result[num:] = arr[:-num]
|
58 |
+
elif num < 0:
|
59 |
+
result[num:] = fill_value
|
60 |
+
result[:num] = arr[-num:]
|
61 |
+
else:
|
62 |
+
result[:] = arr
|
63 |
+
return result
|
64 |
+
|
65 |
+
|
66 |
+
def create_batch_swap_matrix(batch_size, channels, swap_channels):
|
67 |
+
swap_mat = np.eye(batch_size * channels)
|
68 |
+
|
69 |
+
for c in swap_channels:
|
70 |
+
idx1 = c # 첫 번째 배치의 교환할 채널 인덱스
|
71 |
+
idx2 = c + channels # 두 번째 배치의 교환할 채널 인덱스
|
72 |
+
|
73 |
+
swap_mat[idx1, idx1], swap_mat[idx2, idx2] = 0, 0 # 대각선 값을 0으로 설정
|
74 |
+
swap_mat[idx1, idx2], swap_mat[idx2, idx1] = 1, 1 # 해당 채널을 교환
|
75 |
+
return swap_mat
|
76 |
+
|
77 |
+
|
78 |
+
def create_batch_swap_matrix(batch_size, channels, swap_channels):
|
79 |
+
swap_mat = np.eye(batch_size * channels)
|
80 |
+
|
81 |
+
# 모든 채널에 대해 교환 수행
|
82 |
+
for c in swap_channels:
|
83 |
+
idx1 = np.arange(c, batch_size * channels, channels) # 현재 채널의 모든 배치 인덱스
|
84 |
+
idx2 = (idx1 + channels) % (batch_size * channels) # 순환을 위해 modulo 사용
|
85 |
+
|
86 |
+
swap_mat[idx1, idx1] = 0
|
87 |
+
swap_mat[idx2, idx2] = 0
|
88 |
+
swap_mat[idx1, idx2] = 1
|
89 |
+
swap_mat[idx2, idx1] = 1
|
90 |
+
|
91 |
+
return swap_mat
|
92 |
+
|
93 |
+
|
94 |
+
def swap_channels_between_batches(input_tensor, swap_matrix):
|
95 |
+
reshaped_tensor = rearrange(input_tensor, 'b c d -> (b c) d')
|
96 |
+
swapped_tensor = swap_matrix @ reshaped_tensor
|
97 |
+
return rearrange(swapped_tensor, '(b c) d -> b c d', b=input_tensor.shape[0])
|
98 |
+
|
99 |
+
|
100 |
+
# 예제 파라미터
|
101 |
+
batch_size = 2
|
102 |
+
channels = 3
|
103 |
+
# swap_info = {
|
104 |
+
# : [1, 2] # batch_index: [channel_indices]
|
105 |
+
# }
|
106 |
+
swap_channels = [1, 2] # 교환할 채널
|
107 |
+
|
108 |
+
# 예제 텐서 생성
|
109 |
+
input_tensor = torch.tensor([[[0, 1], [2, 3], [4, 5]], [[6, 7], [8, 9], [10, 11]]], dtype=torch.float32)
|
110 |
+
|
111 |
+
# swap matrix 생성
|
112 |
+
swap_matrix = create_batch_swap_matrix(batch_size, channels, swap_channels)
|
113 |
+
swap_matrix = torch.Tensor(swap_matrix)
|
114 |
+
|
115 |
+
# 채널 교환 수행
|
116 |
+
swapped_tensor = swap_channels_between_batches(input_tensor, swap_matrix)
|
117 |
+
|
118 |
+
# 결과 출력
|
119 |
+
print("Original Tensor:")
|
120 |
+
print(input_tensor)
|
121 |
+
print("\nSwapped Tensor:")
|
122 |
+
print(swapped_tensor)
|
extras/t5_dev.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import T5Config
|
3 |
+
from model.t5mod import T5ForConditionalGeneration
|
4 |
+
|
5 |
+
a = {
|
6 |
+
"architectures": ["T5ForConditionalGeneration"],
|
7 |
+
"d_ff": 1024, # size of the intermediate feed forward layer in each T5Block
|
8 |
+
"d_kv": 64, # d_kv has to be equal to d_model // num_heads.
|
9 |
+
# "d_model": 512, # encoder hiddnen size, defined by model_cfg
|
10 |
+
"decoder_start_token_id": 0,
|
11 |
+
"dense_act_fn": "gelu_new",
|
12 |
+
# "dropout_rate": 0.05, # can be overwritten by args in ymt3
|
13 |
+
"eos_token_id": 1,
|
14 |
+
"feed_forward_proj": "gated-gelu",
|
15 |
+
"initializer_factor": 1.0,
|
16 |
+
# "is_encoder_decoder": True,
|
17 |
+
"is_gated_act": True,
|
18 |
+
"layer_norm_epsilon": 1e-06,
|
19 |
+
"model_type": "t5",
|
20 |
+
# "num_decoder_layers": 8,
|
21 |
+
"num_heads": 6,
|
22 |
+
"num_layers": 8,
|
23 |
+
"output_past": True,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"relative_attention_num_buckets": 32,
|
26 |
+
"use_cache": True,
|
27 |
+
"vocab_size": 1391 # vocab_size is automatically set by the task manager...
|
28 |
+
}
|
29 |
+
cfg = T5Config(**a)
|
30 |
+
cfg.num_decoder_layers = 4
|
31 |
+
cfg.num_layers = 0
|
32 |
+
|
33 |
+
model = T5ForConditionalGeneration(cfg)
|
34 |
+
print(model)
|
35 |
+
|
36 |
+
x = torch.rand(((2, 256, 512)))
|
37 |
+
out = model.encoder.forward(inputs_embeds=x)
|
38 |
+
|
39 |
+
enc_hs = torch.rand((2, 256, 512))
|
40 |
+
labels = torch.randint(0, 1391, (2, 256))
|
41 |
+
pred = model(encoder_outputs=(enc_hs,), labels=labels) # important (enc_hs,) comma!
|
extras/t5perceiver.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
""" Bare wrapper of HF PyTorch T5 and Perceiver with the following modifications:
|
11 |
+
- PerceiverTF encoder
|
12 |
+
- ResConv pre-encoder
|
13 |
+
- Projection layers for dynamic dimension matching
|
14 |
+
- Sinusoidal absolute positional embeddings
|
15 |
+
- Positional embeddings from Perceiver implementation
|
16 |
+
- Task conditioning on encoder and decoder by input tokens
|
17 |
+
"""
|
18 |
+
import copy
|
19 |
+
import warnings
|
20 |
+
from typing import Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import CrossEntropyLoss
|
25 |
+
from torch.utils.checkpoint import checkpoint
|
26 |
+
|
27 |
+
from transformers.utils import logging
|
28 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
29 |
+
from transformers.modeling_utils import PreTrainedModel
|
30 |
+
from transformers.models.t5.modeling_t5 import (T5LayerNorm, T5Block, PARALLELIZE_DOCSTRING, DEPARALLELIZE_DOCSTRING,
|
31 |
+
T5_START_DOCSTRING, T5_INPUTS_DOCSTRING, _CONFIG_FOR_DOC,
|
32 |
+
__HEAD_MASK_WARNING_MSG)
|
33 |
+
from transformers.modeling_outputs import (Seq2SeqLMOutput, BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions)
|
34 |
+
from transformers import T5Config #, T5PreTrainedModel
|
35 |
+
from model.ops import FixedSinusoidalPositionalEmbedding
|
36 |
+
|
37 |
+
# additional imports
|
38 |
+
from model.t5mod import T5Stack
|
39 |
+
from transformers.models.t5.modeling_t5 import (T5Model, T5ForConditionalGeneration, T5EncoderModel, T5DenseActDense,
|
40 |
+
T5DenseGatedActDense, T5Attention, load_tf_weights_in_t5,
|
41 |
+
is_torch_fx_proxy)
|
42 |
+
|
43 |
+
from transformers.utils import (DUMMY_INPUTS, DUMMY_MASK)
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
|
48 |
+
class T5PerceiverPreTrainedModel(PreTrainedModel):
|
49 |
+
"""
|
50 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
51 |
+
models.
|
52 |
+
"""
|
53 |
+
|
54 |
+
config_class = None
|
55 |
+
load_tf_weights = load_tf_weights_in_t5
|
56 |
+
base_model_prefix = "transformer"
|
57 |
+
is_parallelizable = True
|
58 |
+
supports_gradient_checkpointing = True
|
59 |
+
_no_split_modules = ["T5Block"]
|
60 |
+
_keep_in_fp32_modules = ["wo"]
|
61 |
+
|
62 |
+
@property
|
63 |
+
def dummy_inputs(self):
|
64 |
+
input_ids = torch.tensor(DUMMY_INPUTS)
|
65 |
+
input_mask = torch.tensor(DUMMY_MASK)
|
66 |
+
dummy_inputs = {
|
67 |
+
"decoder_input_ids": input_ids,
|
68 |
+
"input_ids": input_ids,
|
69 |
+
"decoder_attention_mask": input_mask,
|
70 |
+
}
|
71 |
+
return dummy_inputs
|
72 |
+
|
73 |
+
def _init_weights(self, module):
|
74 |
+
"""Initialize the weights"""
|
75 |
+
factor = self.config.initializer_factor # Used for testing weights initialization
|
76 |
+
if isinstance(module, T5LayerNorm):
|
77 |
+
module.weight.data.fill_(factor * 1.0)
|
78 |
+
elif isinstance(module, (T5Model, T5ForConditionalGeneration, T5EncoderModel)):
|
79 |
+
# Mesh TensorFlow embeddings initialization
|
80 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
|
81 |
+
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
82 |
+
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
|
83 |
+
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
84 |
+
elif isinstance(module, T5DenseActDense):
|
85 |
+
# Mesh TensorFlow FF initialization
|
86 |
+
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
|
87 |
+
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
|
88 |
+
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model)**-0.5))
|
89 |
+
if hasattr(module.wi, "bias") and module.wi.bias is not None:
|
90 |
+
module.wi.bias.data.zero_()
|
91 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff)**-0.5))
|
92 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
93 |
+
module.wo.bias.data.zero_()
|
94 |
+
elif isinstance(module, T5DenseGatedActDense):
|
95 |
+
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model)**-0.5))
|
96 |
+
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
|
97 |
+
module.wi_0.bias.data.zero_()
|
98 |
+
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model)**-0.5))
|
99 |
+
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
|
100 |
+
module.wi_1.bias.data.zero_()
|
101 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff)**-0.5))
|
102 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
103 |
+
module.wo.bias.data.zero_()
|
104 |
+
elif isinstance(module, T5Attention):
|
105 |
+
# Mesh TensorFlow attention initialization to avoid scaling before softmax
|
106 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
|
107 |
+
d_model = self.config.d_model
|
108 |
+
key_value_proj_dim = self.config.d_kv
|
109 |
+
n_heads = self.config.num_heads
|
110 |
+
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim)**-0.5))
|
111 |
+
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
112 |
+
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
113 |
+
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim)**-0.5))
|
114 |
+
if module.has_relative_attention_bias:
|
115 |
+
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model)**-0.5))
|
116 |
+
|
117 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
118 |
+
if isinstance(module, (T5Attention, T5Stack)):
|
119 |
+
module.gradient_checkpointing = value
|
120 |
+
|
121 |
+
def _shift_right(self, input_ids):
|
122 |
+
decoder_start_token_id = self.config.decoder_start_token_id
|
123 |
+
pad_token_id = self.config.pad_token_id
|
124 |
+
|
125 |
+
assert decoder_start_token_id is not None, (
|
126 |
+
"self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id."
|
127 |
+
" See T5 docs for more information")
|
128 |
+
|
129 |
+
# shift inputs to the right
|
130 |
+
if is_torch_fx_proxy(input_ids):
|
131 |
+
# Item assignment is not supported natively for proxies.
|
132 |
+
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
|
133 |
+
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
|
134 |
+
else:
|
135 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
136 |
+
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
137 |
+
shifted_input_ids[..., 0] = decoder_start_token_id
|
138 |
+
|
139 |
+
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
|
140 |
+
# replace possible -100 values in labels by `pad_token_id`
|
141 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
142 |
+
|
143 |
+
return shifted_input_ids
|
144 |
+
|
145 |
+
|
146 |
+
class T5PerceiverForConditionalGeneration(T5PerceiverPreTrainedModel):
|
147 |
+
config_class = None
|
148 |
+
load_tf_weights = load_tf_weights_in_t5
|
149 |
+
base_model_prefix = "transformer"
|
150 |
+
is_parallelizable = True
|
151 |
+
supports_gradient_checkpointing = True
|
152 |
+
_no_split_modules = ["T5Block"]
|
153 |
+
_keep_in_fp32_modules = ["wo"]
|
154 |
+
|
155 |
+
@property
|
156 |
+
def dummy_inputs(self):
|
157 |
+
input_ids = torch.tensor(DUMMY_INPUTS)
|
158 |
+
input_mask = torch.tensor(DUMMY_MASK)
|
159 |
+
dummy_inputs = {
|
160 |
+
"decoder_input_ids": input_ids,
|
161 |
+
"input_ids": input_ids,
|
162 |
+
"decoder_attention_mask": input_mask,
|
163 |
+
}
|
164 |
+
return dummy_inputs
|
165 |
+
|
166 |
+
def __init__(
|
167 |
+
self,
|
168 |
+
model_cfg: dict,
|
169 |
+
# config: T5Config,
|
170 |
+
# use_fixed_absolute_pe: bool = True,
|
171 |
+
# num_max_positions: int = 1025
|
172 |
+
):
|
173 |
+
super().__init__(config)
|
174 |
+
self.model_dim = config.d_model
|
175 |
+
""" mod: absolute position embedding """
|
176 |
+
self.use_fixed_absolute_pe = use_fixed_absolute_pe
|
177 |
+
|
178 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
179 |
+
|
180 |
+
encoder_config = copy.deepcopy(config)
|
181 |
+
encoder_config.is_decoder = False
|
182 |
+
encoder_config.use_cache = False
|
183 |
+
encoder_config.is_encoder_decoder = False
|
184 |
+
self.encoder = T5Stack(encoder_config,
|
185 |
+
self.shared,
|
186 |
+
use_fixed_absolute_pe=use_fixed_absolute_pe,
|
187 |
+
num_max_positions=num_max_positions)
|
188 |
+
|
189 |
+
decoder_config = copy.deepcopy(config)
|
190 |
+
decoder_config.is_decoder = True
|
191 |
+
decoder_config.is_encoder_decoder = False
|
192 |
+
decoder_config.num_layers = config.num_decoder_layers
|
193 |
+
self.decoder = T5Stack(decoder_config,
|
194 |
+
self.shared,
|
195 |
+
use_fixed_absolute_pe=use_fixed_absolute_pe,
|
196 |
+
num_max_positions=num_max_positions)
|
197 |
+
|
198 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
199 |
+
|
200 |
+
# Initialize weights and apply final processing
|
201 |
+
self.post_init()
|
202 |
+
|
203 |
+
# Model parallel
|
204 |
+
self.model_parallel = False
|
205 |
+
self.device_map = None
|
206 |
+
|
207 |
+
def get_input_embeddings(self):
|
208 |
+
return self.shared
|
209 |
+
|
210 |
+
def set_input_embeddings(self, new_embeddings):
|
211 |
+
self.shared = new_embeddings
|
212 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
213 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
214 |
+
|
215 |
+
def set_output_embeddings(self, new_embeddings):
|
216 |
+
self.lm_head = new_embeddings
|
217 |
+
|
218 |
+
def get_output_embeddings(self):
|
219 |
+
return self.lm_head
|
220 |
+
|
221 |
+
def get_encoder(self):
|
222 |
+
return self.encoder
|
223 |
+
|
224 |
+
def get_decoder(self):
|
225 |
+
return self.decoder
|
226 |
+
|
227 |
+
def forward(
|
228 |
+
self,
|
229 |
+
input_ids: Optional[torch.LongTensor] = None,
|
230 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
231 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
232 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
233 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
234 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
235 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
236 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
237 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
238 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
239 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
240 |
+
labels: Optional[torch.LongTensor] = None,
|
241 |
+
use_cache: Optional[bool] = None,
|
242 |
+
output_attentions: Optional[bool] = None,
|
243 |
+
output_hidden_states: Optional[bool] = None,
|
244 |
+
return_dict: Optional[bool] = None,
|
245 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
246 |
+
r"""
|
247 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
248 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
|
249 |
+
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
|
250 |
+
labels in `[0, ..., config.vocab_size]`
|
251 |
+
|
252 |
+
Returns:
|
253 |
+
|
254 |
+
Examples:
|
255 |
+
|
256 |
+
```python
|
257 |
+
>>> from transformers import AutoTokenizer, T5ForConditionalGeneration
|
258 |
+
|
259 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
260 |
+
>>> model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
261 |
+
|
262 |
+
>>> # training
|
263 |
+
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
|
264 |
+
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
|
265 |
+
>>> outputs = model(input_ids=input_ids, labels=labels)
|
266 |
+
>>> loss = outputs.loss
|
267 |
+
>>> logits = outputs.logits
|
268 |
+
|
269 |
+
>>> # inference
|
270 |
+
>>> input_ids = tokenizer(
|
271 |
+
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
|
272 |
+
... ).input_ids # Batch size 1
|
273 |
+
>>> outputs = model.generate(input_ids)
|
274 |
+
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
275 |
+
>>> # studies have shown that owning a dog is good for you.
|
276 |
+
```"""
|
277 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
278 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
279 |
+
|
280 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
281 |
+
if head_mask is not None and decoder_head_mask is None:
|
282 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
283 |
+
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
|
284 |
+
decoder_head_mask = head_mask
|
285 |
+
|
286 |
+
# Encode if needed (training, first prediction pass)
|
287 |
+
if encoder_outputs is None:
|
288 |
+
# Convert encoder inputs in embeddings if needed
|
289 |
+
encoder_outputs = self.encoder(
|
290 |
+
input_ids=input_ids,
|
291 |
+
attention_mask=attention_mask,
|
292 |
+
inputs_embeds=inputs_embeds,
|
293 |
+
head_mask=head_mask,
|
294 |
+
output_attentions=output_attentions,
|
295 |
+
output_hidden_states=output_hidden_states,
|
296 |
+
return_dict=return_dict,
|
297 |
+
)
|
298 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
299 |
+
encoder_outputs = BaseModelOutput(
|
300 |
+
last_hidden_state=encoder_outputs[0],
|
301 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
302 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
303 |
+
)
|
304 |
+
|
305 |
+
hidden_states = encoder_outputs[0]
|
306 |
+
|
307 |
+
if self.model_parallel:
|
308 |
+
torch.cuda.set_device(self.decoder.first_device)
|
309 |
+
|
310 |
+
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
311 |
+
# get decoder inputs from shifting lm labels to the right
|
312 |
+
decoder_input_ids = self._shift_right(labels)
|
313 |
+
|
314 |
+
# Set device for model parallelism
|
315 |
+
if self.model_parallel:
|
316 |
+
torch.cuda.set_device(self.decoder.first_device)
|
317 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
318 |
+
if decoder_input_ids is not None:
|
319 |
+
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
320 |
+
if attention_mask is not None:
|
321 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
322 |
+
if decoder_attention_mask is not None:
|
323 |
+
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
|
324 |
+
|
325 |
+
# Decode
|
326 |
+
decoder_outputs = self.decoder(
|
327 |
+
input_ids=decoder_input_ids,
|
328 |
+
attention_mask=decoder_attention_mask,
|
329 |
+
inputs_embeds=decoder_inputs_embeds,
|
330 |
+
past_key_values=past_key_values,
|
331 |
+
encoder_hidden_states=hidden_states,
|
332 |
+
encoder_attention_mask=attention_mask,
|
333 |
+
head_mask=decoder_head_mask,
|
334 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
335 |
+
use_cache=use_cache,
|
336 |
+
output_attentions=output_attentions,
|
337 |
+
output_hidden_states=output_hidden_states,
|
338 |
+
return_dict=return_dict,
|
339 |
+
)
|
340 |
+
|
341 |
+
sequence_output = decoder_outputs[0]
|
342 |
+
|
343 |
+
# Set device for model parallelism
|
344 |
+
if self.model_parallel:
|
345 |
+
torch.cuda.set_device(self.encoder.first_device)
|
346 |
+
self.lm_head = self.lm_head.to(self.encoder.first_device)
|
347 |
+
sequence_output = sequence_output.to(self.lm_head.weight.device)
|
348 |
+
|
349 |
+
if self.config.tie_word_embeddings:
|
350 |
+
# Rescale output before projecting on vocab
|
351 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
352 |
+
sequence_output = sequence_output * (self.model_dim**-0.5)
|
353 |
+
|
354 |
+
lm_logits = self.lm_head(sequence_output)
|
355 |
+
|
356 |
+
loss = None
|
357 |
+
if labels is not None:
|
358 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
359 |
+
# move labels to correct device to enable PP
|
360 |
+
labels = labels.to(lm_logits.device)
|
361 |
+
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
362 |
+
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
|
363 |
+
|
364 |
+
if not return_dict:
|
365 |
+
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
366 |
+
return ((loss,) + output) if loss is not None else output
|
367 |
+
|
368 |
+
return Seq2SeqLMOutput(
|
369 |
+
loss=loss,
|
370 |
+
logits=lm_logits,
|
371 |
+
past_key_values=decoder_outputs.past_key_values,
|
372 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
373 |
+
decoder_attentions=decoder_outputs.attentions,
|
374 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
375 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
376 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
377 |
+
encoder_attentions=encoder_outputs.attentions,
|
378 |
+
)
|
379 |
+
|
380 |
+
def prepare_inputs_for_generation(
|
381 |
+
self,
|
382 |
+
input_ids,
|
383 |
+
past_key_values=None,
|
384 |
+
attention_mask=None,
|
385 |
+
head_mask=None,
|
386 |
+
decoder_head_mask=None,
|
387 |
+
cross_attn_head_mask=None,
|
388 |
+
use_cache=None,
|
389 |
+
encoder_outputs=None,
|
390 |
+
**kwargs,
|
391 |
+
):
|
392 |
+
# cut decoder_input_ids if past is used
|
393 |
+
if past_key_values is not None:
|
394 |
+
input_ids = input_ids[:, -1:]
|
395 |
+
|
396 |
+
return {
|
397 |
+
"decoder_input_ids": input_ids,
|
398 |
+
"past_key_values": past_key_values,
|
399 |
+
"encoder_outputs": encoder_outputs,
|
400 |
+
"attention_mask": attention_mask,
|
401 |
+
"head_mask": head_mask,
|
402 |
+
"decoder_head_mask": decoder_head_mask,
|
403 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
404 |
+
"use_cache": use_cache,
|
405 |
+
}
|
406 |
+
|
407 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
408 |
+
return self._shift_right(labels)
|
409 |
+
|
410 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
411 |
+
# if decoder past is not included in output
|
412 |
+
# speedy decoding is disabled and no need to reorder
|
413 |
+
if past_key_values is None:
|
414 |
+
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
|
415 |
+
return past_key_values
|
416 |
+
|
417 |
+
reordered_decoder_past = ()
|
418 |
+
for layer_past_states in past_key_values:
|
419 |
+
# get the correct batch idx from layer past batch dim
|
420 |
+
# batch dim of `past` is at 2nd position
|
421 |
+
reordered_layer_past_states = ()
|
422 |
+
for layer_past_state in layer_past_states:
|
423 |
+
# need to set correct `past` for each of the four key / value states
|
424 |
+
reordered_layer_past_states = reordered_layer_past_states + (layer_past_state.index_select(
|
425 |
+
0, beam_idx.to(layer_past_state.device)),)
|
426 |
+
|
427 |
+
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
|
428 |
+
assert len(reordered_layer_past_states) == len(layer_past_states)
|
429 |
+
|
430 |
+
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
|
431 |
+
return reordered_decoder_past
|
432 |
+
|
433 |
+
|
434 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
435 |
+
from transformers import AutoModel, AutoConfig
|
436 |
+
|
437 |
+
|
438 |
+
class MyConfig(T5Config, PerceiverConfig):
|
439 |
+
model_type = 'mymodel'
|
440 |
+
|
441 |
+
def __init__(self, important_param=42, **kwargs):
|
442 |
+
super().__init__(**kwargs)
|
443 |
+
self.important_param = important_param
|
extras/unimax_sampler/README.md
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# UniMax Language Dataset Sampler with DDP support
|
2 |
+
|
3 |
+
This repository contains an unofficial implementation of the UNIMAX sampling algorithm using PyTorch. The UNIMAX algorithm ["UniMax: Fairer and more Effective Language Sampling for Large-Scale Multilingual Pretraining" by HW Chung et al. (ICLR 2023)](https://arxiv.org/abs/2304.09151) is used to generate a sampling distribution of languages based on their character counts, a total character budget, and a specified number of epochs per language. This can be useful for training language models on datasets with imbalanced language distribution.
|
4 |
+
|
5 |
+
## Contents
|
6 |
+
|
7 |
+
1. `unimax_sampler.py`: This Python file contains the `UnimaxSampler` class, a PyTorch `Sampler` that uses the UNIMAX algorithm.
|
8 |
+
|
9 |
+
2. `test_unimax_sampler.py`: This Python file contains a unit test for the `UnimaxSampler` class to ensure its correct functionality.
|
10 |
+
|
11 |
+
## Usage
|
12 |
+
|
13 |
+
```python
|
14 |
+
from torch.utils.data import Dataset, DataLoader
|
15 |
+
from unimax_sampler import UnimaxSampler
|
16 |
+
|
17 |
+
# Define your parameters
|
18 |
+
language_character_counts = [100, 200, 300, 400, 500]
|
19 |
+
total_character_budget = 1000
|
20 |
+
num_epochs = 2
|
21 |
+
|
22 |
+
# Create the UnimaxSampler
|
23 |
+
unimax_sampler = UnimaxSampler(language_character_counts, total_character_budget, num_epochs)
|
24 |
+
```
|
25 |
+
|
26 |
+
Then, use the sampler as the sampler argument when creating a DataLoader.
|
27 |
+
|
28 |
+
```python
|
29 |
+
# Disable shuffle when using custom sampler...
|
30 |
+
data_loader = DataLoader(my_dataset, batch_size=2, shuffle=None, sampler=unimax_sampler)
|
31 |
+
```
|
32 |
+
|
33 |
+
For DDP,
|
34 |
+
```python
|
35 |
+
if torch.distributed.is_initialized():
|
36 |
+
sampler = DistributedUnimaxSampler(...)
|
37 |
+
else:
|
38 |
+
return unimax_sampler(...)
|
39 |
+
```
|
40 |
+
|
41 |
+
## Note
|
42 |
+
The initial version of this code was created by [Chat GPT-4](https://chat.openai.com/), based on the pseudocode provided in the [UNIMAX](https://arxiv.org/abs/2304.09151) paper. Subsequently, the code was manually revised for `PyTorch` Distributed Data Parallel ([DDP](https://pytorch.org/docs/stable/notes/ddp.html)) framework. The DistributedSamplerWrapper implementation is derived from an earlier version found in the [Catalyst](https://github.com/catalyst-team/catalyst) project.
|
43 |
+
|
44 |
+
## License
|
45 |
+
This project is licensed under the MIT License.
|
extras/unimax_sampler/demo.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from utils.unimax_sampler.unimax_sampler import UnimaxSampler
|
2 |
+
|
3 |
+
language_character_counts = [100, 200, 300, 400, 500]
|
4 |
+
total_character_budget = 1000
|
5 |
+
num_epochs = 2
|
6 |
+
|
7 |
+
# Create the UnimaxSampler.
|
8 |
+
sampler = UnimaxSampler(language_character_counts, total_character_budget, num_epochs)
|
9 |
+
|
10 |
+
# Define the expected output. This will depend on your specific implementation of Unimax.
|
11 |
+
expected_output = torch.tensor([0.1, 0.2, 0.3, 0.2, 0.2])
|
12 |
+
|
13 |
+
# Use PyTorch's allclose function to compare the computed and expected outputs.
|
14 |
+
# The absolute tolerance parameter atol specifies the maximum difference allowed for the test to pass.
|
15 |
+
self.assertTrue(torch.allclose(sampler.p, expected_output, atol=1e-6))
|
extras/unimax_sampler/unimax_sampler.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import DistributedSampler
|
3 |
+
from torch.utils.data import Dataset, Sampler
|
4 |
+
from torch.utils.data import RandomSampler
|
5 |
+
from operator import itemgetter
|
6 |
+
from typing import List, Union, Iterator, Optional
|
7 |
+
|
8 |
+
|
9 |
+
class DatasetFromSampler(Dataset):
|
10 |
+
"""Dataset to create indexes from `Sampler`. From catalyst library.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
sampler: PyTorch sampler
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, sampler: Sampler):
|
17 |
+
"""Initialisation for DatasetFromSampler."""
|
18 |
+
self.sampler = sampler
|
19 |
+
self.sampler_list = None
|
20 |
+
|
21 |
+
def __getitem__(self, index: int):
|
22 |
+
"""Gets element of the dataset.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
index: index of the element in the dataset
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
Single element by index
|
29 |
+
"""
|
30 |
+
if self.sampler_list is None:
|
31 |
+
self.sampler_list = list(self.sampler)
|
32 |
+
return self.sampler_list[index]
|
33 |
+
|
34 |
+
def __len__(self) -> int:
|
35 |
+
"""
|
36 |
+
Returns:
|
37 |
+
int: length of the dataset
|
38 |
+
"""
|
39 |
+
return len(self.sampler)
|
40 |
+
|
41 |
+
|
42 |
+
class DistributedSamplerWrapper(DistributedSampler):
|
43 |
+
"""
|
44 |
+
Wrapper over `Sampler` for distributed training.
|
45 |
+
Allows you to use any sampler in distributed mode.
|
46 |
+
From https://github.com/catalyst-team/catalyst/blob/master/catalyst/data/sampler.py
|
47 |
+
|
48 |
+
It is especially useful in conjunction with
|
49 |
+
`torch.nn.parallel.DistributedDataParallel`. In such case, each
|
50 |
+
process can pass a DistributedSamplerWrapper instance as a DataLoader
|
51 |
+
sampler, and load a subset of subsampled data of the original dataset
|
52 |
+
that is exclusive to it.
|
53 |
+
|
54 |
+
.. note::
|
55 |
+
Sampler is assumed to be of constant size.
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
sampler,
|
61 |
+
num_replicas: Optional[int] = None,
|
62 |
+
rank: Optional[int] = None,
|
63 |
+
shuffle: bool = True,
|
64 |
+
):
|
65 |
+
"""
|
66 |
+
|
67 |
+
Args:
|
68 |
+
sampler: Sampler used for subsampling
|
69 |
+
num_replicas (int, optional): Number of processes participating in
|
70 |
+
distributed training
|
71 |
+
rank (int, optional): Rank of the current process
|
72 |
+
within ``num_replicas``
|
73 |
+
shuffle (bool, optional): If true (default),
|
74 |
+
sampler will shuffle the indices
|
75 |
+
"""
|
76 |
+
super(DistributedSamplerWrapper, self).__init__(
|
77 |
+
DatasetFromSampler(sampler),
|
78 |
+
num_replicas=num_replicas,
|
79 |
+
rank=rank,
|
80 |
+
shuffle=shuffle,
|
81 |
+
)
|
82 |
+
self.sampler = sampler
|
83 |
+
|
84 |
+
def __iter__(self) -> Iterator[int]:
|
85 |
+
"""Iterate over sampler.
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
python iterator
|
89 |
+
"""
|
90 |
+
self.dataset = DatasetFromSampler(self.sampler)
|
91 |
+
indexes_of_indexes = super().__iter__()
|
92 |
+
subsampler_indexes = self.dataset
|
93 |
+
return iter(itemgetter(*indexes_of_indexes)(subsampler_indexes))
|
94 |
+
|
95 |
+
|
96 |
+
class UnimaxSampler(Sampler):
|
97 |
+
# Initialize the sampler with the character counts for each language,
|
98 |
+
# the total character budget, and the number of epochs per language.
|
99 |
+
def __init__(self, language_character_counts: List[int], total_character_budget: int,
|
100 |
+
num_epochs: int) -> None:
|
101 |
+
self.language_character_counts = torch.tensor(language_character_counts)
|
102 |
+
self.total_character_budget = total_character_budget
|
103 |
+
self.num_epochs = num_epochs
|
104 |
+
# Compute the sampling distribution p.
|
105 |
+
self.p = self._unimax()
|
106 |
+
|
107 |
+
# Define how to iterate over the data. We'll use PyTorch's multinomial
|
108 |
+
# function to generate indices according to the distribution p.
|
109 |
+
def __iter__(self) -> iter:
|
110 |
+
return iter(torch.multinomial(self.p, len(self.p), replacement=True).tolist())
|
111 |
+
|
112 |
+
# Define the length of the sampler as the number of languages.
|
113 |
+
def __len__(self) -> int:
|
114 |
+
return len(self.p)
|
115 |
+
|
116 |
+
# Implement the UNIMAX algorithm to compute the sampling distribution p.
|
117 |
+
def _unimax(self) -> torch.Tensor:
|
118 |
+
# Sort languages by character count.
|
119 |
+
L, indices = torch.sort(self.language_character_counts)
|
120 |
+
# Initialize the remaining budget to the total character budget.
|
121 |
+
B = float(self.total_character_budget)
|
122 |
+
i = 0
|
123 |
+
# Initialize the budget per language.
|
124 |
+
U = torch.zeros_like(L)
|
125 |
+
# For each language...
|
126 |
+
for idx in indices:
|
127 |
+
# Compute the remaining budget per-language.
|
128 |
+
bl = B / (len(L) - i)
|
129 |
+
cl = L[idx]
|
130 |
+
# If per-language budget exceeds N epochs of the language, use N epochs.
|
131 |
+
if bl > cl * self.num_epochs:
|
132 |
+
Ul = cl * self.num_epochs
|
133 |
+
# Otherwise use uniform per-language budget.
|
134 |
+
else:
|
135 |
+
Ul = bl
|
136 |
+
# Store the computed budget.
|
137 |
+
U[idx] = Ul
|
138 |
+
# Update the remaining budget.
|
139 |
+
B -= Ul
|
140 |
+
# Move to the next language.
|
141 |
+
i += 1
|
142 |
+
# Normalize the budget to create a distribution.
|
143 |
+
p = U / U.sum()
|
144 |
+
# Return the computed distribution.
|
145 |
+
return p
|
146 |
+
|
147 |
+
|
148 |
+
class DistributedUnimaxSampler(UnimaxSampler):
|
149 |
+
|
150 |
+
def __init__(self,
|
151 |
+
language_character_counts: List[int],
|
152 |
+
total_character_budget: int,
|
153 |
+
num_epochs: int,
|
154 |
+
num_replicas: Optional[int] = None,
|
155 |
+
rank: Optional[int] = None,
|
156 |
+
shuffle: bool = True) -> None:
|
157 |
+
|
158 |
+
super().__init__(language_character_counts, total_character_budget, num_epochs)
|
159 |
+
self.distributed_sampler = DistributedSamplerWrapper(self, num_replicas, rank, shuffle)
|
160 |
+
|
161 |
+
def __iter__(self):
|
162 |
+
return iter(self.distributed_sampler)
|
163 |
+
|
164 |
+
def __len__(self):
|
165 |
+
return len(self.distributed_sampler)
|
166 |
+
|
167 |
+
def set_epoch(self, epoch):
|
168 |
+
self.distributed_sampler.set_epoch(epoch)
|
model/__pycache__/conv_block.cpython-310.pyc
ADDED
Binary file (6.5 kB). View file
|
|
model/__pycache__/ff_layer.cpython-310.pyc
ADDED
Binary file (7.85 kB). View file
|
|
model/__pycache__/init_train.cpython-310.pyc
ADDED
Binary file (7.53 kB). View file
|
|
model/__pycache__/lm_head.cpython-310.pyc
ADDED
Binary file (1.39 kB). View file
|
|
model/__pycache__/lr_scheduler.cpython-310.pyc
ADDED
Binary file (2.16 kB). View file
|
|
model/__pycache__/ops.cpython-310.pyc
ADDED
Binary file (3.35 kB). View file
|
|
model/__pycache__/optimizers.cpython-310.pyc
ADDED
Binary file (5.4 kB). View file
|
|
model/__pycache__/projection_layer.cpython-310.pyc
ADDED
Binary file (8.87 kB). View file
|
|
model/__pycache__/spectrogram.cpython-310.pyc
ADDED
Binary file (5.13 kB). View file
|
|
model/__pycache__/ymt3.cpython-310.pyc
ADDED
Binary file (24.2 kB). View file
|
|
model/conformer_helper.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
import math
|
11 |
+
from typing import Optional, Union
|
12 |
+
|
13 |
+
from torch import nn
|
14 |
+
from transformers.configuration_utils import PretrainedConfig
|
15 |
+
from transformers.modeling_utils import PreTrainedModel
|
16 |
+
|
17 |
+
|
18 |
+
class ConformerYMT3Config(PretrainedConfig):
|
19 |
+
r"""
|
20 |
+
This is the configuration class to store the configuration of a [`ConformerYMT3Encoder`]. It is used to
|
21 |
+
instantiate an ConformerYMT3Encoder according to the specified arguments, defining the model architecture.
|
22 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Conformer
|
23 |
+
[facebook/wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large)
|
24 |
+
architecture.
|
25 |
+
|
26 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
27 |
+
documentation from [`PretrainedConfig`] for more information.
|
28 |
+
|
29 |
+
|
30 |
+
Args:
|
31 |
+
d_model (`int`, *optional*, defaults to 512):
|
32 |
+
Dimensionality of the encoder layers and the pooler layer.
|
33 |
+
num_layers (`int`, *optional*, defaults to 12):
|
34 |
+
Number of hidden layers in the Transformer encoder.
|
35 |
+
num_heads (`int`, *optional*, defaults to 12):
|
36 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
37 |
+
intermediate_size (`int`, *optional*, defaults to 2048):
|
38 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
39 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
40 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
41 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
42 |
+
dropout_rate (`float`, *optional*, defaults to 0.05):
|
43 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
44 |
+
layerdrop (`float`, *optional*, defaults to 0.1):
|
45 |
+
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
|
46 |
+
details.
|
47 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
48 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
49 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
50 |
+
The epsilon used by the layer normalization layers.
|
51 |
+
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
|
52 |
+
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
|
53 |
+
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
|
54 |
+
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
|
55 |
+
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
|
56 |
+
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
|
57 |
+
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
|
58 |
+
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
|
59 |
+
length of *conv_kernel* defines the number of convolutional layers and has to match the length of
|
60 |
+
*conv_dim*.
|
61 |
+
conv_bias (`bool`, *optional*, defaults to `False`):
|
62 |
+
Whether the 1D convolutional layers have a bias.
|
63 |
+
output_hidden_size (`int`, *optional*):
|
64 |
+
Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
|
65 |
+
if `add_adapter is True`.
|
66 |
+
position_encoding_type (`str`, *optional*, defaults to `"relative"`):
|
67 |
+
Can be specified to `relative` or `rotary` for relative or rotary position embeddings respectively. If left
|
68 |
+
`None` no relative position embedding is applied.
|
69 |
+
rotary_embedding_base (`int`, *optional*, defaults to 10000):
|
70 |
+
If `"rotary"` position embeddings are used, defines the size of the embedding base.
|
71 |
+
num_max_positions (`int`, *optional*, defaults to 5000):
|
72 |
+
if `"relative"` position embeddings are used, defines the maximum source input positions.
|
73 |
+
conv_depthwise_kernel_size (`int`, defaults to 31):
|
74 |
+
Kernel size of convolutional depthwise 1D layer in Conformer blocks.
|
75 |
+
|
76 |
+
Example:
|
77 |
+
|
78 |
+
```python
|
79 |
+
>>> from transformers import ConformerYMT3Config, ConformerYMT3Encoder
|
80 |
+
|
81 |
+
>>> # Initializing a ConformerYMT3Encoder configuration
|
82 |
+
>>> configuration = ConformerYMT3Config()
|
83 |
+
|
84 |
+
>>> # Initializing a model (with random weights) from the facebook/wav2vec2-conformer-rel-pos-large style configuration
|
85 |
+
>>> model = ConformerYMT3Encoder(configuration)
|
86 |
+
|
87 |
+
>>> # Accessing the model configuration
|
88 |
+
>>> configuration = model.config
|
89 |
+
```"""
|
90 |
+
model_type = "conformer-ymt3"
|
91 |
+
|
92 |
+
def __init__(
|
93 |
+
self,
|
94 |
+
d_model=512, # 768
|
95 |
+
num_layers=8, # ConformerYMT3Encoder
|
96 |
+
num_heads=8, # ConformerYMT3SelfAttention
|
97 |
+
intermediate_size=2048, # 3072,# used in intermediate_dense of ConformerYMT3FeedForward
|
98 |
+
hidden_act="gelu", # used in intermediate_act_fn of ConformerYMT3FeedForward
|
99 |
+
dropout_rate=0.1,
|
100 |
+
layerdrop=0.1,
|
101 |
+
initializer_range=0.02,
|
102 |
+
layer_norm_eps=1e-5,
|
103 |
+
conv_dim=(512, 512, 512, 512, 512, 512, 512),
|
104 |
+
conv_stride=(5, 2, 2, 2, 2, 2, 2),
|
105 |
+
conv_kernel=(10, 3, 3, 3, 3, 3, 3),
|
106 |
+
conv_bias=False,
|
107 |
+
position_encoding_type="rotary",
|
108 |
+
rotary_embedding_base=10000,
|
109 |
+
num_max_positions=1024,
|
110 |
+
conv_depthwise_kernel_size=31,
|
111 |
+
**kwargs,
|
112 |
+
):
|
113 |
+
super().__init__(**kwargs)
|
114 |
+
self.d_model = d_model
|
115 |
+
self.conv_dim = list(conv_dim)
|
116 |
+
self.conv_stride = list(conv_stride)
|
117 |
+
self.conv_kernel = list(conv_kernel)
|
118 |
+
self.conv_bias = conv_bias
|
119 |
+
self.num_layers = num_layers
|
120 |
+
self.intermediate_size = intermediate_size
|
121 |
+
self.hidden_act = hidden_act
|
122 |
+
self.num_heads = num_heads
|
123 |
+
self.dropout_rate = dropout_rate
|
124 |
+
|
125 |
+
self.layerdrop = layerdrop
|
126 |
+
self.layer_norm_eps = layer_norm_eps
|
127 |
+
self.initializer_range = initializer_range
|
128 |
+
self.num_max_positions = num_max_positions
|
129 |
+
self.position_encoding_type = position_encoding_type
|
130 |
+
self.rotary_embedding_base = rotary_embedding_base
|
131 |
+
|
132 |
+
# Conformer-block related
|
133 |
+
self.conv_depthwise_kernel_size = conv_depthwise_kernel_size
|
134 |
+
|
135 |
+
|
136 |
+
class ConformerYMT3PreTrainedModel(PreTrainedModel):
|
137 |
+
"""
|
138 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
139 |
+
models.
|
140 |
+
"""
|
141 |
+
|
142 |
+
config_class = ConformerYMT3Config
|
143 |
+
base_model_prefix = "wav2vec2_conformer"
|
144 |
+
main_input_name = "input_values"
|
145 |
+
supports_gradient_checkpointing = True
|
146 |
+
|
147 |
+
def _init_weights(self, module):
|
148 |
+
"""Initialize the weights"""
|
149 |
+
if module.__class__.__name__ == "ConformerYMT3SelfAttention":
|
150 |
+
if hasattr(module, "pos_bias_u"):
|
151 |
+
nn.init.xavier_uniform_(module.pos_bias_u)
|
152 |
+
if hasattr(module, "pos_bias_v"):
|
153 |
+
nn.init.xavier_uniform_(module.pos_bias_v)
|
154 |
+
elif isinstance(module, nn.Linear):
|
155 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
156 |
+
if module.bias is not None:
|
157 |
+
module.bias.data.zero_()
|
158 |
+
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
|
159 |
+
module.bias.data.zero_()
|
160 |
+
module.weight.data.fill_(1.0)
|
161 |
+
elif isinstance(module, nn.Conv1d):
|
162 |
+
nn.init.kaiming_normal_(module.weight)
|
163 |
+
if module.bias is not None:
|
164 |
+
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
|
165 |
+
nn.init.uniform_(module.bias, a=-k, b=k)
|
166 |
+
|
167 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
168 |
+
if module.__class__.__name__ == "ConformerYMT3Encoder":
|
169 |
+
module.gradient_checkpointing = value
|
model/conformer_mod.py
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
from typing import Tuple, Literal, Any, Optional
|
11 |
+
import math
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from torch import nn
|
15 |
+
from transformers.activations import ACT2FN
|
16 |
+
from transformers.modeling_outputs import BaseModelOutput
|
17 |
+
|
18 |
+
from model.conformer_helper import ConformerYMT3Config, ConformerYMT3PreTrainedModel
|
19 |
+
from model.positional_encoding import (Wav2Vec2ConformerRelPositionalEmbedding,
|
20 |
+
Wav2Vec2ConformerRotaryPositionalEmbedding)
|
21 |
+
|
22 |
+
|
23 |
+
class ConformerYMT3FeedForward(nn.Module):
|
24 |
+
|
25 |
+
def __init__(self, config):
|
26 |
+
super().__init__()
|
27 |
+
self.intermediate_dropout = nn.Dropout(config.dropout_rate)
|
28 |
+
|
29 |
+
self.intermediate_dense = nn.Linear(config.d_model, config.intermediate_size)
|
30 |
+
if isinstance(config.hidden_act, str):
|
31 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
32 |
+
else:
|
33 |
+
self.intermediate_act_fn = config.hidden_act
|
34 |
+
|
35 |
+
self.output_dense = nn.Linear(config.intermediate_size, config.d_model)
|
36 |
+
self.output_dropout = nn.Dropout(config.dropout_rate)
|
37 |
+
|
38 |
+
def forward(self, hidden_states):
|
39 |
+
hidden_states = self.intermediate_dense(hidden_states)
|
40 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
41 |
+
hidden_states = self.intermediate_dropout(hidden_states)
|
42 |
+
|
43 |
+
hidden_states = self.output_dense(hidden_states)
|
44 |
+
hidden_states = self.output_dropout(hidden_states)
|
45 |
+
return hidden_states
|
46 |
+
|
47 |
+
|
48 |
+
class ConformerYMT3ConvolutionModule(nn.Module):
|
49 |
+
"""Convolution block used in the conformer block"""
|
50 |
+
|
51 |
+
def __init__(self, config):
|
52 |
+
super().__init__()
|
53 |
+
if (config.conv_depthwise_kernel_size - 1) % 2 == 1:
|
54 |
+
raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding")
|
55 |
+
self.layer_norm = nn.LayerNorm(config.d_model)
|
56 |
+
self.pointwise_conv1 = torch.nn.Conv1d(
|
57 |
+
config.d_model,
|
58 |
+
2 * config.d_model,
|
59 |
+
kernel_size=1,
|
60 |
+
stride=1,
|
61 |
+
padding=0,
|
62 |
+
bias=False,
|
63 |
+
)
|
64 |
+
self.glu = torch.nn.GLU(dim=1)
|
65 |
+
self.depthwise_conv = torch.nn.Conv1d(
|
66 |
+
config.d_model,
|
67 |
+
config.d_model,
|
68 |
+
config.conv_depthwise_kernel_size,
|
69 |
+
stride=1,
|
70 |
+
padding=(config.conv_depthwise_kernel_size - 1) // 2,
|
71 |
+
groups=config.d_model,
|
72 |
+
bias=False,
|
73 |
+
)
|
74 |
+
self.batch_norm = torch.nn.BatchNorm1d(config.d_model)
|
75 |
+
self.activation = ACT2FN[config.hidden_act]
|
76 |
+
self.pointwise_conv2 = torch.nn.Conv1d(
|
77 |
+
config.d_model,
|
78 |
+
config.d_model,
|
79 |
+
kernel_size=1,
|
80 |
+
stride=1,
|
81 |
+
padding=0,
|
82 |
+
bias=False,
|
83 |
+
)
|
84 |
+
self.dropout = torch.nn.Dropout(config.dropout_rate)
|
85 |
+
|
86 |
+
def forward(self, hidden_states):
|
87 |
+
hidden_states = self.layer_norm(hidden_states)
|
88 |
+
# exchange the temporal dimension and the feature dimension
|
89 |
+
hidden_states = hidden_states.transpose(1, 2)
|
90 |
+
|
91 |
+
# GLU mechanism
|
92 |
+
# => (batch, 2*channel, dim)
|
93 |
+
hidden_states = self.pointwise_conv1(hidden_states)
|
94 |
+
# => (batch, channel, dim)
|
95 |
+
hidden_states = self.glu(hidden_states)
|
96 |
+
|
97 |
+
# 1D Depthwise Conv
|
98 |
+
hidden_states = self.depthwise_conv(hidden_states)
|
99 |
+
hidden_states = self.batch_norm(hidden_states)
|
100 |
+
hidden_states = self.activation(hidden_states)
|
101 |
+
|
102 |
+
hidden_states = self.pointwise_conv2(hidden_states)
|
103 |
+
hidden_states = self.dropout(hidden_states)
|
104 |
+
hidden_states = hidden_states.transpose(1, 2)
|
105 |
+
return hidden_states
|
106 |
+
|
107 |
+
|
108 |
+
class ConformerYMT3SelfAttention(nn.Module):
|
109 |
+
"""Construct a ConformerSelfAttention object.
|
110 |
+
Can be enhanced with rotary or relative position embeddings.
|
111 |
+
"""
|
112 |
+
|
113 |
+
def __init__(self, config):
|
114 |
+
super().__init__()
|
115 |
+
|
116 |
+
self.head_size = config.d_model // config.num_heads
|
117 |
+
self.num_heads = config.num_heads
|
118 |
+
self.position_encoding_type = config.position_encoding_type
|
119 |
+
|
120 |
+
self.linear_q = nn.Linear(config.d_model, config.d_model)
|
121 |
+
self.linear_k = nn.Linear(config.d_model, config.d_model)
|
122 |
+
self.linear_v = nn.Linear(config.d_model, config.d_model)
|
123 |
+
self.linear_out = nn.Linear(config.d_model, config.d_model)
|
124 |
+
|
125 |
+
self.dropout = nn.Dropout(p=config.dropout_rate)
|
126 |
+
|
127 |
+
if self.position_encoding_type == "relative":
|
128 |
+
# linear transformation for positional encoding
|
129 |
+
self.linear_pos = nn.Linear(config.d_model, config.d_model, bias=False)
|
130 |
+
# these two learnable bias are used in matrix c and matrix d
|
131 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
132 |
+
self.pos_bias_u = nn.Parameter(torch.zeros(self.num_heads, self.head_size))
|
133 |
+
self.pos_bias_v = nn.Parameter(torch.zeros(self.num_heads, self.head_size))
|
134 |
+
|
135 |
+
def forward(
|
136 |
+
self,
|
137 |
+
hidden_states: torch.Tensor,
|
138 |
+
attention_mask: Optional[torch.Tensor] = None,
|
139 |
+
relative_position_embeddings: Optional[torch.Tensor] = None,
|
140 |
+
output_attentions: bool = False,
|
141 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
142 |
+
# self-attention mechanism
|
143 |
+
batch_size, sequence_length, d_model = hidden_states.size()
|
144 |
+
|
145 |
+
# make sure query/key states can be != value states
|
146 |
+
query_key_states = hidden_states
|
147 |
+
value_states = hidden_states
|
148 |
+
|
149 |
+
if self.position_encoding_type == "rotary":
|
150 |
+
if relative_position_embeddings is None:
|
151 |
+
raise ValueError(
|
152 |
+
"`relative_position_embeddings` has to be defined when `self.position_encoding_type == 'rotary'")
|
153 |
+
query_key_states = self._apply_rotary_embedding(query_key_states, relative_position_embeddings)
|
154 |
+
|
155 |
+
# project query_key_states and value_states
|
156 |
+
query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
|
157 |
+
key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
|
158 |
+
value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size)
|
159 |
+
|
160 |
+
# => (batch, head, time1, d_k)
|
161 |
+
query = query.transpose(1, 2)
|
162 |
+
key = key.transpose(1, 2)
|
163 |
+
value = value.transpose(1, 2)
|
164 |
+
|
165 |
+
if self.position_encoding_type == "relative":
|
166 |
+
if relative_position_embeddings is None:
|
167 |
+
raise ValueError("`relative_position_embeddings` has to be defined when `self.position_encoding_type =="
|
168 |
+
" 'relative'")
|
169 |
+
# apply relative_position_embeddings to qk scores
|
170 |
+
# as proposed in Transformer_XL: https://arxiv.org/abs/1901.02860
|
171 |
+
scores = self._apply_relative_embeddings(query=query,
|
172 |
+
key=key,
|
173 |
+
relative_position_embeddings=relative_position_embeddings)
|
174 |
+
else:
|
175 |
+
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_size)
|
176 |
+
|
177 |
+
# apply attention_mask if necessary
|
178 |
+
if attention_mask is not None:
|
179 |
+
scores = scores + attention_mask
|
180 |
+
|
181 |
+
# => (batch, head, time1, time2)
|
182 |
+
probs = torch.softmax(scores, dim=-1)
|
183 |
+
probs = self.dropout(probs)
|
184 |
+
|
185 |
+
# => (batch, head, time1, d_k)
|
186 |
+
hidden_states = torch.matmul(probs, value)
|
187 |
+
|
188 |
+
# => (batch, time1, d_model)
|
189 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size)
|
190 |
+
hidden_states = self.linear_out(hidden_states)
|
191 |
+
|
192 |
+
return hidden_states, probs
|
193 |
+
|
194 |
+
def _apply_rotary_embedding(self, hidden_states, relative_position_embeddings):
|
195 |
+
batch_size, sequence_length, d_model = hidden_states.size()
|
196 |
+
hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads, self.head_size)
|
197 |
+
|
198 |
+
cos = relative_position_embeddings[0, :sequence_length, ...]
|
199 |
+
sin = relative_position_embeddings[1, :sequence_length, ...]
|
200 |
+
|
201 |
+
# rotate hidden_states with rotary embeddings
|
202 |
+
hidden_states = hidden_states.transpose(0, 1)
|
203 |
+
rotated_states_begin = hidden_states[..., :self.head_size // 2]
|
204 |
+
rotated_states_end = hidden_states[..., self.head_size // 2:]
|
205 |
+
rotated_states = torch.cat((-rotated_states_end, rotated_states_begin), dim=rotated_states_begin.ndim - 1)
|
206 |
+
hidden_states = (hidden_states * cos) + (rotated_states * sin)
|
207 |
+
hidden_states = hidden_states.transpose(0, 1)
|
208 |
+
|
209 |
+
hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads * self.head_size)
|
210 |
+
|
211 |
+
return hidden_states
|
212 |
+
|
213 |
+
def _apply_relative_embeddings(self, query, key, relative_position_embeddings):
|
214 |
+
# 1. project positional embeddings
|
215 |
+
# => (batch, head, 2*time1-1, d_k)
|
216 |
+
proj_relative_position_embeddings = self.linear_pos(relative_position_embeddings)
|
217 |
+
proj_relative_position_embeddings = proj_relative_position_embeddings.view(relative_position_embeddings.size(0),
|
218 |
+
-1, self.num_heads, self.head_size)
|
219 |
+
proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(1, 2)
|
220 |
+
proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(2, 3)
|
221 |
+
|
222 |
+
# 2. Add bias to query
|
223 |
+
# => (batch, head, time1, d_k)
|
224 |
+
query = query.transpose(1, 2)
|
225 |
+
q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2)
|
226 |
+
q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2)
|
227 |
+
|
228 |
+
# 3. attention score: first compute matrix a and matrix c
|
229 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
230 |
+
# => (batch, head, time1, time2)
|
231 |
+
scores_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1))
|
232 |
+
|
233 |
+
# 4. then compute matrix b and matrix d
|
234 |
+
# => (batch, head, time1, 2*time1-1)
|
235 |
+
scores_bd = torch.matmul(q_with_bias_v, proj_relative_position_embeddings)
|
236 |
+
|
237 |
+
# 5. shift matrix b and matrix d
|
238 |
+
zero_pad = torch.zeros((*scores_bd.size()[:3], 1), device=scores_bd.device, dtype=scores_bd.dtype)
|
239 |
+
scores_bd_padded = torch.cat([zero_pad, scores_bd], dim=-1)
|
240 |
+
scores_bd_padded_shape = scores_bd.size()[:2] + (scores_bd.shape[3] + 1, scores_bd.shape[2])
|
241 |
+
scores_bd_padded = scores_bd_padded.view(*scores_bd_padded_shape)
|
242 |
+
scores_bd = scores_bd_padded[:, :, 1:].view_as(scores_bd)
|
243 |
+
scores_bd = scores_bd[:, :, :, :scores_bd.size(-1) // 2 + 1]
|
244 |
+
|
245 |
+
# 6. sum matrices
|
246 |
+
# => (batch, head, time1, time2)
|
247 |
+
scores = (scores_ac + scores_bd) / math.sqrt(self.head_size)
|
248 |
+
|
249 |
+
return scores
|
250 |
+
|
251 |
+
|
252 |
+
class ConformerYMT3EncoderLayer(nn.Module):
|
253 |
+
"""Conformer block based on https://arxiv.org/abs/2005.08100."""
|
254 |
+
|
255 |
+
def __init__(self, config):
|
256 |
+
super().__init__()
|
257 |
+
embed_dim = config.d_model
|
258 |
+
dropout = config.dropout_rate
|
259 |
+
|
260 |
+
# Feed-forward 1
|
261 |
+
self.ffn1_layer_norm = nn.LayerNorm(embed_dim)
|
262 |
+
self.ffn1 = ConformerYMT3FeedForward(config)
|
263 |
+
|
264 |
+
# Self-Attention
|
265 |
+
self.self_attn_layer_norm = nn.LayerNorm(embed_dim)
|
266 |
+
self.self_attn_dropout = torch.nn.Dropout(dropout)
|
267 |
+
self.self_attn = ConformerYMT3SelfAttention(config)
|
268 |
+
|
269 |
+
# Conformer Convolution
|
270 |
+
self.conv_module = ConformerYMT3ConvolutionModule(config)
|
271 |
+
|
272 |
+
# Feed-forward 2
|
273 |
+
self.ffn2_layer_norm = nn.LayerNorm(embed_dim)
|
274 |
+
self.ffn2 = ConformerYMT3FeedForward(config)
|
275 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim)
|
276 |
+
|
277 |
+
def forward(
|
278 |
+
self,
|
279 |
+
hidden_states,
|
280 |
+
attention_mask: Optional[torch.Tensor] = None,
|
281 |
+
relative_position_embeddings: Optional[torch.Tensor] = None,
|
282 |
+
output_attentions: bool = False,
|
283 |
+
):
|
284 |
+
hidden_states = hidden_states
|
285 |
+
|
286 |
+
# 1. Feed-Forward 1 layer
|
287 |
+
residual = hidden_states
|
288 |
+
hidden_states = self.ffn1_layer_norm(hidden_states)
|
289 |
+
hidden_states = self.ffn1(hidden_states)
|
290 |
+
hidden_states = hidden_states * 0.5 + residual
|
291 |
+
residual = hidden_states
|
292 |
+
|
293 |
+
# 2. Self-Attention layer
|
294 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
295 |
+
hidden_states, attn_weigts = self.self_attn(
|
296 |
+
hidden_states=hidden_states,
|
297 |
+
attention_mask=attention_mask,
|
298 |
+
relative_position_embeddings=relative_position_embeddings,
|
299 |
+
output_attentions=output_attentions,
|
300 |
+
)
|
301 |
+
hidden_states = self.self_attn_dropout(hidden_states)
|
302 |
+
hidden_states = hidden_states + residual
|
303 |
+
|
304 |
+
# 3. Convolutional Layer
|
305 |
+
residual = hidden_states
|
306 |
+
hidden_states = self.conv_module(hidden_states)
|
307 |
+
hidden_states = residual + hidden_states
|
308 |
+
|
309 |
+
# 4. Feed-Forward 2 Layer
|
310 |
+
residual = hidden_states
|
311 |
+
hidden_states = self.ffn2_layer_norm(hidden_states)
|
312 |
+
hidden_states = self.ffn2(hidden_states)
|
313 |
+
hidden_states = hidden_states * 0.5 + residual
|
314 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
315 |
+
|
316 |
+
return hidden_states, attn_weigts
|
317 |
+
|
318 |
+
|
319 |
+
class ConformerYMT3Encoder(nn.Module):
|
320 |
+
|
321 |
+
def __init__(self, config):
|
322 |
+
super().__init__()
|
323 |
+
self.config = config
|
324 |
+
|
325 |
+
if config.position_encoding_type == "relative":
|
326 |
+
self.embed_positions = Wav2Vec2ConformerRelPositionalEmbedding(config)
|
327 |
+
elif config.position_encoding_type == "rotary":
|
328 |
+
self.embed_positions = Wav2Vec2ConformerRotaryPositionalEmbedding(config)
|
329 |
+
else:
|
330 |
+
self.embed_positions = None
|
331 |
+
|
332 |
+
# self.pos_conv_embed = Wav2Vec2ConformerPositionalConvEmbedding(config)
|
333 |
+
self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
|
334 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
335 |
+
self.layers = nn.ModuleList([ConformerYMT3EncoderLayer(config) for _ in range(config.num_layers)])
|
336 |
+
self.gradient_checkpointing = False
|
337 |
+
|
338 |
+
def forward(
|
339 |
+
self,
|
340 |
+
inputs_embeds: torch.FloatTensor, # (B, T, D)
|
341 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
342 |
+
output_attentions: Optional[bool] = False,
|
343 |
+
output_hidden_states: Optional[bool] = False,
|
344 |
+
return_dict: Optional[bool] = True,
|
345 |
+
):
|
346 |
+
if output_attentions is None:
|
347 |
+
output_attentions = self.config.output_attentions
|
348 |
+
if output_hidden_states is None:
|
349 |
+
output_hidden_states = self.config.output_hidden_states
|
350 |
+
if return_dict is None:
|
351 |
+
return_dict = self.config.use_return_dict
|
352 |
+
all_hidden_states = () if output_hidden_states else None
|
353 |
+
all_self_attentions = () if output_attentions else None
|
354 |
+
|
355 |
+
# inputs_embeds as hidden_states
|
356 |
+
hidden_states = inputs_embeds
|
357 |
+
|
358 |
+
if attention_mask is not None:
|
359 |
+
# make sure padded tokens output 0
|
360 |
+
hidden_states[~attention_mask] = 0.0
|
361 |
+
|
362 |
+
# extend attention_mask
|
363 |
+
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
|
364 |
+
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
|
365 |
+
attention_mask = attention_mask.expand(attention_mask.shape[0], 1, attention_mask.shape[-1],
|
366 |
+
attention_mask.shape[-1])
|
367 |
+
|
368 |
+
hidden_states = self.dropout(hidden_states)
|
369 |
+
|
370 |
+
if self.embed_positions is not None:
|
371 |
+
relative_position_embeddings = self.embed_positions(hidden_states)
|
372 |
+
else:
|
373 |
+
relative_position_embeddings = None
|
374 |
+
|
375 |
+
for i, layer in enumerate(self.layers):
|
376 |
+
if output_hidden_states:
|
377 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
378 |
+
|
379 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
380 |
+
dropout_probability = torch.rand([])
|
381 |
+
|
382 |
+
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
|
383 |
+
if not skip_the_layer:
|
384 |
+
# under deepspeed zero3 all gpus must run in sync
|
385 |
+
if self.gradient_checkpointing and self.training:
|
386 |
+
# create gradient checkpointing function
|
387 |
+
def create_custom_forward(module):
|
388 |
+
|
389 |
+
def custom_forward(*inputs):
|
390 |
+
return module(*inputs, output_attentions)
|
391 |
+
|
392 |
+
return custom_forward
|
393 |
+
|
394 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
395 |
+
create_custom_forward(layer),
|
396 |
+
hidden_states,
|
397 |
+
attention_mask,
|
398 |
+
relative_position_embeddings,
|
399 |
+
)
|
400 |
+
else:
|
401 |
+
layer_outputs = layer(
|
402 |
+
hidden_states,
|
403 |
+
attention_mask=attention_mask,
|
404 |
+
relative_position_embeddings=relative_position_embeddings,
|
405 |
+
output_attentions=output_attentions,
|
406 |
+
)
|
407 |
+
hidden_states = layer_outputs[0]
|
408 |
+
|
409 |
+
if skip_the_layer:
|
410 |
+
layer_outputs = (None, None)
|
411 |
+
|
412 |
+
if output_attentions:
|
413 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
414 |
+
|
415 |
+
hidden_states = self.layer_norm(hidden_states)
|
416 |
+
if output_hidden_states:
|
417 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
418 |
+
|
419 |
+
if not return_dict:
|
420 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
421 |
+
return BaseModelOutput(
|
422 |
+
last_hidden_state=hidden_states,
|
423 |
+
hidden_states=all_hidden_states,
|
424 |
+
attentions=all_self_attentions,
|
425 |
+
)
|
426 |
+
|
427 |
+
|
428 |
+
def test():
|
429 |
+
import torch
|
430 |
+
from model.conformer_mod import ConformerYMT3Encoder
|
431 |
+
from model.conformer_helper import ConformerYMT3Config
|
432 |
+
from model.ops import count_parameters
|
433 |
+
config = ConformerYMT3Config()
|
434 |
+
encoder = ConformerYMT3Encoder(config)
|
435 |
+
encoder.eval()
|
436 |
+
# num params: 48,468,992 w/ intermediate_size=2048
|
437 |
+
# num params: 23,278,592 w/ intermediate_size=512
|
438 |
+
x = torch.randn(2, 256, 512) # (B, T, D)
|
439 |
+
enc_hs = encoder.forward(inputs_embeds=x)['last_hidden_state'] # (B, T, D)
|
model/ff_layer.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
"""ff_layer.py
|
11 |
+
|
12 |
+
This module contains the implementation of the feedforward layers.
|
13 |
+
|
14 |
+
Supported ff_layer_type:
|
15 |
+
'mlp': Multi-Layer Perceptron
|
16 |
+
'gmlp': Gated Multi-Layer Perceptron, simplified version of Mixtral Expert with num_experts=1 and top_k=1.
|
17 |
+
This is not the spatial gating MLP (https://arxiv.org/abs/2105.08050).
|
18 |
+
'moe': Mixtral of Experts, modified from the original source code:
|
19 |
+
https://github.com/huggingface/transformers/blob/v4.38.2/src/transformers/models/mixtral/modeling_mixtral.py
|
20 |
+
|
21 |
+
Usage:
|
22 |
+
from model.ff_layer import get_ff_layer
|
23 |
+
|
24 |
+
config = PerceiverTFConfig() # or any type of PretrainedConfig()
|
25 |
+
config.ff_layer_type = 'moe' # or 'mlp'
|
26 |
+
config.moe_num_experts = 4
|
27 |
+
config.moe_topk = 2
|
28 |
+
config.hidden_act = 'gelu' # or any type of activation function, e.g., 'silu'
|
29 |
+
|
30 |
+
ff_layer = get_ff_layer(config, input_size, widening_factor)
|
31 |
+
|
32 |
+
What ff_layer returns:
|
33 |
+
- It returns (hidden_states, router_logits) for MoE and (hidden_states, None) for MLP.
|
34 |
+
- router_logits has the shape of (batch_size * sequence_length, n_experts) for MoE.
|
35 |
+
|
36 |
+
|
37 |
+
"""
|
38 |
+
from typing import Any, Tuple
|
39 |
+
import torch
|
40 |
+
import torch.nn as nn
|
41 |
+
import torch.nn.functional as F
|
42 |
+
from transformers.configuration_utils import PretrainedConfig
|
43 |
+
from transformers.activations import ACT2FN
|
44 |
+
from model.ops import get_layer_norm
|
45 |
+
from model.ops import optional_compiler_disable, optional_compiler_dynamic
|
46 |
+
|
47 |
+
|
48 |
+
class MixtralBlockSparseTop2MLP(nn.Module):
|
49 |
+
"""
|
50 |
+
The Gated Multilayer Perceptron (GMLP) used in Mixtral of Experts (MoE).
|
51 |
+
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self, config: PretrainedConfig, input_size: int, widening_factor: int):
|
55 |
+
super().__init__()
|
56 |
+
self.hidden_dim = input_size
|
57 |
+
self.ffn_dim = int(input_size * widening_factor)
|
58 |
+
|
59 |
+
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
60 |
+
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
|
61 |
+
self.gate = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
62 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
63 |
+
|
64 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
65 |
+
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.gate(hidden_states)
|
66 |
+
current_hidden_states = self.w2(current_hidden_states)
|
67 |
+
return current_hidden_states
|
68 |
+
|
69 |
+
|
70 |
+
class MixtralSparseMoeBlock(nn.Module):
|
71 |
+
"""
|
72 |
+
This implementation is
|
73 |
+
strictly equivalent to standard MoE with full capacity (no
|
74 |
+
dropped tokens). It's faster since it formulates MoE operations
|
75 |
+
in terms of block-sparse operations to accomodate imbalanced
|
76 |
+
assignments of tokens to experts, whereas standard MoE either
|
77 |
+
(1) drop tokens at the cost of reduced performance or (2) set
|
78 |
+
capacity factor to number of experts and thus waste computation
|
79 |
+
and memory on padding.
|
80 |
+
"""
|
81 |
+
|
82 |
+
def __init__(self, config, input_size: int, widening_factor: int):
|
83 |
+
super().__init__()
|
84 |
+
self.hidden_dim = input_size
|
85 |
+
self.widening_factor = widening_factor
|
86 |
+
self.num_experts = config.moe_num_experts
|
87 |
+
self.top_k = config.moe_topk
|
88 |
+
|
89 |
+
# gating
|
90 |
+
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
91 |
+
self.experts = nn.ModuleList(
|
92 |
+
[MixtralBlockSparseTop2MLP(config, self.hidden_dim, self.widening_factor) for _ in range(self.num_experts)])
|
93 |
+
|
94 |
+
@optional_compiler_disable
|
95 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
96 |
+
""" """
|
97 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
98 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
99 |
+
# router_logits: (batch * sequence_length, n_experts)
|
100 |
+
router_logits = self.gate(hidden_states)
|
101 |
+
|
102 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
103 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
104 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
105 |
+
# we cast back to the input dtype
|
106 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
107 |
+
|
108 |
+
final_hidden_states = torch.zeros((batch_size * sequence_length, hidden_dim),
|
109 |
+
dtype=hidden_states.dtype,
|
110 |
+
device=hidden_states.device)
|
111 |
+
|
112 |
+
# One hot encode the selected experts to create an expert mask
|
113 |
+
# this will be used to easily index which expert is going to be sollicitated
|
114 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
115 |
+
|
116 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
117 |
+
for expert_idx in range(self.num_experts):
|
118 |
+
expert_layer = self.experts[expert_idx]
|
119 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
120 |
+
|
121 |
+
if top_x.shape[0] == 0:
|
122 |
+
continue
|
123 |
+
|
124 |
+
# in torch it is faster to index using lists than torch tensors
|
125 |
+
top_x_list = top_x.tolist()
|
126 |
+
idx_list = idx.tolist()
|
127 |
+
|
128 |
+
# Index the correct hidden states and compute the expert hidden state for
|
129 |
+
# the current expert. We need to make sure to multiply the output hidden
|
130 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
131 |
+
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
|
132 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
|
133 |
+
|
134 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
135 |
+
# the `top_x` tensor here.
|
136 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
137 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
138 |
+
return final_hidden_states, router_logits
|
139 |
+
|
140 |
+
|
141 |
+
class MLP(nn.Module):
|
142 |
+
"""A Standard Transformer-style dense module to follow attention."""
|
143 |
+
|
144 |
+
def __init__(self, config: PretrainedConfig, input_size: int, widening_factor: int):
|
145 |
+
super().__init__()
|
146 |
+
self.dense1 = nn.Linear(input_size, widening_factor * input_size)
|
147 |
+
self.dense2 = nn.Linear(widening_factor * input_size, input_size)
|
148 |
+
|
149 |
+
if isinstance(config.hidden_act, str):
|
150 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
151 |
+
else:
|
152 |
+
self.intermediate_act_fn = config.hidden_act
|
153 |
+
|
154 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, Any]:
|
155 |
+
hidden_states = self.dense1(hidden_states)
|
156 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
157 |
+
hidden_states = self.dense2(hidden_states)
|
158 |
+
return hidden_states, None
|
159 |
+
|
160 |
+
|
161 |
+
class SimpleGMLP(nn.Module):
|
162 |
+
"""A Simple Gated Multilayer Perceptron (aka. 'gmlp'), without the spatial gating mechanism.
|
163 |
+
|
164 |
+
Note that this is not the spatial gating MLP (https://arxiv.org/abs/2105.08050).
|
165 |
+
- A simplified MLP w/ gating mechanism adapted from Mixtral Expert, as when
|
166 |
+
the number of experts and top_k are both set to 1.)
|
167 |
+
- Added a dropout layer.
|
168 |
+
- This was also used in T5 v1.1.
|
169 |
+
"""
|
170 |
+
|
171 |
+
def __init__(self, config: PretrainedConfig, input_size: int, widening_factor: int):
|
172 |
+
super().__init__()
|
173 |
+
self.hidden_dim = input_size
|
174 |
+
self.ffn_dim = int(input_size * widening_factor)
|
175 |
+
|
176 |
+
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
177 |
+
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
|
178 |
+
self.gate = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
179 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
180 |
+
self.dropout1 = nn.Dropout(config.dropout_rate)
|
181 |
+
self.dropout2 = nn.Dropout(config.dropout_rate)
|
182 |
+
|
183 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
184 |
+
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.gate(hidden_states)
|
185 |
+
current_hidden_states = self.dropout1(current_hidden_states)
|
186 |
+
current_hidden_states = self.w2(current_hidden_states)
|
187 |
+
current_hidden_states = self.dropout2(
|
188 |
+
current_hidden_states) # Residual connection is applied outside of this module.
|
189 |
+
return current_hidden_states, None
|
190 |
+
|
191 |
+
|
192 |
+
def get_ff_layer(config: PretrainedConfig, input_size: int, widening_factor: int):
|
193 |
+
if config.ff_layer_type == 'moe':
|
194 |
+
assert hasattr(config, 'moe_num_experts') and hasattr(config, 'moe_topk') and hasattr(config, 'hidden_act')
|
195 |
+
return MixtralSparseMoeBlock(config, input_size, widening_factor)
|
196 |
+
elif config.ff_layer_type == 'mlp':
|
197 |
+
assert hasattr(config, 'hidden_act')
|
198 |
+
return MLP(config, input_size, widening_factor)
|
199 |
+
elif config.ff_layer_type == 'gmlp':
|
200 |
+
assert hasattr(config, 'hidden_act')
|
201 |
+
return SimpleGMLP(config, input_size, widening_factor)
|
202 |
+
else:
|
203 |
+
raise ValueError(
|
204 |
+
f"Unsupported ff_layer_type: {config.ff_layer_type}. Supported types are 'moe', 'mlp' and 'gmlp'.")
|
205 |
+
|
206 |
+
|
207 |
+
def test_get_ff_layer():
|
208 |
+
from model.ff_layer import get_ff_layer
|
209 |
+
from model.perceiver_helper import PerceiverTFConfig
|
210 |
+
input_size = 32
|
211 |
+
widening_factor = 1
|
212 |
+
|
213 |
+
# Test for MoE
|
214 |
+
config = PerceiverTFConfig() # or any type of PretrainedConfig()
|
215 |
+
config.ff_layer_type = 'moe'
|
216 |
+
config.moe_num_experts = 4
|
217 |
+
config.moe_topk = 2
|
218 |
+
config.hidden_act = 'silu'
|
219 |
+
|
220 |
+
ff_layer = get_ff_layer(config, input_size, widening_factor)
|
221 |
+
x = torch.rand(2, 8, input_size)
|
222 |
+
hidden_states, router_logits = ff_layer(x)
|
223 |
+
print(hidden_states.shape, router_logits.shape) # (2, 8, 32), (2*8, 4)
|
224 |
+
|
225 |
+
# Test for MLP
|
226 |
+
config.ff_layer_type = 'mlp'
|
227 |
+
config.hidden_act = 'gelu'
|
228 |
+
|
229 |
+
ff_layer = get_ff_layer(config, input_size, widening_factor)
|
230 |
+
hidden_states, _ = ff_layer(x)
|
231 |
+
print(hidden_states.shape) # (2, 8, 32)
|
232 |
+
|
233 |
+
# Test for (simple)gMLP
|
234 |
+
config.ff_layer_type = 'gmlp'
|
235 |
+
config.hidden_act = 'silu'
|
236 |
+
ff_layer = get_ff_layer(config, input_size, widening_factor)
|
237 |
+
hidden_states, _ = ff_layer(x)
|
238 |
+
print(hidden_states.shape) # (2, 8, 32)
|
model/init_train.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
"""init_train.py"""
|
11 |
+
from typing import Tuple, Literal, Any
|
12 |
+
from copy import deepcopy
|
13 |
+
import os
|
14 |
+
import argparse
|
15 |
+
import pytorch_lightning as pl
|
16 |
+
from pytorch_lightning.loggers import WandbLogger
|
17 |
+
from pytorch_lightning.callbacks import ModelCheckpoint
|
18 |
+
from pytorch_lightning.callbacks import LearningRateMonitor
|
19 |
+
from pytorch_lightning.utilities import rank_zero_only
|
20 |
+
from config.config import shared_cfg as default_shared_cfg
|
21 |
+
from config.config import audio_cfg as default_audio_cfg
|
22 |
+
from config.config import model_cfg as default_model_cfg
|
23 |
+
from config.config import DEEPSPEED_CFG
|
24 |
+
|
25 |
+
|
26 |
+
def initialize_trainer(args: argparse.Namespace,
|
27 |
+
stage: Literal['train', 'test'] = 'train') -> Tuple[pl.Trainer, WandbLogger, dict]:
|
28 |
+
"""Initialize trainer and logger"""
|
29 |
+
shared_cfg = deepcopy(default_shared_cfg)
|
30 |
+
|
31 |
+
# create save dir
|
32 |
+
os.makedirs(shared_cfg["WANDB"]["save_dir"], exist_ok=True)
|
33 |
+
|
34 |
+
# collecting specific checkpoint from exp_id with extension (@xxx where xxx is checkpoint name)
|
35 |
+
if "@" in args.exp_id:
|
36 |
+
args.exp_id, checkpoint_name = args.exp_id.split("@")
|
37 |
+
else:
|
38 |
+
checkpoint_name = "last.ckpt"
|
39 |
+
|
40 |
+
# checkpoint dir
|
41 |
+
lightning_dir = os.path.join(shared_cfg["WANDB"]["save_dir"], args.project, args.exp_id)
|
42 |
+
|
43 |
+
# create logger
|
44 |
+
if args.wandb_mode is not None:
|
45 |
+
shared_cfg["WANDB"]["mode"] = str(args.wandb_mode)
|
46 |
+
if shared_cfg["WANDB"].get("cache_dir", None) is not None:
|
47 |
+
os.environ["WANDB_CACHE_DIR"] = shared_cfg["WANDB"].get("cache_dir")
|
48 |
+
del shared_cfg["WANDB"]["cache_dir"] # remove cache_dir from shared_cfg
|
49 |
+
wandb_logger = WandbLogger(log_model="all",
|
50 |
+
project=args.project,
|
51 |
+
id=args.exp_id,
|
52 |
+
allow_val_change=True,
|
53 |
+
**shared_cfg['WANDB'])
|
54 |
+
|
55 |
+
# check if any checkpoint exists
|
56 |
+
last_ckpt_path = os.path.join(lightning_dir, "checkpoints", checkpoint_name)
|
57 |
+
if os.path.exists(os.path.join(last_ckpt_path)):
|
58 |
+
print(f'Resuming from {last_ckpt_path}')
|
59 |
+
elif stage == 'train':
|
60 |
+
print(f'No checkpoint found in {last_ckpt_path}. Starting from scratch')
|
61 |
+
last_ckpt_path = None
|
62 |
+
else:
|
63 |
+
raise ValueError(f'No checkpoint found in {last_ckpt_path}. Quit...')
|
64 |
+
|
65 |
+
# add info
|
66 |
+
dir_info = dict(lightning_dir=lightning_dir, last_ckpt_path=last_ckpt_path)
|
67 |
+
|
68 |
+
# define checkpoint callback
|
69 |
+
checkpoint_callback = ModelCheckpoint(**shared_cfg["CHECKPOINT"],)
|
70 |
+
|
71 |
+
# define lr scheduler monitor callback
|
72 |
+
lr_monitor = LearningRateMonitor(logging_interval='step')
|
73 |
+
|
74 |
+
# deepspeed strategy
|
75 |
+
if args.strategy == 'deepspeed':
|
76 |
+
strategy = pl.strategies.DeepSpeedStrategy(config=DEEPSPEED_CFG)
|
77 |
+
|
78 |
+
# validation interval
|
79 |
+
if stage == 'train' and args.val_interval is not None:
|
80 |
+
shared_cfg["TRAINER"]["check_val_every_n_epoch"] = None
|
81 |
+
shared_cfg["TRAINER"]["val_check_interval"] = int(args.val_interval)
|
82 |
+
|
83 |
+
# define trainer
|
84 |
+
sync_batchnorm = False
|
85 |
+
if stage == 'train':
|
86 |
+
# train batch size
|
87 |
+
if args.train_batch_size is not None:
|
88 |
+
train_sub_bsz = int(args.train_batch_size[0])
|
89 |
+
train_local_bsz = int(args.train_batch_size[1])
|
90 |
+
if train_local_bsz % train_sub_bsz == 0:
|
91 |
+
shared_cfg["BSZ"]["train_sub"] = train_sub_bsz
|
92 |
+
shared_cfg["BSZ"]["train_local"] = train_local_bsz
|
93 |
+
else:
|
94 |
+
raise ValueError(
|
95 |
+
f'Local batch size {train_local_bsz} must be divisible by sub batch size {train_sub_bsz}')
|
96 |
+
|
97 |
+
# ddp strategy
|
98 |
+
if args.strategy == 'ddp':
|
99 |
+
args.strategy = 'ddp_find_unused_parameters_true' # fix for conformer or pitchshifter having unused parameter issue
|
100 |
+
|
101 |
+
# sync-batchnorm
|
102 |
+
if args.sync_batchnorm is True:
|
103 |
+
sync_batchnorm = True
|
104 |
+
|
105 |
+
train_params = dict(**shared_cfg["TRAINER"],
|
106 |
+
devices=args.num_gpus if args.num_gpus == 'auto' else int(args.num_gpus),
|
107 |
+
num_nodes=int(args.num_nodes),
|
108 |
+
strategy=strategy if args.strategy == 'deepspeed' else args.strategy,
|
109 |
+
precision=args.precision,
|
110 |
+
max_epochs=args.max_epochs if stage == 'train' else None,
|
111 |
+
max_steps=args.max_steps if stage == 'train' else -1,
|
112 |
+
logger=wandb_logger,
|
113 |
+
callbacks=[checkpoint_callback, lr_monitor],
|
114 |
+
sync_batchnorm=sync_batchnorm)
|
115 |
+
trainer = pl.trainer.trainer.Trainer(**train_params)
|
116 |
+
|
117 |
+
# Update wandb logger (for DDP)
|
118 |
+
if trainer.global_rank == 0:
|
119 |
+
wandb_logger.experiment.config.update(args, allow_val_change=True)
|
120 |
+
|
121 |
+
return trainer, wandb_logger, dir_info, shared_cfg
|
122 |
+
|
123 |
+
|
124 |
+
def update_config(args, shared_cfg, stage: Literal['train', 'test'] = 'train'):
|
125 |
+
"""Update audio/model/shared configurations with args"""
|
126 |
+
audio_cfg = default_audio_cfg
|
127 |
+
model_cfg = default_model_cfg
|
128 |
+
|
129 |
+
# Only update config when training
|
130 |
+
if stage == 'train':
|
131 |
+
# Augmentation parameters
|
132 |
+
if args.random_amp_range is not None:
|
133 |
+
shared_cfg["AUGMENTATION"]["train_random_amp_range"] = list(
|
134 |
+
(float(args.random_amp_range[0]), float(args.random_amp_range[1])))
|
135 |
+
if args.stem_iaug_prob is not None:
|
136 |
+
shared_cfg["AUGMENTATION"]["train_stem_iaug_prob"] = float(args.stem_iaug_prob)
|
137 |
+
|
138 |
+
if args.xaug_max_k is not None:
|
139 |
+
shared_cfg["AUGMENTATION"]["train_stem_xaug_policy"]["max_k"] = int(args.xaug_max_k)
|
140 |
+
if args.xaug_tau is not None:
|
141 |
+
shared_cfg["AUGMENTATION"]["train_stem_xaug_policy"]["tau"] = float(args.xaug_tau)
|
142 |
+
if args.xaug_alpha is not None:
|
143 |
+
shared_cfg["AUGMENTATION"]["train_stem_xaug_policy"]["alpha"] = float(args.xaug_alpha)
|
144 |
+
if args.xaug_no_instr_overlap is not None:
|
145 |
+
shared_cfg["AUGMENTATION"]["train_stem_xaug_policy"]["no_instr_overlap"] = bool(args.xaug_no_instr_overlap)
|
146 |
+
if args.xaug_no_drum_overlap is not None:
|
147 |
+
shared_cfg["AUGMENTATION"]["train_stem_xaug_policy"]["no_drum_overlap"] = bool(args.xaug_no_drum_overlap)
|
148 |
+
if args.uhat_intra_stem_augment is not None:
|
149 |
+
shared_cfg["AUGMENTATION"]["train_stem_xaug_policy"]["uhat_intra_stem_augment"] = bool(
|
150 |
+
args.uhat_intra_stem_augment)
|
151 |
+
|
152 |
+
if args.pitch_shift_range is not None:
|
153 |
+
if args.pitch_shift_range in [["0", "0"], [0, 0]]:
|
154 |
+
shared_cfg["AUGMENTATION"]["train_pitch_shift_range"] = None
|
155 |
+
else:
|
156 |
+
shared_cfg["AUGMENTATION"]["train_pitch_shift_range"] = list(
|
157 |
+
(int(args.pitch_shift_range[0]), int(args.pitch_shift_range[1])))
|
158 |
+
|
159 |
+
train_stem_iaug_prob = shared_cfg["AUGMENTATION"]["train_stem_iaug_prob"]
|
160 |
+
random_amp_range = shared_cfg["AUGMENTATION"]["train_random_amp_range"]
|
161 |
+
train_stem_xaug_policy = shared_cfg["AUGMENTATION"]["train_stem_xaug_policy"]
|
162 |
+
print(f'Random amp range: {random_amp_range}\n' +
|
163 |
+
f'Intra-stem augmentation probability: {train_stem_iaug_prob}\n' +
|
164 |
+
f'Stem augmentation policy: {train_stem_xaug_policy}\n' +
|
165 |
+
f'Pitch shift range: {shared_cfg["AUGMENTATION"]["train_pitch_shift_range"]}\n')
|
166 |
+
|
167 |
+
# Update audio config
|
168 |
+
if args.audio_codec != None:
|
169 |
+
assert args.audio_codec in ['spec', 'melspec']
|
170 |
+
audio_cfg["codec"] = str(args.audio_codec)
|
171 |
+
if args.hop_length != None:
|
172 |
+
audio_cfg["hop_length"] = int(args.hop_length)
|
173 |
+
if args.n_mels != None:
|
174 |
+
audio_cfg["n_mels"] = int(args.n_mels)
|
175 |
+
if args.input_frames != None:
|
176 |
+
audio_cfg["input_frames"] = int(args.input_frames)
|
177 |
+
|
178 |
+
# Update shared config
|
179 |
+
if shared_cfg["TOKENIZER"]["max_shift_steps"] == "auto":
|
180 |
+
shift_steps_ms = shared_cfg["TOKENIZER"]["shift_step_ms"]
|
181 |
+
input_frames = audio_cfg["input_frames"]
|
182 |
+
fs = audio_cfg["sample_rate"]
|
183 |
+
max_shift_steps = (input_frames / fs) // (shift_steps_ms / 1000) + 2 # 206 by default
|
184 |
+
shared_cfg["TOKENIZER"]["max_shift_steps"] = int(max_shift_steps)
|
185 |
+
|
186 |
+
# Update model config
|
187 |
+
if args.encoder_type != None:
|
188 |
+
model_cfg["encoder_type"] = str(args.encoder_type)
|
189 |
+
if args.decoder_type != None:
|
190 |
+
model_cfg["decoder_type"] = str(args.decoder_type)
|
191 |
+
if args.pre_encoder_type != "default":
|
192 |
+
model_cfg["pre_encoder_type"] = str(args.pre_encoder_type)
|
193 |
+
if args.pre_decoder_type != 'default':
|
194 |
+
model_cfg["pre_decoder_type"] = str(args.pre_decoder_type)
|
195 |
+
if args.conv_out_channels != None:
|
196 |
+
model_cfg["conv_out_channels"] = int(args.conv_out_channels)
|
197 |
+
assert isinstance(args.task_cond_decoder, bool) and isinstance(args.task_cond_encoder, bool)
|
198 |
+
model_cfg["use_task_conditional_encoder"] = args.task_cond_encoder
|
199 |
+
model_cfg["use_task_conditional_decoder"] = args.task_cond_decoder
|
200 |
+
|
201 |
+
if args.encoder_position_encoding_type != 'default':
|
202 |
+
if args.encoder_position_encoding_type in ['None', 'none', '0']:
|
203 |
+
model_cfg["encoder"][model_cfg["encoder_type"]]["position_encoding_type"] = None
|
204 |
+
elif args.encoder_position_encoding_type in [
|
205 |
+
'sinusoidal', 'rope', 'trainable', 'alibi', 'alibit', 'tkd', 'td', 'tk', 'kdt'
|
206 |
+
]:
|
207 |
+
model_cfg["encoder"][model_cfg["encoder_type"]]["position_encoding_type"] = str(
|
208 |
+
args.encoder_position_encoding_type)
|
209 |
+
else:
|
210 |
+
raise ValueError(f'Encoder PE type {args.encoder_position_encoding_type} not supported')
|
211 |
+
if args.decoder_position_encoding_type != 'default':
|
212 |
+
if args.decoder_position_encoding_type in ['None', 'none', '0']:
|
213 |
+
raise ValueError('Decoder PE type cannot be None')
|
214 |
+
elif args.decoder_position_encoding_type in ['sinusoidal', 'trainable']:
|
215 |
+
model_cfg["decoder"][model_cfg["decoder_type"]]["position_encoding_type"] = str(
|
216 |
+
args.decoder_position_encoding_type)
|
217 |
+
else:
|
218 |
+
raise ValueError(f'Decoder PE {args.decoder_position_encoding_type} not supported')
|
219 |
+
|
220 |
+
if args.tie_word_embedding is not None:
|
221 |
+
model_cfg["tie_word_embedding"] = bool(args.tie_word_embedding)
|
222 |
+
|
223 |
+
if args.d_feat != None:
|
224 |
+
model_cfg["d_feat"] = int(args.d_feat)
|
225 |
+
if args.d_latent != None:
|
226 |
+
model_cfg['encoder']['perceiver-tf']["d_latent"] = int(args.d_latent)
|
227 |
+
if args.num_latents != None:
|
228 |
+
model_cfg['encoder']['perceiver-tf']['num_latents'] = int(args.num_latents)
|
229 |
+
if args.perceiver_tf_d_model != None:
|
230 |
+
model_cfg['encoder']['perceiver-tf']['d_model'] = int(args.perceiver_tf_d_model)
|
231 |
+
if args.num_perceiver_tf_blocks != None:
|
232 |
+
model_cfg["encoder"]["perceiver-tf"]["num_blocks"] = int(args.num_perceiver_tf_blocks)
|
233 |
+
if args.num_perceiver_tf_local_transformers_per_block != None:
|
234 |
+
model_cfg["encoder"]["perceiver-tf"]["num_local_transformers_per_block"] = int(
|
235 |
+
args.num_perceiver_tf_local_transformers_per_block)
|
236 |
+
if args.num_perceiver_tf_temporal_transformers_per_block != None:
|
237 |
+
model_cfg["encoder"]["perceiver-tf"]["num_temporal_transformers_per_block"] = int(
|
238 |
+
args.num_perceiver_tf_temporal_transformers_per_block)
|
239 |
+
if args.attention_to_channel != None:
|
240 |
+
model_cfg["encoder"]["perceiver-tf"]["attention_to_channel"] = bool(args.attention_to_channel)
|
241 |
+
if args.sca_use_query_residual != None:
|
242 |
+
model_cfg["encoder"]["perceiver-tf"]["sca_use_query_residual"] = bool(args.sca_use_query_residual)
|
243 |
+
if args.layer_norm_type != None:
|
244 |
+
model_cfg["encoder"]["perceiver-tf"]["layer_norm"] = str(args.layer_norm_type)
|
245 |
+
if args.ff_layer_type != None:
|
246 |
+
model_cfg["encoder"]["perceiver-tf"]["ff_layer_type"] = str(args.ff_layer_type)
|
247 |
+
if args.ff_widening_factor != None:
|
248 |
+
model_cfg["encoder"]["perceiver-tf"]["ff_widening_factor"] = int(args.ff_widening_factor)
|
249 |
+
if args.moe_num_experts != None:
|
250 |
+
model_cfg["encoder"]["perceiver-tf"]["moe_num_experts"] = int(args.moe_num_experts)
|
251 |
+
if args.moe_topk != None:
|
252 |
+
model_cfg["encoder"]["perceiver-tf"]["moe_topk"] = int(args.moe_topk)
|
253 |
+
if args.hidden_act != None:
|
254 |
+
model_cfg["encoder"]["perceiver-tf"]["hidden_act"] = str(args.hidden_act)
|
255 |
+
if args.rotary_type != None:
|
256 |
+
assert len(
|
257 |
+
args.rotary_type
|
258 |
+
) == 3, "rotary_type must be a 3-letter string (e.g. 'ppl': 'pixel' for SCA, 'pixel' for latent, 'lang' for temporal transformer)"
|
259 |
+
model_cfg["encoder"]["perceiver-tf"]["rotary_type_sca"] = str(args.rotary_type)[0]
|
260 |
+
model_cfg["encoder"]["perceiver-tf"]["rotary_type_latent"] = str(args.rotary_type)[1]
|
261 |
+
model_cfg["encoder"]["perceiver-tf"]["rotary_type_temporal"] = str(args.rotary_type)[2]
|
262 |
+
if args.rope_apply_to_keys != None:
|
263 |
+
model_cfg["encoder"]["perceiver-tf"]["rope_apply_to_keys"] = bool(args.rope_apply_to_keys)
|
264 |
+
if args.rope_partial_pe != None:
|
265 |
+
model_cfg["encoder"]["perceiver-tf"]["rope_partial_pe"] = bool(args.rope_partial_pe)
|
266 |
+
|
267 |
+
if args.decoder_ff_layer_type != None:
|
268 |
+
model_cfg["decoder"][model_cfg["decoder_type"]]["ff_layer_type"] = str(args.decoder_ff_layer_type)
|
269 |
+
if args.decoder_ff_widening_factor != None:
|
270 |
+
model_cfg["decoder"][model_cfg["decoder_type"]]["ff_widening_factor"] = int(args.decoder_ff_widening_factor)
|
271 |
+
|
272 |
+
if args.event_length != None:
|
273 |
+
model_cfg["event_length"] = int(args.event_length)
|
274 |
+
|
275 |
+
if stage == 'train':
|
276 |
+
if args.encoder_dropout_rate != None:
|
277 |
+
model_cfg["encoder"][model_cfg["encoder_type"]]["dropout_rate"] = float(args.encoder_dropout_rate)
|
278 |
+
if args.decoder_dropout_rate != None:
|
279 |
+
model_cfg["decoder"][model_cfg["decoder_type"]]["dropout_rate"] = float(args.decoder_dropout_rate)
|
280 |
+
|
281 |
+
return shared_cfg, audio_cfg, model_cfg # return updated configs
|
model/lm_head.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
"""lm_head.py"""
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
from typing import Optional, Dict
|
14 |
+
|
15 |
+
|
16 |
+
class LMHead(nn.Module):
|
17 |
+
"""Language Model Head with tied weights."""
|
18 |
+
|
19 |
+
def __init__(self, decoder_config: Dict, init_factor: float = 1.0, tie_word_embeddings: bool = True):
|
20 |
+
|
21 |
+
super().__init__()
|
22 |
+
self.d_model = decoder_config["d_model"]
|
23 |
+
self.init_factor = init_factor
|
24 |
+
self.tie_word_embeddings = tie_word_embeddings
|
25 |
+
|
26 |
+
self.lm_head = nn.Linear(decoder_config["d_model"], decoder_config["vocab_size"], bias=False)
|
27 |
+
self._init_weights()
|
28 |
+
|
29 |
+
def _init_weights(self):
|
30 |
+
if self.tie_word_embeddings is False:
|
31 |
+
self.lm_head.weight.data.normal_(mean=0.0, std=self.init_factor * 1.0)
|
32 |
+
|
33 |
+
def forward(self, decoder_hs: torch.FloatTensor) -> torch.FloatTensor:
|
34 |
+
if self.tie_word_embeddings is True:
|
35 |
+
# Rescale output before projecting on vocab
|
36 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
37 |
+
decoder_hs = decoder_hs * (self.d_model**-0.5)
|
38 |
+
|
39 |
+
lm_logits = self.lm_head(decoder_hs)
|
40 |
+
return lm_logits
|
model/ops.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
""" op.py """
|
11 |
+
import math
|
12 |
+
from packaging.version import parse as VersionParse
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from einops import rearrange
|
18 |
+
from transformers.models.t5.modeling_t5 import T5LayerNorm as RMSNorm
|
19 |
+
|
20 |
+
|
21 |
+
def get_layer_norm(dim: int, layer_norm_type: str = "layer_norm", layer_norm_eps: float = 1e-5):
|
22 |
+
"""Get layer normalization layer.
|
23 |
+
Args:
|
24 |
+
dim (int): Feature dimension
|
25 |
+
layer_norm_type (str): "layer_norm" or "rms_norm"
|
26 |
+
layer_norm_eps (float): Epsilon value for numerical stability
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
nn.Module: Layer normalization layer
|
30 |
+
"""
|
31 |
+
if layer_norm_type == "rms_norm":
|
32 |
+
# T5LayerNorm is equivalent to RMSNorm. https://arxiv.org/abs/1910.07467
|
33 |
+
return RMSNorm(hidden_size=dim, eps=layer_norm_eps)
|
34 |
+
else:
|
35 |
+
return nn.LayerNorm(normalized_shape=dim, eps=layer_norm_eps)
|
36 |
+
|
37 |
+
|
38 |
+
def check_all_elements_equal(x: torch.Tensor) -> bool:
|
39 |
+
return x.eq(x[0]).all().item()
|
40 |
+
|
41 |
+
|
42 |
+
def minmax_normalize(x: torch.Tensor, eps: float = 0.008) -> torch.FloatTensor:
|
43 |
+
"""Min-max normalization:
|
44 |
+
|
45 |
+
x_norm = (x - x_min) / (x_max - x_min + eps)
|
46 |
+
|
47 |
+
Args:
|
48 |
+
x (torch.Tensor): (B, T, F)
|
49 |
+
Returns:
|
50 |
+
torch.Tensor: (B, T, F) with output range of [0, 1]
|
51 |
+
"""
|
52 |
+
x_max = rearrange(x, "b t f -> b (t f)").max(1, keepdim=True)[0]
|
53 |
+
x_min = rearrange(x, "b t f -> b (f t)").min(1, keepdim=True)[0]
|
54 |
+
x_max = x_max[:, None, :] # (B,1,1)
|
55 |
+
x_min = x_min[:, None, :] # (B,1,1)
|
56 |
+
return (x - x_min) / (x_max - x_min + eps)
|
57 |
+
|
58 |
+
|
59 |
+
def count_parameters(model):
|
60 |
+
num_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
61 |
+
num_params = sum(p.numel() for p in model.parameters())
|
62 |
+
return num_trainable_params, num_params
|
63 |
+
|
64 |
+
|
65 |
+
def adjust_b_to_gcd(a, b, min_gcd=16):
|
66 |
+
"""
|
67 |
+
Adjust the value of b to ensure the GCD(a, b) is at least min_gcd with minimum change to b.
|
68 |
+
|
69 |
+
Parameters:
|
70 |
+
- a (int): A positive integer
|
71 |
+
- b (int): A positive integer
|
72 |
+
- min_gcd (int): The minimum desired GCD
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
- int: The adjusted value of b
|
76 |
+
"""
|
77 |
+
current_gcd = math.gcd(a, b)
|
78 |
+
|
79 |
+
# If current GCD is already greater than or equal to min_gcd, return b as it is.
|
80 |
+
if current_gcd >= min_gcd:
|
81 |
+
return b
|
82 |
+
|
83 |
+
# If a is less than min_gcd, then it's impossible to get a GCD of at least min_gcd.
|
84 |
+
if a < min_gcd:
|
85 |
+
raise ValueError("a must be at least as large as min_gcd.")
|
86 |
+
|
87 |
+
# Adjust b by trying increments and decrements, preferring the smallest absolute change.
|
88 |
+
adjusted_b_up = b
|
89 |
+
adjusted_b_down = b
|
90 |
+
|
91 |
+
while True:
|
92 |
+
adjusted_b_up += 1
|
93 |
+
adjusted_b_down -= 1
|
94 |
+
|
95 |
+
if math.gcd(a, adjusted_b_up) >= min_gcd:
|
96 |
+
return adjusted_b_up
|
97 |
+
elif math.gcd(a, adjusted_b_down) >= min_gcd:
|
98 |
+
return adjusted_b_down
|
99 |
+
|
100 |
+
|
101 |
+
def optional_compiler_disable(func):
|
102 |
+
if VersionParse(torch.__version__) >= VersionParse("2.1"):
|
103 |
+
# If the version is 2.1 or higher, apply the torch.compiler.disable decorator.
|
104 |
+
return torch.compiler.disable(func)
|
105 |
+
else:
|
106 |
+
# If the version is below 2.1, return the original function.
|
107 |
+
return func
|
108 |
+
|
109 |
+
|
110 |
+
def optional_compiler_dynamic(func):
|
111 |
+
return torch.compile(func, dynamic=True)
|
model/perceiver_helper.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
from dataclasses import dataclass
|
11 |
+
from typing import Optional, Tuple
|
12 |
+
import torch
|
13 |
+
from torch import nn
|
14 |
+
from transformers.utils import ModelOutput
|
15 |
+
from transformers.configuration_utils import PretrainedConfig
|
16 |
+
from transformers.modeling_utils import PreTrainedModel
|
17 |
+
# from transformers.models.perceiver.modeling_perceiver import (PerceiverAbstractPositionEncoding,
|
18 |
+
# PerceiverTrainablePositionEncoding,
|
19 |
+
# PerceiverFourierPositionEncoding)
|
20 |
+
|
21 |
+
|
22 |
+
class PerceiverTFConfig(PretrainedConfig):
|
23 |
+
r"""
|
24 |
+
This is the configuration class to store the configuration of a [`PerceiverTF`]. It is used to instantiate an
|
25 |
+
Perceiver model according to the specified arguments, defining the model architecture. Instantiating a
|
26 |
+
configuration with the defaults will yield a similar configuration to that of the Perceiver
|
27 |
+
[deepmind/language-perceiver](https://huggingface.co/deepmind/language-perceiver) architecture.
|
28 |
+
|
29 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
30 |
+
documentation from [`PretrainedConfig`] for more information.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
num_latents (`int`, *optional*, defaults to 256):
|
34 |
+
The number of latents.
|
35 |
+
d_latents (`int`, *optional*, defaults to 1280):
|
36 |
+
Dimension of the latent embeddings.
|
37 |
+
d_model (`int`, *optional*, defaults to 768):
|
38 |
+
Dimension of the inputs. Should only be provided in case [*PerceiverTextPreprocessor*] is used or no
|
39 |
+
preprocessor is provided.
|
40 |
+
kv_dim (`int`, *optional*, defaults to 128):
|
41 |
+
num_blocks (`int`, *optional*, defaults to 1):
|
42 |
+
Number of blocks in the Transformer encoder.
|
43 |
+
num_self_attention_heads (`int`, *optional*, defaults to 8):
|
44 |
+
Number of attention heads for each self-attention layer in the Transformer encoder.
|
45 |
+
num_cross_attention_heads (`int`, *optional*, defaults to 8):
|
46 |
+
Number of attention heads for each cross-attention layer in the Transformer encoder.
|
47 |
+
num_local_transformers_per_block (`int`, *optional*, defaults to 2):
|
48 |
+
Number of local Transformer layers per Transformer block in the Transformer encoder.
|
49 |
+
num_temporal_transformers_per_block (`int`, *optional*, defaults to 2):
|
50 |
+
Number of temporal Transformer layers per Transformer block in the Transformer encoder.
|
51 |
+
shared_parallel_temporal_transformers (`bool`, *optional*, defaults to `False`):
|
52 |
+
Whether to share the parameters across the K parallel temporal Transformers in each block.
|
53 |
+
qk_channels (`int`, *optional*):
|
54 |
+
Dimension to project the queries + keys before applying attention in the cross-attention and self-attention
|
55 |
+
layers of the encoder. Will default to preserving the dimension of the queries if not specified.
|
56 |
+
v_channels (`int`, *optional*):
|
57 |
+
Dimension to project the values before applying attention in the cross-attention and self-attention layers
|
58 |
+
of the encoder. Will default to preserving the dimension of the queries if not specified.
|
59 |
+
** DEPRECATED ** cross_attention_shape_for_attention (`str`, *optional*, defaults to `'kv'`):
|
60 |
+
Dimension to use when downsampling the queries and keys in the cross-attention layer of the encoder.
|
61 |
+
** DEPRECATED ** self_attention_widening_factor (`int`, *optional*, defaults to 1):
|
62 |
+
Dimension of the feed-forward layer in the cross-attention layer of the Transformer encoder.
|
63 |
+
cross_attention_widening_factor (`int`, *optional*, defaults to 1):
|
64 |
+
Dimension of the feed-forward layer in the self-attention layers of the Transformer encoder.
|
65 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
66 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
67 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
68 |
+
dropout_rate (`float`, *optional*, defaults to 0.1):
|
69 |
+
The dropout ratio for the attention probabilities.
|
70 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
71 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
72 |
+
layer_norm_type (`str`, *optional*, defaults to `'layer_norm'`):
|
73 |
+
The type of layer normalization to use. Can be one of {'layer_norm', 'rms_norm'}.
|
74 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
75 |
+
The epsilon used by the layer normalization layers.
|
76 |
+
sca_use_query_residual (`bool`, *optional*, defaults to `True`):
|
77 |
+
Whether to add a query residual in the spectral cross attention (SCA) layer of the encoder.
|
78 |
+
use_query_residual (`float`, *optional*, defaults to `True`):
|
79 |
+
Whether to add a query residual in the cross-attention layer of the encoder.
|
80 |
+
position_encoding_type (`str`, *optional*, defaults to `'trainable'`):
|
81 |
+
Type of position encoding to use. Can be one of {'trainable', 'alibi', 'alibit', 'rope', None}.
|
82 |
+
num_max_positions (`int`, *optional*, defaults to 331):
|
83 |
+
Maximum number of positions to use for the position encoding.
|
84 |
+
vocab_size (`int`, *optional*, defaults to 262):
|
85 |
+
Vocabulary size for the masked language modeling model.
|
86 |
+
attention_to_channel (`bool`, defaults to `False`):
|
87 |
+
Whether SCA should attend to the channel dimension. If False, attention to frequency bin dimension.
|
88 |
+
ff_layer_type (`str`, *optional*, defaults to `'mlp'`):
|
89 |
+
Type of feed-forward layer to use. Can be one of {'mlp', 'moe'}.
|
90 |
+
ff_widening_factor (`int`, *optional*, defaults to 1):
|
91 |
+
Widening factor for the feed-forward layers in the MLP/MoE.
|
92 |
+
moe_num_experts (`int`, *optional*, defaults to 4):
|
93 |
+
Number of experts to use in the mixture of experts (MoE) feed-forward layer.
|
94 |
+
Only used if `ff_layer_type` is set to `'moe'`.
|
95 |
+
moe_topk (`int`, *optional*, defaults to 2):
|
96 |
+
Number of top experts to use in the mixture of experts (MoE) feed-forward layer.
|
97 |
+
Only used if `ff_layer_type` is set to `'moe'`.
|
98 |
+
rope_type_sca (`str`, *optional*, defaults to `pixel`): Can be one of {'l'|lang', 'p'|'pixel', None}.
|
99 |
+
RoPE index type for SCA. Only used if `position_encoding_type` is set to `rope`.
|
100 |
+
rope_type_latent (`str`, *optional*, defaults to `pixel`): Can be one of {'l'|'lang', 'p'|'pixel', None}.
|
101 |
+
RoPE index type for Latent Transformer. Only used if `position_encoding_type` is set to `'rope'`.
|
102 |
+
rope_type_temporal (`str`, *optional*, defaults to `lang`): Can be one of {'l'|'lang', 'p'|'pixel', None}.
|
103 |
+
RoPE index type for Temporal Transformer. Only used if `position_encoding_type` is set to `'rope'`.
|
104 |
+
rope_apply_to_keys (`bool`, *optional*, defaults to `False`): Whether to apply RoPE to the keys in the
|
105 |
+
self/cross-attention layers. Only used if `position_encoding_type` is set to `'rope'`.
|
106 |
+
rope_partial_pe (`bool`, *optional*, defaults to `False`): Whether to use partial RoPE in the self/cross-attention.
|
107 |
+
Only used if `position_encoding_type` is set to `'rope'`.
|
108 |
+
rope_trainable (`bool`, *optional*, defaults to `False`): Whether to make the RoPE trainable. Only used if
|
109 |
+
|
110 |
+
Example:
|
111 |
+
|
112 |
+
```python
|
113 |
+
>>> from model.perceiver_mod import PerceiverTFEncodel, PerceiverTFConfig
|
114 |
+
|
115 |
+
>>> # Initializing a Perceiver deepmind/language-perceiver style configuration
|
116 |
+
>>> configuration = PerceiverTFConfig()
|
117 |
+
|
118 |
+
>>> # Initializing a model from the deepmind/language-perceiver style configuration
|
119 |
+
>>> model = PerceiverTFEncoder(configuration)
|
120 |
+
|
121 |
+
>>> # Accessing the model configuration
|
122 |
+
>>> configuration = model.config
|
123 |
+
```"""
|
124 |
+
model_type = "perceivertf"
|
125 |
+
|
126 |
+
def __init__(
|
127 |
+
self,
|
128 |
+
num_latents=24,
|
129 |
+
d_latents=128,
|
130 |
+
d_model=128,
|
131 |
+
kv_dim=128,
|
132 |
+
num_blocks=3,
|
133 |
+
num_self_attention_heads=8,
|
134 |
+
num_cross_attention_heads=8,
|
135 |
+
num_local_transformers_per_block=2,
|
136 |
+
num_temporal_transformers_per_block=2,
|
137 |
+
qk_channels=128,
|
138 |
+
v_channels=128,
|
139 |
+
cross_attention_shape_for_attention="q",
|
140 |
+
# self_attention_widening_factor=1, ** DEPRECATED **
|
141 |
+
# cross_attention_widening_factor=1, ** DEPRECATED **
|
142 |
+
hidden_act="gelu",
|
143 |
+
dropout_rate=0.1,
|
144 |
+
initializer_range=0.02,
|
145 |
+
layer_norm_type="layer_norm",
|
146 |
+
layer_norm_eps=1e-5,
|
147 |
+
sca_use_query_residual=True,
|
148 |
+
use_query_residual=True,
|
149 |
+
position_encoding_type="trainable",
|
150 |
+
num_max_positions=330,
|
151 |
+
vocab_size=1391,
|
152 |
+
attention_to_channel=False,
|
153 |
+
ff_layer_type="mlp",
|
154 |
+
ff_widening_factor=1,
|
155 |
+
moe_num_experts=4,
|
156 |
+
moe_topk=2,
|
157 |
+
rope_type_sca="pixel",
|
158 |
+
rope_type_latent="pixel",
|
159 |
+
rope_type_temporal="lang",
|
160 |
+
rope_apply_to_keys=False,
|
161 |
+
rope_partial_pe=False,
|
162 |
+
rope_trainable=False,
|
163 |
+
**kwargs,
|
164 |
+
):
|
165 |
+
super().__init__(**kwargs)
|
166 |
+
|
167 |
+
self.num_latents = num_latents
|
168 |
+
self.d_latents = d_latents
|
169 |
+
self.d_model = d_model
|
170 |
+
self.kv_dim = kv_dim
|
171 |
+
self.qk_channels = qk_channels
|
172 |
+
self.v_channels = v_channels
|
173 |
+
|
174 |
+
self.num_blocks = num_blocks
|
175 |
+
self.num_self_attention_heads = num_self_attention_heads
|
176 |
+
self.num_cross_attention_heads = num_cross_attention_heads
|
177 |
+
self.num_local_transformers_per_block = num_local_transformers_per_block
|
178 |
+
self.num_temporal_transformers_per_block = num_temporal_transformers_per_block
|
179 |
+
self.sca_use_query_residual = sca_use_query_residual
|
180 |
+
self.use_query_residual = use_query_residual
|
181 |
+
self.position_encoding_type = position_encoding_type
|
182 |
+
self.num_max_positions = num_max_positions
|
183 |
+
# self.self_attention_widening_factor = self_attention_widening_factor
|
184 |
+
# self.cross_attention_widening_factor = cross_attention_widening_factor
|
185 |
+
self.cross_attention_shape_for_attention = cross_attention_shape_for_attention
|
186 |
+
self.attention_to_channel = attention_to_channel
|
187 |
+
self.ff_layer_type = ff_layer_type
|
188 |
+
self.ff_widening_factor = ff_widening_factor
|
189 |
+
self.moe_num_experts = moe_num_experts
|
190 |
+
self.moe_topk = moe_topk
|
191 |
+
self.rope_type_sca = rope_type_sca
|
192 |
+
self.rope_type_latent = rope_type_latent
|
193 |
+
self.rope_type_temporal = rope_type_temporal
|
194 |
+
self.rope_apply_to_keys = rope_apply_to_keys
|
195 |
+
self.rope_partial_pe = rope_partial_pe
|
196 |
+
self.rope_trainable = rope_trainable
|
197 |
+
|
198 |
+
self.hidden_act = hidden_act
|
199 |
+
self.dropout_rate = dropout_rate
|
200 |
+
self.initializer_range = initializer_range
|
201 |
+
self.layer_norm_type = layer_norm_type
|
202 |
+
self.layer_norm_eps = layer_norm_eps
|
203 |
+
|
204 |
+
# masked language modeling attributes
|
205 |
+
self.vocab_size = vocab_size
|
206 |
+
|
207 |
+
|
208 |
+
class PerceiverTFPreTrainedModel(PreTrainedModel):
|
209 |
+
"""
|
210 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
211 |
+
models.
|
212 |
+
"""
|
213 |
+
|
214 |
+
config_class = PerceiverTFConfig
|
215 |
+
base_model_prefix = "perceivertf"
|
216 |
+
main_input_name = "inputs"
|
217 |
+
|
218 |
+
def _init_weights(self, module):
|
219 |
+
"""Initialize the weights"""
|
220 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
221 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
222 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
223 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
224 |
+
if module.bias is not None:
|
225 |
+
module.bias.data.zero_()
|
226 |
+
elif hasattr(module, "latents"):
|
227 |
+
module.latents.data.normal_(mean=0.0, std=self.config.initializer_range)
|
228 |
+
elif hasattr(module, "_pos_emb") and isinstance(module._pos_emb, nn.Parameter):
|
229 |
+
# initialize PerceiverTFTrainablePE
|
230 |
+
module._pos_emb.data.normal_(mean=0.0, std=self.config.initializer_range)
|
231 |
+
elif hasattr(module, "_pos_emb_temporal"):
|
232 |
+
# initialize PerceiverTFTrainablePE
|
233 |
+
module._pos_emb_temporal.data.normal_(mean=0.0, std=self.config.initializer_range)
|
234 |
+
elif hasattr(module, "slopes") and isinstance(module.slopes, nn.Parameter):
|
235 |
+
# initialize AlibiPositionalBias
|
236 |
+
module.reset_parameters()
|
237 |
+
elif isinstance(module, nn.ParameterDict):
|
238 |
+
for modality in module.keys():
|
239 |
+
module[modality].data.normal_(mean=0.0, std=self.config.initializer_range)
|
240 |
+
elif isinstance(module, nn.Embedding):
|
241 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
242 |
+
if module.padding_idx is not None:
|
243 |
+
module.weight.data[module.padding_idx].zero_()
|
244 |
+
elif isinstance(module, nn.LayerNorm):
|
245 |
+
module.bias.data.zero_()
|
246 |
+
module.weight.data.fill_(1.0)
|
247 |
+
# elif hasattr(module, "position_embeddings") and isinstance(
|
248 |
+
# module, PerceiverTrainablePositionEncoding):
|
249 |
+
# module.position_embeddings.data.normal_(mean=0.0, std=self.config.initializer_range)
|
250 |
+
|
251 |
+
|
252 |
+
# Replace the 'ModelOutputWithCrossAttentions' with 'MoEModelOutputWithCrossAttentions' for MoE
|
253 |
+
@dataclass
|
254 |
+
class MoEModelOutputWithCrossAttentions(ModelOutput):
|
255 |
+
"""
|
256 |
+
Base class for model's outputs, with potential hidden states and attentions.
|
257 |
+
Plus, router_probs for Mixture of Experts models.
|
258 |
+
|
259 |
+
Args:
|
260 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
261 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
262 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
263 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
264 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
265 |
+
|
266 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
267 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
268 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
269 |
+
sequence_length)`.
|
270 |
+
|
271 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
272 |
+
heads.
|
273 |
+
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
|
274 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
275 |
+
sequence_length)`.
|
276 |
+
|
277 |
+
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
|
278 |
+
weighted average in the cross-attention heads.
|
279 |
+
router_probs (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_probs=True` and `config.add_router_probs=True` is passed or when `config.output_router_probs=True`):
|
280 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
|
281 |
+
|
282 |
+
Raw router probabilities that are computed by MoE routers, these terms are used to compute the auxiliary
|
283 |
+
loss and the z_loss for Mixture of Experts models.
|
284 |
+
"""
|
285 |
+
|
286 |
+
last_hidden_state: torch.FloatTensor = None
|
287 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
288 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
289 |
+
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
290 |
+
router_logits: Optional[Tuple[torch.FloatTensor]] = None
|
model/perceiver_mod.py
ADDED
@@ -0,0 +1,912 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
"""perceiver_mod.py
|
11 |
+
|
12 |
+
Implementation of the PerceiverTF encoder with:
|
13 |
+
- AliBi positional bias
|
14 |
+
- Mixtral of Experts (MoE) feedforward layer
|
15 |
+
|
16 |
+
"""
|
17 |
+
import math
|
18 |
+
from einops import rearrange
|
19 |
+
from typing import Optional, Tuple, Union, List, Dict, Literal
|
20 |
+
|
21 |
+
import torch
|
22 |
+
from torch import nn
|
23 |
+
from transformers.models.perceiver.modeling_perceiver import PerceiverSelfOutput
|
24 |
+
from transformers.pytorch_utils import (apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer)
|
25 |
+
from model.perceiver_helper import MoEModelOutputWithCrossAttentions
|
26 |
+
from model.perceiver_helper import PerceiverTFPreTrainedModel, PerceiverTFConfig
|
27 |
+
from model.positional_encoding import AlibiPositionalBias, get_rotary_emb
|
28 |
+
from model.ops import get_layer_norm
|
29 |
+
from model.ff_layer import get_ff_layer
|
30 |
+
|
31 |
+
|
32 |
+
class PerceiverEmbeddings(nn.Module):
|
33 |
+
"""Construct the latent embeddings sharable with token embeddings in the decoder."""
|
34 |
+
|
35 |
+
def __init__(self, config, shared_emb: Optional[nn.Parameter] = None):
|
36 |
+
super().__init__()
|
37 |
+
if shared_emb is not None:
|
38 |
+
self.latents = shared_emb
|
39 |
+
assert self.latents.shape == (config.num_latents, config.d_latents)
|
40 |
+
else:
|
41 |
+
self.latents = nn.Parameter(torch.randn(config.num_latents, config.d_latents))
|
42 |
+
|
43 |
+
def forward(self, batch_size: int):
|
44 |
+
return self.latents.expand(batch_size, -1, -1)
|
45 |
+
|
46 |
+
|
47 |
+
class PerceiverTFTrainablePE(nn.Module):
|
48 |
+
"""Construct the trainable absolute positional embeddings."""
|
49 |
+
|
50 |
+
def __init__(self, position_encoding_type: Literal['trainable', 'tkd', 'td', 'tk', 'kdt'], max_t: int, k: int,
|
51 |
+
d: int) -> None:
|
52 |
+
super().__init__()
|
53 |
+
self.position_encoding_type = position_encoding_type
|
54 |
+
self.max_t = max_t
|
55 |
+
self.k = k
|
56 |
+
self.d = d
|
57 |
+
|
58 |
+
if position_encoding_type in ['trainable', 'tkd']:
|
59 |
+
self._pos_emb = nn.Parameter(torch.randn(max_t, k, d))
|
60 |
+
elif position_encoding_type == 'td':
|
61 |
+
self._pos_emb = nn.Parameter(torch.randn(max_t, d))
|
62 |
+
elif position_encoding_type == 'tk':
|
63 |
+
self._pos_emb = nn.Parameter(torch.randn(max_t, k))
|
64 |
+
elif position_encoding_type == 'kdt':
|
65 |
+
self._pos_emb = nn.Parameter(torch.randn(k, d))
|
66 |
+
self._pos_emb_temporal = nn.Parameter(torch.randn(max_t, d))
|
67 |
+
else:
|
68 |
+
raise ValueError(f'unknown position encoding type {position_encoding_type}')
|
69 |
+
|
70 |
+
def forward(self):
|
71 |
+
pos_emb_temporal = None
|
72 |
+
|
73 |
+
if self.position_encoding_type in ['trainable', 'tkd']:
|
74 |
+
pos_emb = self._pos_emb
|
75 |
+
elif self.position_encoding_type == 'td':
|
76 |
+
pos_emb = self._pos_emb.unsqueeze(1).expand(-1, self.k, -1)
|
77 |
+
elif self.position_encoding_type == 'tk':
|
78 |
+
pos_emb = self._pos_emb.unsqueeze(-1).expand(-1, -1, self.d)
|
79 |
+
elif self.position_encoding_type == 'kdt':
|
80 |
+
pos_emb = self._pos_emb.unsqueeze(0).expand(self.max_t, -1, -1)
|
81 |
+
pos_emb_temporal = self._pos_emb_temporal
|
82 |
+
|
83 |
+
return pos_emb, pos_emb_temporal
|
84 |
+
|
85 |
+
|
86 |
+
class PerceiverAlibiSelfAttention(nn.Module):
|
87 |
+
"""
|
88 |
+
Multi-headed {cross, self}-attention + Alibi/Rotary positional bias/emb:
|
89 |
+
- Can be used both in the encoder as well as in the decoder.
|
90 |
+
- Modified from PerceiverSelfAttention in modeling_perceiver.py to support Alibi positional bias
|
91 |
+
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
config,
|
97 |
+
is_cross_attention=False,
|
98 |
+
qk_channels=None,
|
99 |
+
v_channels=None,
|
100 |
+
num_heads=1,
|
101 |
+
q_dim=None,
|
102 |
+
kv_dim=None,
|
103 |
+
rotary_emb=None,
|
104 |
+
):
|
105 |
+
super().__init__()
|
106 |
+
self.num_heads = num_heads
|
107 |
+
# Q and K must have the same number of channels.
|
108 |
+
# Default to preserving Q's input's shape.
|
109 |
+
if qk_channels is None:
|
110 |
+
qk_channels = q_dim
|
111 |
+
# V's num_channels determines the shape of the output of QKV-attention.
|
112 |
+
# Default to the same number of channels used in the key-query operation.
|
113 |
+
if v_channels is None:
|
114 |
+
v_channels = qk_channels
|
115 |
+
if qk_channels % num_heads != 0:
|
116 |
+
raise ValueError(f"qk_channels ({qk_channels}) must be divisible by num_heads ({num_heads}).")
|
117 |
+
if v_channels % num_heads != 0:
|
118 |
+
raise ValueError(f"v_channels ({v_channels}) must be divisible by num_heads ({num_heads}).")
|
119 |
+
|
120 |
+
self.qk_channels = qk_channels
|
121 |
+
self.v_channels = v_channels
|
122 |
+
self.qk_channels_per_head = self.qk_channels // num_heads
|
123 |
+
self.v_channels_per_head = self.v_channels // num_heads
|
124 |
+
|
125 |
+
# Layer normalization
|
126 |
+
self.layernorm1 = get_layer_norm(q_dim, config.layer_norm_type, config.layer_norm_eps)
|
127 |
+
if is_cross_attention:
|
128 |
+
self.layernorm2 = get_layer_norm(kv_dim, config.layer_norm_type, config.layer_norm_eps)
|
129 |
+
else:
|
130 |
+
self.layernorm2 = nn.Identity()
|
131 |
+
# self.layernorm1 = nn.LayerNorm(q_dim)
|
132 |
+
# self.layernorm2 = nn.LayerNorm(kv_dim) if is_cross_attention else nn.Identity()
|
133 |
+
|
134 |
+
# Projection matrices
|
135 |
+
self.query = nn.Linear(q_dim, qk_channels)
|
136 |
+
self.key = nn.Linear(kv_dim, qk_channels)
|
137 |
+
self.value = nn.Linear(kv_dim, v_channels)
|
138 |
+
|
139 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
140 |
+
|
141 |
+
# (Modified) Alibi positional bias
|
142 |
+
if config.position_encoding_type == 'alibi':
|
143 |
+
self.alibi_bias = AlibiPositionalBias(heads=num_heads, total_heads=num_heads, trainable_slope=False)
|
144 |
+
elif config.position_encoding_type == 'alibit':
|
145 |
+
self.alibi_bias = AlibiPositionalBias(heads=num_heads, total_heads=num_heads, trainable_slope=True)
|
146 |
+
else:
|
147 |
+
self.alibi_bias = None
|
148 |
+
# (Modified) RoPE
|
149 |
+
if config.position_encoding_type == 'rope':
|
150 |
+
assert rotary_emb is not None, "rotary_emb must be provided for RoPE."
|
151 |
+
self.rotary_emb = rotary_emb
|
152 |
+
else:
|
153 |
+
self.rotary_emb = None
|
154 |
+
self.rope_apply_to_keys = config.rope_apply_to_keys # False by default
|
155 |
+
|
156 |
+
def transpose_for_scores(self, x, channels_per_head):
|
157 |
+
new_x_shape = x.size()[:-1] + (self.num_heads, channels_per_head)
|
158 |
+
x = x.view(*new_x_shape)
|
159 |
+
return x.permute(0, 2, 1, 3)
|
160 |
+
|
161 |
+
def forward(
|
162 |
+
self,
|
163 |
+
hidden_states: torch.Tensor,
|
164 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
165 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
166 |
+
inputs: Optional[torch.FloatTensor] = None,
|
167 |
+
inputs_mask: Optional[torch.FloatTensor] = None,
|
168 |
+
output_attentions: Optional[bool] = False,
|
169 |
+
) -> Tuple[torch.Tensor]:
|
170 |
+
hidden_states = self.layernorm1(hidden_states)
|
171 |
+
inputs = self.layernorm2(inputs)
|
172 |
+
|
173 |
+
# Project queries, keys and values to a common feature dimension. If this is instantiated as a cross-attention module,
|
174 |
+
# the keys and values come from the inputs; the attention mask needs to be such that the inputs's non-relevant tokens are not attended to.
|
175 |
+
is_cross_attention = inputs is not None
|
176 |
+
queries = self.query(hidden_states)
|
177 |
+
|
178 |
+
if is_cross_attention:
|
179 |
+
keys = self.key(inputs)
|
180 |
+
values = self.value(inputs)
|
181 |
+
attention_mask = inputs_mask
|
182 |
+
else:
|
183 |
+
keys = self.key(hidden_states)
|
184 |
+
values = self.value(hidden_states)
|
185 |
+
|
186 |
+
# Reshape channels for multi-head attention.
|
187 |
+
# We reshape from (batch_size, time, channels) to (batch_size, num_heads, time, channels per head)
|
188 |
+
queries = self.transpose_for_scores(queries, self.qk_channels_per_head)
|
189 |
+
keys = self.transpose_for_scores(keys, self.qk_channels_per_head)
|
190 |
+
values = self.transpose_for_scores(values, self.v_channels_per_head)
|
191 |
+
|
192 |
+
# (Modified) RoPE
|
193 |
+
if self.rotary_emb is not None:
|
194 |
+
queries = self.rotary_emb.apply_rotary_custom(queries)
|
195 |
+
if self.rope_apply_to_keys is True:
|
196 |
+
keys = self.rotary_emb.apply_rotary_custom(keys)
|
197 |
+
|
198 |
+
# Take the dot product between the queries and keys to get the raw attention scores.
|
199 |
+
attention_scores = torch.matmul(queries, keys.transpose(-1, -2))
|
200 |
+
|
201 |
+
# (Modified) Alibi positional bias
|
202 |
+
if self.alibi_bias is not None:
|
203 |
+
batch_size, num_heads, q_seq_len, k_seq_len = attention_scores.shape
|
204 |
+
attention_scores += self.alibi_bias(q_seq_len,
|
205 |
+
k_seq_len) # auto-broadcasting to (b, num_heads, q_seq_len, k_seq_len)
|
206 |
+
|
207 |
+
_, _, _, q_head_dim = queries.shape
|
208 |
+
_, _, _, v_head_dim = values.shape
|
209 |
+
hiddens = self.num_heads * v_head_dim
|
210 |
+
|
211 |
+
attention_scores = attention_scores / math.sqrt(q_head_dim)
|
212 |
+
|
213 |
+
if attention_mask is not None:
|
214 |
+
# Apply the attention mask (precomputed for all layers in PerceiverModel forward() function)
|
215 |
+
attention_scores = attention_scores + attention_mask
|
216 |
+
|
217 |
+
# Normalize the attention scores to probabilities.
|
218 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
219 |
+
|
220 |
+
# This is actually dropping out entire tokens to attend to, which might
|
221 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
222 |
+
attention_probs = self.dropout(attention_probs)
|
223 |
+
|
224 |
+
# Mask heads if we want to
|
225 |
+
if head_mask is not None:
|
226 |
+
attention_probs = attention_probs * head_mask
|
227 |
+
|
228 |
+
context_layer = torch.matmul(attention_probs, values)
|
229 |
+
|
230 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
231 |
+
new_context_layer_shape = context_layer.size()[:-2] + (hiddens,)
|
232 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
233 |
+
|
234 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
235 |
+
|
236 |
+
return outputs
|
237 |
+
|
238 |
+
|
239 |
+
class PerceiverAlibiAttention(nn.Module):
|
240 |
+
"""
|
241 |
+
Attention module, including a dense block + Alibi
|
242 |
+
: modified from PerceiverAttention in modeling_perceiver.py to support Alibi positional bias
|
243 |
+
"""
|
244 |
+
|
245 |
+
def __init__(
|
246 |
+
self,
|
247 |
+
config,
|
248 |
+
is_cross_attention=False,
|
249 |
+
qk_channels=None,
|
250 |
+
v_channels=None,
|
251 |
+
num_heads=1,
|
252 |
+
q_dim=None,
|
253 |
+
kv_dim=None,
|
254 |
+
use_query_residual=True,
|
255 |
+
rotary_emb=None,
|
256 |
+
):
|
257 |
+
super().__init__()
|
258 |
+
# MultiHead attention
|
259 |
+
if is_cross_attention and qk_channels is None:
|
260 |
+
if config.cross_attention_shape_for_attention == "q":
|
261 |
+
qk_channels = q_dim
|
262 |
+
elif config.cross_attention_shape_for_attention == "kv":
|
263 |
+
qk_channels = kv_dim
|
264 |
+
else:
|
265 |
+
raise ValueError(f"Unknown value {config.cross_attention_shape_for_attention} for "
|
266 |
+
"cross_attention_shape_for_attention.")
|
267 |
+
else:
|
268 |
+
if qk_channels is None:
|
269 |
+
qk_channels = q_dim
|
270 |
+
if v_channels is None:
|
271 |
+
v_channels = qk_channels
|
272 |
+
self.self = PerceiverAlibiSelfAttention(config,
|
273 |
+
is_cross_attention=is_cross_attention,
|
274 |
+
qk_channels=qk_channels,
|
275 |
+
v_channels=v_channels,
|
276 |
+
num_heads=num_heads,
|
277 |
+
q_dim=q_dim,
|
278 |
+
kv_dim=kv_dim,
|
279 |
+
rotary_emb=rotary_emb)
|
280 |
+
# dense block
|
281 |
+
output_channels = None
|
282 |
+
if is_cross_attention:
|
283 |
+
output_channels = q_dim
|
284 |
+
else:
|
285 |
+
if output_channels is None:
|
286 |
+
output_channels = v_channels
|
287 |
+
self.output = PerceiverSelfOutput(config, input_channels=self.self.v_channels, output_channels=output_channels)
|
288 |
+
self.use_query_residual = use_query_residual
|
289 |
+
self.pruned_heads = set()
|
290 |
+
|
291 |
+
def prune_heads(self, heads):
|
292 |
+
if len(heads) == 0:
|
293 |
+
return
|
294 |
+
heads, index = find_pruneable_heads_and_indices(heads, self.self.num_attention_heads,
|
295 |
+
self.self.attention_head_size, self.pruned_heads)
|
296 |
+
|
297 |
+
# Prune linear layers
|
298 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
299 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
300 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
301 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
302 |
+
|
303 |
+
# Update hyper params and store pruned heads
|
304 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
305 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
306 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
307 |
+
|
308 |
+
def forward(
|
309 |
+
self,
|
310 |
+
hidden_states: torch.Tensor,
|
311 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
312 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
313 |
+
inputs: Optional[torch.FloatTensor] = None,
|
314 |
+
inputs_mask: Optional[torch.FloatTensor] = None,
|
315 |
+
output_attentions: Optional[bool] = False,
|
316 |
+
) -> Tuple[torch.Tensor]:
|
317 |
+
self_outputs = self.self(
|
318 |
+
hidden_states,
|
319 |
+
attention_mask,
|
320 |
+
head_mask,
|
321 |
+
inputs,
|
322 |
+
inputs_mask,
|
323 |
+
output_attentions,
|
324 |
+
)
|
325 |
+
|
326 |
+
# Output projection
|
327 |
+
attention_output = self.output(self_outputs[0])
|
328 |
+
|
329 |
+
# Optionally include a residual to the original queries.
|
330 |
+
# Consider omitting the residual if the semantics of query and output
|
331 |
+
# are different, e.g. if queries are positions and outputs are pixels.
|
332 |
+
if self.use_query_residual:
|
333 |
+
attention_output = attention_output + hidden_states
|
334 |
+
|
335 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
336 |
+
return outputs
|
337 |
+
|
338 |
+
|
339 |
+
class PerceiverAlibiLayer(nn.Module):
|
340 |
+
"""Construct a single PerceiverTF layer with:
|
341 |
+
- Alibi positional bias
|
342 |
+
- RoPE
|
343 |
+
- Mixtral of Experts (MoE) feedforward layer
|
344 |
+
|
345 |
+
"""
|
346 |
+
|
347 |
+
def __init__(
|
348 |
+
self,
|
349 |
+
config,
|
350 |
+
is_cross_attention=False,
|
351 |
+
qk_channels=None,
|
352 |
+
v_channels=None,
|
353 |
+
num_heads=1,
|
354 |
+
q_dim=None,
|
355 |
+
kv_dim=None,
|
356 |
+
widening_factor=1,
|
357 |
+
use_query_residual=True,
|
358 |
+
rotary_emb=None,
|
359 |
+
):
|
360 |
+
super().__init__()
|
361 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
362 |
+
self.seq_len_dim = 1
|
363 |
+
self.attention = PerceiverAlibiAttention(config,
|
364 |
+
is_cross_attention=is_cross_attention,
|
365 |
+
qk_channels=qk_channels,
|
366 |
+
v_channels=v_channels,
|
367 |
+
num_heads=num_heads,
|
368 |
+
q_dim=q_dim,
|
369 |
+
kv_dim=kv_dim,
|
370 |
+
use_query_residual=use_query_residual,
|
371 |
+
rotary_emb=rotary_emb)
|
372 |
+
self.layernorm = get_layer_norm(q_dim, config.layer_norm_type, config.layer_norm_eps)
|
373 |
+
# self.layernorm = nn.LayerNorm(q_dim)
|
374 |
+
self.mlp = get_ff_layer(config, input_size=q_dim, widening_factor=widening_factor)
|
375 |
+
|
376 |
+
def forward(
|
377 |
+
self,
|
378 |
+
hidden_states: torch.Tensor,
|
379 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
380 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
381 |
+
inputs: Optional[torch.FloatTensor] = None,
|
382 |
+
inputs_mask: Optional[torch.FloatTensor] = None,
|
383 |
+
output_attentions: Optional[bool] = False,
|
384 |
+
) -> Tuple[torch.Tensor]:
|
385 |
+
attention_outputs = self.attention(
|
386 |
+
hidden_states,
|
387 |
+
attention_mask,
|
388 |
+
head_mask,
|
389 |
+
inputs,
|
390 |
+
inputs_mask,
|
391 |
+
output_attentions,
|
392 |
+
)
|
393 |
+
attention_output = attention_outputs[0]
|
394 |
+
|
395 |
+
outputs = attention_outputs[1:] # add attentions if we output attention weights
|
396 |
+
"""apply_chunking_to_forward:
|
397 |
+
This function chunks the input_tensors into smaller input tensor parts of size
|
398 |
+
chunk_size over the dimension chunk_dim. It then applies a layer forward_fn to
|
399 |
+
each chunk independently to save memory.If the forward_fn is independent across
|
400 |
+
the chunk_dim this function will yield the same result as not applying it.
|
401 |
+
"""
|
402 |
+
layer_output, router_logits = apply_chunking_to_forward(self.feed_forward_chunk, self.chunk_size_feed_forward,
|
403 |
+
self.seq_len_dim, attention_output)
|
404 |
+
|
405 |
+
layer_output = layer_output + attention_output # residual connection
|
406 |
+
outputs = (layer_output,) + outputs + (router_logits,) # add router_logits to outputs
|
407 |
+
return outputs
|
408 |
+
|
409 |
+
def feed_forward_chunk(self, attention_output):
|
410 |
+
layer_output = self.layernorm(attention_output)
|
411 |
+
layer_output, router_logits = self.mlp(layer_output) # router_logits is returned only when using MoE.
|
412 |
+
return layer_output, router_logits
|
413 |
+
|
414 |
+
|
415 |
+
class PerceiverTFEncoderBlock(nn.Module):
|
416 |
+
"""Construct a single block of PerceiverTF encoder:
|
417 |
+
- Spectral Cross Attention (SCA)
|
418 |
+
- Local latent transformer layers
|
419 |
+
- Temporal transformer layers
|
420 |
+
- added Alibi positional bias, RoPE, gMLP and MoE feedforward layer
|
421 |
+
"""
|
422 |
+
|
423 |
+
def __init__(self,
|
424 |
+
config: PerceiverTFConfig,
|
425 |
+
kv_dim: Optional[int] = None,
|
426 |
+
sca_use_query_residual: bool = True,
|
427 |
+
rotary_emb_sca: Optional[nn.Module] = None,
|
428 |
+
rotary_emb_latent: Optional[nn.Module] = None,
|
429 |
+
rotary_emb_temporal: Optional[nn.Module] = None):
|
430 |
+
super().__init__()
|
431 |
+
self.config = config
|
432 |
+
|
433 |
+
# Check that we can use multihead-attention with these shapes.
|
434 |
+
if config.d_latents % config.num_self_attention_heads != 0:
|
435 |
+
raise ValueError(f"num_z_channels ({config.d_latents}) must be divisible by"
|
436 |
+
f" num_self_attend_heads ({config.num_self_attention_heads}).")
|
437 |
+
if config.d_latents % config.num_cross_attention_heads != 0:
|
438 |
+
raise ValueError(f"num_z_channels ({config.d_latents}) must be divisible by"
|
439 |
+
f" num_cross_attend_heads ({config.num_cross_attention_heads}).")
|
440 |
+
|
441 |
+
if kv_dim is None:
|
442 |
+
kv_dim = config.kv_dim
|
443 |
+
if sca_use_query_residual is None:
|
444 |
+
sca_use_query_residual = config.sca_use_query_residual
|
445 |
+
|
446 |
+
# Spectral Cross Attention (SCA) layer.
|
447 |
+
self.sca_attention_to_channel = config.attention_to_channel
|
448 |
+
self.spectral_cross_attention = PerceiverAlibiAttention(config,
|
449 |
+
is_cross_attention=True,
|
450 |
+
qk_channels=config.qk_channels,
|
451 |
+
v_channels=config.v_channels,
|
452 |
+
num_heads=config.num_cross_attention_heads,
|
453 |
+
q_dim=config.d_latents,
|
454 |
+
kv_dim=kv_dim,
|
455 |
+
use_query_residual=sca_use_query_residual,
|
456 |
+
rotary_emb=rotary_emb_sca) # (Modified) RoPE
|
457 |
+
|
458 |
+
# Local latent trasformer layers.
|
459 |
+
local_transformer_layers = []
|
460 |
+
for _ in range(config.num_local_transformers_per_block):
|
461 |
+
layer = PerceiverAlibiLayer(
|
462 |
+
config,
|
463 |
+
is_cross_attention=False,
|
464 |
+
qk_channels=config.qk_channels, # projection dim for q and k.
|
465 |
+
v_channels=config.v_channels, # projection dim for v.
|
466 |
+
num_heads=config.num_self_attention_heads,
|
467 |
+
q_dim=config.d_model,
|
468 |
+
kv_dim=config.d_model,
|
469 |
+
widening_factor=config.ff_widening_factor,
|
470 |
+
use_query_residual=config.use_query_residual,
|
471 |
+
rotary_emb=rotary_emb_latent # (Modified) RoPE
|
472 |
+
)
|
473 |
+
local_transformer_layers.append(layer)
|
474 |
+
self.local_transformer = nn.ModuleList(local_transformer_layers)
|
475 |
+
|
476 |
+
# Temporal transformer layers.
|
477 |
+
temporal_transformer_layers = []
|
478 |
+
for _ in range(config.num_temporal_transformers_per_block):
|
479 |
+
layer = PerceiverAlibiLayer(
|
480 |
+
config,
|
481 |
+
is_cross_attention=False,
|
482 |
+
qk_channels=config.qk_channels, # projection dim for q and k.
|
483 |
+
v_channels=config.v_channels, # projection dim for v.
|
484 |
+
num_heads=config.num_self_attention_heads,
|
485 |
+
q_dim=config.d_model,
|
486 |
+
kv_dim=config.d_model,
|
487 |
+
widening_factor=config.ff_widening_factor,
|
488 |
+
use_query_residual=config.use_query_residual,
|
489 |
+
rotary_emb=rotary_emb_temporal # (Modified) RoPE
|
490 |
+
)
|
491 |
+
temporal_transformer_layers.append(layer)
|
492 |
+
self.temporal_transformer = nn.ModuleList(temporal_transformer_layers)
|
493 |
+
|
494 |
+
def forward(
|
495 |
+
self,
|
496 |
+
hidden_states: torch.Tensor,
|
497 |
+
inputs: Optional[torch.FloatTensor] = None,
|
498 |
+
inputs_mask: Optional[torch.FloatTensor] = None,
|
499 |
+
local_attention_mask: Optional[torch.FloatTensor] = None,
|
500 |
+
temporal_attention_mask: Optional[torch.FloatTensor] = None,
|
501 |
+
local_head_mask: Optional[torch.FloatTensor] = None,
|
502 |
+
temporal_head_mask: Optional[torch.FloatTensor] = None,
|
503 |
+
pos_emb_temporal: Optional[torch.FloatTensor] = None,
|
504 |
+
output_attentions: Optional[bool] = False,
|
505 |
+
output_hidden_states: Optional[bool] = False,
|
506 |
+
output_router_logits: Optional[bool] = False, # Only used for MoE.
|
507 |
+
return_dict: Optional[bool] = True,
|
508 |
+
) -> Union[Tuple, MoEModelOutputWithCrossAttentions]:
|
509 |
+
"""
|
510 |
+
Inputs:
|
511 |
+
hidden_states: (B, T, K, D)
|
512 |
+
inputs: (B, T, F, C)
|
513 |
+
Returns:
|
514 |
+
hidden_states: (B, T, K, D)
|
515 |
+
|
516 |
+
Args:
|
517 |
+
hidden_states:
|
518 |
+
latent_array (B, T, num_latents, d_latents) for SCA. The latent array
|
519 |
+
with shape (B, K, D) is expanded by t, and positional embeddings are
|
520 |
+
added to it.
|
521 |
+
inputs: torch.FloatTensor
|
522 |
+
The input sequence of shape (B, T, F, C).
|
523 |
+
inputs_mask: torch.FloatTensor
|
524 |
+
Only used for SCA. By default, None.
|
525 |
+
local_attention_mask:
|
526 |
+
Used for local self-attention. By default, None.
|
527 |
+
temporal_attention_mask:
|
528 |
+
Used for temporal self-attention. By default, None.
|
529 |
+
local_head_mask:
|
530 |
+
By default, None.
|
531 |
+
temporal_head_mask:
|
532 |
+
By default, None.
|
533 |
+
pos_emb_temporal:
|
534 |
+
Optioanl. Used for temporal self-attention. By default, None. (max_t, num_latents, d_latents)
|
535 |
+
output_attentions: bool
|
536 |
+
Whether to return attentions weights.
|
537 |
+
output_hidden_states: bool
|
538 |
+
Whether to return all hidden states. If False, only last hidden
|
539 |
+
state is returned.
|
540 |
+
output_router_logits: bool
|
541 |
+
Whether to return router logits for MoE. If False, only last hidden
|
542 |
+
state is returned.
|
543 |
+
return_dict: bool
|
544 |
+
Whether to return a MoEModelOutputWithCrossAttentions instead of a tuple.
|
545 |
+
"""
|
546 |
+
|
547 |
+
all_hidden_states = () if output_hidden_states else None
|
548 |
+
all_self_attentions = () if output_attentions else None
|
549 |
+
all_cross_attentions = () if output_attentions else None
|
550 |
+
all_router_logits = () if output_router_logits else None
|
551 |
+
|
552 |
+
# Collect dimension info
|
553 |
+
batch_size, t, num_latents, d_latents = hidden_states.size() # (B, T, K, D)
|
554 |
+
|
555 |
+
# if self.sca_attention_to_channel:
|
556 |
+
# _, _, _, f = inputs.size() # (B, T, C, F)
|
557 |
+
# assert d_latents == f, "d_latents must be equal to kv_dim, which is input frequency dim."
|
558 |
+
# else:
|
559 |
+
# _, _, _, c = inputs.size() # (B, T, F, C)
|
560 |
+
# assert d_latents == c, "d_latents must be equal to kv_dim, which is input channels."
|
561 |
+
|
562 |
+
# Reshape (B, T, _, _) to (B*T, _, _) for SCA and local transformer.
|
563 |
+
hidden_states = rearrange(hidden_states, "b t k d -> (b t) k d")
|
564 |
+
inputs = rearrange(inputs, "b t f c -> (b t) f c")
|
565 |
+
|
566 |
+
# Apply the SCA between the latents (hidden_states) and inputs:
|
567 |
+
layer_outputs = self.spectral_cross_attention(
|
568 |
+
hidden_states,
|
569 |
+
attention_mask=None, # Input_mask is used instead for cross-attention
|
570 |
+
inputs=inputs,
|
571 |
+
inputs_mask=inputs_mask,
|
572 |
+
output_attentions=output_attentions,
|
573 |
+
)
|
574 |
+
hidden_states = layer_outputs[0] # (B*T, K, D)
|
575 |
+
|
576 |
+
if output_attentions:
|
577 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[1],)
|
578 |
+
|
579 |
+
# Apply the block of local latent transformer layers.
|
580 |
+
for i, layer_module in enumerate(self.local_transformer):
|
581 |
+
if output_hidden_states:
|
582 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
583 |
+
|
584 |
+
layer_head_mask = local_head_mask[i] if local_head_mask is not None else None
|
585 |
+
layer_outputs = layer_module(
|
586 |
+
hidden_states,
|
587 |
+
attention_mask=local_attention_mask,
|
588 |
+
head_mask=layer_head_mask,
|
589 |
+
output_attentions=output_attentions,
|
590 |
+
)
|
591 |
+
hidden_states = layer_outputs[0] # (B*T, K, D)
|
592 |
+
if output_attentions:
|
593 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
594 |
+
if output_router_logits:
|
595 |
+
all_router_logits = all_router_logits + (layer_outputs[2],)
|
596 |
+
|
597 |
+
if output_hidden_states:
|
598 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
599 |
+
|
600 |
+
# Reshape (B*T, K, D) to (B*K, T, D) for the temporal transformer.
|
601 |
+
hidden_states = rearrange(hidden_states, "(b t) k d -> (b k) t d", b=batch_size)
|
602 |
+
|
603 |
+
# Apply the block of temporal transformer layers.
|
604 |
+
for i, layer_module in enumerate(self.temporal_transformer):
|
605 |
+
if output_hidden_states:
|
606 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
607 |
+
|
608 |
+
layer_head_mask = temporal_head_mask[i] if temporal_head_mask is not None else None
|
609 |
+
|
610 |
+
if i == 0 and pos_emb_temporal is not None:
|
611 |
+
# Add temporal positional embeddings to the hidden_states.
|
612 |
+
hidden_states = hidden_states + pos_emb_temporal[:t] # pos_emb_temporal: (T, D)
|
613 |
+
|
614 |
+
layer_outputs = layer_module(
|
615 |
+
hidden_states,
|
616 |
+
attention_mask=temporal_attention_mask,
|
617 |
+
head_mask=layer_head_mask,
|
618 |
+
output_attentions=output_attentions,
|
619 |
+
)
|
620 |
+
hidden_states = layer_outputs[0]
|
621 |
+
if output_attentions:
|
622 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
623 |
+
if output_router_logits:
|
624 |
+
all_router_logits = all_router_logits + (layer_outputs[2],)
|
625 |
+
|
626 |
+
if output_hidden_states:
|
627 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
628 |
+
|
629 |
+
last_hideen_state = hidden_states
|
630 |
+
# Reshape (B*K, T, D) to (B, T, K, D) for the next block.
|
631 |
+
last_hideen_state = rearrange(last_hideen_state, "(b k) t d -> b t k d", b=batch_size)
|
632 |
+
|
633 |
+
# Prepare the outputs.
|
634 |
+
if not return_dict:
|
635 |
+
return tuple(
|
636 |
+
v for v in
|
637 |
+
[last_hideen_state, all_hidden_states, all_self_attentions, all_cross_attentions, all_router_logits]
|
638 |
+
if v is not None)
|
639 |
+
return MoEModelOutputWithCrossAttentions(
|
640 |
+
last_hidden_state=last_hideen_state,
|
641 |
+
hidden_states=all_hidden_states,
|
642 |
+
attentions=all_self_attentions,
|
643 |
+
cross_attentions=all_cross_attentions,
|
644 |
+
router_logits=all_router_logits,
|
645 |
+
)
|
646 |
+
|
647 |
+
|
648 |
+
class PerceiverTFEncoder(PerceiverTFPreTrainedModel):
|
649 |
+
"""PerceiverTFEncoder is an encoder model based on the Perceiver and Spectral Cross Attention (SCA).
|
650 |
+
|
651 |
+
position_encoding_type: str
|
652 |
+
The type of positional encoding to use. One of the following:
|
653 |
+
- 'trainable': trainable positional embeddings
|
654 |
+
- 'alibi': AlibiNet positional embeddings
|
655 |
+
- 'alibit': AlibiNet positional embeddings with trainable slopes for each head
|
656 |
+
- 'rope': RoPE (Rotary Positional Encoding)
|
657 |
+
(experimental w/ 'trainable')
|
658 |
+
- 'tkd': trainable PE (T,K,D) on latent (default for 'trainable')
|
659 |
+
- 'td': trainable PE (T,D) on latent
|
660 |
+
- 'tk': trainable PE (T,K) on latent
|
661 |
+
- 'kdt': trainable PE (K,D) on latent, and (T,) on temporal transformer
|
662 |
+
|
663 |
+
"""
|
664 |
+
|
665 |
+
def __init__(self,
|
666 |
+
config: PerceiverTFConfig,
|
667 |
+
sca_use_query_residual: Optional[bool] = None,
|
668 |
+
shared_emb: Optional[nn.Embedding] = None):
|
669 |
+
super().__init__(config)
|
670 |
+
self.config = config
|
671 |
+
|
672 |
+
if sca_use_query_residual is None:
|
673 |
+
self.sca_use_query_residual = config.sca_use_query_residual # True by default
|
674 |
+
self.position_encoding_type = config.position_encoding_type
|
675 |
+
self.sca_attention_to_channel = config.attention_to_channel
|
676 |
+
|
677 |
+
# Construct a latent array.
|
678 |
+
self.latent_array = PerceiverEmbeddings(config) # (num_latents, d_latents)
|
679 |
+
|
680 |
+
# Positional embeddings for the latent array.
|
681 |
+
if self.position_encoding_type == 'rope':
|
682 |
+
# (Modified) RoPE
|
683 |
+
self.rotary_emb_sca = get_rotary_emb(config.num_cross_attention_heads, config.rope_type_sca,
|
684 |
+
config.rope_partial_pe, config.rope_trainable)
|
685 |
+
self.rotary_emb_latent = get_rotary_emb(config.num_cross_attention_heads, config.rope_type_latent,
|
686 |
+
config.rope_partial_pe, config.rope_trainable)
|
687 |
+
self.rotary_emb_temporal = get_rotary_emb(config.num_cross_attention_heads, config.rope_type_temporal,
|
688 |
+
config.rope_partial_pe, config.rope_trainable)
|
689 |
+
else:
|
690 |
+
self.rotary_emb_sca = None
|
691 |
+
self.rotary_emb_latent = None
|
692 |
+
self.rotary_emb_temporal = None
|
693 |
+
|
694 |
+
if self.position_encoding_type in ['alibi', 'alibit', 'rope', None]:
|
695 |
+
# alibi is imeplemented within PerceiverAlibiSelfAttention, and activated by config.
|
696 |
+
# RoPE is implemented without using self.pos_emb.
|
697 |
+
self.pos_emb = None
|
698 |
+
else:
|
699 |
+
k, d = self.latent_array.latents.size()
|
700 |
+
max_t = int(config.num_max_positions) + 10 # 10 is headroom for future task tokens...
|
701 |
+
self.pos_emb = PerceiverTFTrainablePE(self.position_encoding_type, max_t, k, d)
|
702 |
+
"""
|
703 |
+
self.pos_emb() returns:
|
704 |
+
pos_emb: (max_t, K, D)
|
705 |
+
pos_emb_temporal: (max_t, K, D)
|
706 |
+
"""
|
707 |
+
|
708 |
+
# Construct the encoder blocks.
|
709 |
+
blocks = []
|
710 |
+
for _ in range(config.num_blocks):
|
711 |
+
block = PerceiverTFEncoderBlock(
|
712 |
+
config,
|
713 |
+
kv_dim=config.kv_dim,
|
714 |
+
sca_use_query_residual=sca_use_query_residual,
|
715 |
+
rotary_emb_sca=self.rotary_emb_sca, # (Modified) RoPE
|
716 |
+
rotary_emb_latent=self.rotary_emb_latent,
|
717 |
+
rotary_emb_temporal=self.rotary_emb_temporal)
|
718 |
+
blocks.append(block)
|
719 |
+
self.blocks = nn.ModuleList(blocks)
|
720 |
+
|
721 |
+
# Initialize weights and apply final processing
|
722 |
+
self.post_init()
|
723 |
+
|
724 |
+
def get_input_embeddings(self):
|
725 |
+
return self.latent_array.latents
|
726 |
+
|
727 |
+
def set_input_embeddings(self, value):
|
728 |
+
self.latent_array.latents = value
|
729 |
+
|
730 |
+
"""temporary fix for torch.compile issue"""
|
731 |
+
|
732 |
+
def forward(self, **kwargs):
|
733 |
+
if self.training is True:
|
734 |
+
return self._forward_compile(**kwargs)
|
735 |
+
else:
|
736 |
+
return self._forward_no_compile(**kwargs)
|
737 |
+
|
738 |
+
def _forward_no_compile(self, **kwargs):
|
739 |
+
return self._forward(**kwargs)
|
740 |
+
|
741 |
+
@torch.compile
|
742 |
+
def _forward_compile(self, **kwargs):
|
743 |
+
return self._forward(**kwargs)
|
744 |
+
|
745 |
+
def _forward(
|
746 |
+
self,
|
747 |
+
inputs: Optional[torch.FloatTensor] = None, # (B, T, F, kv_dim)
|
748 |
+
inputs_embeds: Optional[torch.FloatTensor] = None, # (B, T, F, kv_dim)
|
749 |
+
inputs_mask: Optional[torch.FloatTensor] = None, # (B, F) Mask freq. of inputs in SCA.
|
750 |
+
local_attention_mask: Optional[torch.FloatTensor] = None, # (B, K)
|
751 |
+
temporal_attention_mask: Optional[torch.FloatTensor] = None, # (B, T)
|
752 |
+
local_head_mask: Optional[torch.FloatTensor] = None,
|
753 |
+
temporal_head_mask: Optional[torch.FloatTensor] = None,
|
754 |
+
output_attentions: Optional[bool] = None,
|
755 |
+
output_hidden_states: Optional[bool] = None,
|
756 |
+
output_router_logits: Optional[bool] = None,
|
757 |
+
return_dict: Optional[bool] = None,
|
758 |
+
) -> Union[Tuple, MoEModelOutputWithCrossAttentions]:
|
759 |
+
# Inputs and inputs_embeds are tied, and actually the same. (following T5 convention)
|
760 |
+
# Inputs are from convoulutional features from audio.
|
761 |
+
# Don't be confused with latent embeddings, which is `self.latent_array.latents`, and
|
762 |
+
# used as hidden_state of block.
|
763 |
+
if inputs is None and inputs_embeds is not None:
|
764 |
+
inputs = inputs_embeds
|
765 |
+
elif inputs is None and inputs_embeds is None:
|
766 |
+
raise ValueError("You must provide 'inputs' or 'inputs_embeds' argument.")
|
767 |
+
|
768 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
769 |
+
output_hidden_states = (output_hidden_states
|
770 |
+
if output_hidden_states is not None else self.config.output_hidden_states)
|
771 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
772 |
+
|
773 |
+
batch_size, t, _f, _c = inputs.size()
|
774 |
+
device = inputs.device
|
775 |
+
|
776 |
+
# SCA attention to channels of inputs, instead of frequency bins.
|
777 |
+
if self.sca_attention_to_channel is True:
|
778 |
+
inputs = rearrange(inputs, "b t f c -> b t c f")
|
779 |
+
|
780 |
+
# Prepare head mask if needed
|
781 |
+
# 1.0 in head_mask indicate we keep the head
|
782 |
+
# attention_probs has shape bsz x n_heads x N x N
|
783 |
+
# input head_mask has shape [num_heads] or [num_blocks x num_heads]
|
784 |
+
# and head_mask is converted to shape [num_blocks x batch x num_heads x N x N]
|
785 |
+
local_head_mask = self.get_head_mask(local_head_mask,
|
786 |
+
self.config.num_blocks * self.config.num_local_transformers_per_block)
|
787 |
+
temporal_head_mask = self.get_head_mask(
|
788 |
+
temporal_head_mask, self.config.num_blocks * self.config.num_temporal_transformers_per_block)
|
789 |
+
|
790 |
+
# Prepare attention mask: not implemented
|
791 |
+
|
792 |
+
# Expand the latent embeddings by t: (B, K, D) --> (B, T, K, D)
|
793 |
+
latent_embeddings = self.latent_array(batch_size=batch_size) # (B, num_latents, d_latents)
|
794 |
+
expanded_latent_embeddings = latent_embeddings.unsqueeze(1).expand(-1, t, -1, -1)
|
795 |
+
|
796 |
+
# Add positional embeddings to the expanded latent embeddings: (B, T, K, D)
|
797 |
+
if self.pos_emb is not None:
|
798 |
+
pos_emb_latent, pos_emb_temporal = self.pos_emb.forward()
|
799 |
+
expanded_latent_embeddings = expanded_latent_embeddings + pos_emb_latent[:t]
|
800 |
+
# (max_t, K, D) -> (T, K, D) -> (B, T, K, D) auto-broadcasting
|
801 |
+
else:
|
802 |
+
pos_emb_temporal = None
|
803 |
+
|
804 |
+
# Lists to store intermediate outputs if required
|
805 |
+
all_hidden_states = []
|
806 |
+
all_attentions = []
|
807 |
+
all_cross_attentions = []
|
808 |
+
all_router_logits = []
|
809 |
+
|
810 |
+
hidden_states = expanded_latent_embeddings
|
811 |
+
|
812 |
+
# Forward-pass
|
813 |
+
for i, block in enumerate(self.blocks):
|
814 |
+
block_output = block(hidden_states=hidden_states,
|
815 |
+
inputs=inputs,
|
816 |
+
inputs_mask=inputs_mask,
|
817 |
+
local_attention_mask=local_attention_mask,
|
818 |
+
temporal_attention_mask=temporal_attention_mask,
|
819 |
+
local_head_mask=local_head_mask,
|
820 |
+
temporal_head_mask=temporal_head_mask,
|
821 |
+
pos_emb_temporal=pos_emb_temporal if i == 0 else None,
|
822 |
+
output_attentions=output_attentions,
|
823 |
+
output_hidden_states=output_hidden_states,
|
824 |
+
output_router_logits=output_router_logits,
|
825 |
+
return_dict=True)
|
826 |
+
|
827 |
+
# Update the hidden_states for the next block
|
828 |
+
hidden_states = block_output.last_hidden_state
|
829 |
+
|
830 |
+
# Append to lists if required
|
831 |
+
if output_hidden_states:
|
832 |
+
all_hidden_states.append(hidden_states)
|
833 |
+
if output_attentions:
|
834 |
+
all_attentions.append(block_output.attentions)
|
835 |
+
all_cross_attentions.append(block_output.cross_attentions)
|
836 |
+
if output_router_logits:
|
837 |
+
all_router_logits.append(block_output.router_logits)
|
838 |
+
last_hidden_states = hidden_states
|
839 |
+
|
840 |
+
# Prepare outputs
|
841 |
+
if not return_dict:
|
842 |
+
# Convert lists to tuples
|
843 |
+
return (last_hidden_states, tuple(all_hidden_states) if all_hidden_states else None,
|
844 |
+
tuple(all_attentions) if all_attentions else None,
|
845 |
+
tuple(all_cross_attentions) if all_cross_attentions else None,
|
846 |
+
tuple(all_router_logits) if all_router_logits else None)
|
847 |
+
|
848 |
+
return MoEModelOutputWithCrossAttentions(
|
849 |
+
last_hidden_state=last_hidden_states,
|
850 |
+
hidden_states=tuple(all_hidden_states) if all_hidden_states else None,
|
851 |
+
attentions=tuple(all_attentions) if all_attentions else None,
|
852 |
+
cross_attentions=tuple(all_cross_attentions) if all_cross_attentions else None,
|
853 |
+
router_logits=tuple(all_router_logits) if all_router_logits else None)
|
854 |
+
|
855 |
+
|
856 |
+
def test():
|
857 |
+
# In HuggingFace's Perceiver implementation:
|
858 |
+
# `q_dim` is the latent array dimension d_latents of ((B), num_latents, d_latents).
|
859 |
+
# `kv_dim`os the actual input dimension D of (B, T, D)
|
860 |
+
# `qk_channels`, `v_channels`: are projection dimensions for attention, (B, T, C)
|
861 |
+
# (B, T, D) --> projection --> (B, T, C)
|
862 |
+
# However, PerceiverTF does not require projection:
|
863 |
+
# It takes as input a latent tensor (B, num_latents, d_latents) and a conv_feat tensor (T, B, F, C)
|
864 |
+
# The `spectral-cross-attention` and `local-self-attention-transformer` takes as input (B*T, F, C),
|
865 |
+
# and C=D=d_latents.
|
866 |
+
from model.ops import count_parameters
|
867 |
+
|
868 |
+
# Test input
|
869 |
+
b = 2 # batch
|
870 |
+
t = 10 # time steps (330 for 6s in paper)
|
871 |
+
f = 128 # freq of conv_feat
|
872 |
+
c = 128 # channels of conv_feat
|
873 |
+
k = 24 # num_latents
|
874 |
+
d = 128 # d_latents
|
875 |
+
conv_feat = torch.randn(b, t, f, c)
|
876 |
+
|
877 |
+
# construct PerceiverTFEncoder
|
878 |
+
config = PerceiverTFConfig()
|
879 |
+
pe_types = ['alibi', 'alibit', 'trainable', 'tkd', 'td', 'tk', 'kdt', None]
|
880 |
+
config.ff_layer_type = 'moe'
|
881 |
+
config.moe_num_experts = 4
|
882 |
+
config.moe_topk = 2
|
883 |
+
|
884 |
+
for pe_type in pe_types:
|
885 |
+
config.position_encoding_type = pe_type # 'alibi', 'alibit', 'trainable', 'tkd', 'td', 'tk', 'kdt', None
|
886 |
+
config.num_latents = k
|
887 |
+
config.d_latents = d
|
888 |
+
config.kv_dim = c
|
889 |
+
config.qk_channels = d
|
890 |
+
config.v_channels = d
|
891 |
+
encoder = PerceiverTFEncoder(config)
|
892 |
+
encoder.eval()
|
893 |
+
assert encoder.latent_array.latents.size() == (k, d)
|
894 |
+
# forward
|
895 |
+
enc_hidden_state = encoder.forward(inputs_embeds=conv_feat).last_hidden_state
|
896 |
+
# print(enc_hidden_state.shape) # [2, 10, 24, 128] = [B, T, K, D]
|
897 |
+
n_param = count_parameters(encoder)[1] // 1000
|
898 |
+
print(config.position_encoding_type, f'num_param: {n_param}K')
|
899 |
+
"""
|
900 |
+
PE type | num. param.
|
901 |
+
None | 1397K
|
902 |
+
alibi | 1397K
|
903 |
+
alibit (train slope) | 1397K
|
904 |
+
tkd | 2442K
|
905 |
+
td | 1441K
|
906 |
+
tk | 1405K
|
907 |
+
kdt | 1444K
|
908 |
+
|
909 |
+
MLP | 2637K
|
910 |
+
MoE (4 experts) | 4411K
|
911 |
+
MoE (6 experts) | 5594K
|
912 |
+
"""
|
model/projection_layer.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
""" projection_layer.py """
|
11 |
+
from typing import Tuple
|
12 |
+
|
13 |
+
import math
|
14 |
+
import torch
|
15 |
+
from torch import nn
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from torch.nn import Linear, LayerNorm
|
18 |
+
|
19 |
+
from einops import rearrange
|
20 |
+
from model.ops import count_parameters
|
21 |
+
|
22 |
+
|
23 |
+
class GroupLinearFlatten(nn.Module):
|
24 |
+
"""
|
25 |
+
Implements a grouped linear layer with a flattened output.
|
26 |
+
|
27 |
+
This module applies individual linear transformations for each group in the input tensor
|
28 |
+
and then flattens the group dimension to produce the final output. It's useful when you
|
29 |
+
have distinct groups in the input tensor and you want separate linear transformations for
|
30 |
+
each of these groups.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
- in_features (int): The number of input features per group.
|
34 |
+
- flatten_out_features (int): The total number of flattened output features. This value must
|
35 |
+
be divisible by num_groups. The actual number of output features
|
36 |
+
per group is computed as flatten_out_features/num_groups.
|
37 |
+
- num_groups (int): The number of distinct groups in the input tensor.
|
38 |
+
- use_bmm (bool, optional): Whether to use batch matrix multiplication for computation.
|
39 |
+
Default is True.
|
40 |
+
|
41 |
+
Shape:
|
42 |
+
- Input: (batch_size, sequence_length, num_groups, in_features)
|
43 |
+
- Output: (batch_size, sequence_length, flatten_out_features)
|
44 |
+
|
45 |
+
Examples:
|
46 |
+
>>> m = GroupLinearFlatten(128, 512, 24) #
|
47 |
+
>>> input = torch.randn(16, 10, 24, 128) # (B, T, C, F)
|
48 |
+
>>> output = m(input)
|
49 |
+
>>> output.size()
|
50 |
+
torch.Size([16, 10, 512]) # (B, T, D)
|
51 |
+
"""
|
52 |
+
|
53 |
+
def __init__(self, in_features, flatten_out_features, num_groups, use_bmm=True):
|
54 |
+
super().__init__()
|
55 |
+
self.in_features = in_features
|
56 |
+
self.flatten_out_features = flatten_out_features
|
57 |
+
self.num_groups = num_groups
|
58 |
+
self.use_bmm = use_bmm
|
59 |
+
|
60 |
+
# Assuming flatten_out_features is divisible by num_groups
|
61 |
+
self.out_features_per_group = self.flatten_out_features // self.num_groups
|
62 |
+
|
63 |
+
# Each group gets its own weights
|
64 |
+
self.weight = nn.Parameter(torch.Tensor(num_groups, self.out_features_per_group, in_features))
|
65 |
+
self.reset_parameters()
|
66 |
+
|
67 |
+
def reset_parameters(self):
|
68 |
+
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
69 |
+
|
70 |
+
def forward(self, input):
|
71 |
+
# input shape: (batch, seq_length, groups, in_features)
|
72 |
+
# weight shape: (groups, out_features_per_group, in_features)
|
73 |
+
|
74 |
+
batch_size, t, k, source_d = input.size()
|
75 |
+
|
76 |
+
if self.use_bmm:
|
77 |
+
# Reshape input for bmm operation
|
78 |
+
input_reshaped = rearrange(input, 'b t k d -> k d (b t)')
|
79 |
+
|
80 |
+
# Matrix multiplication: dot((k, out_features_per_group, d), (k, d, b*t)) -> (k, out_features_per_group, b*t)
|
81 |
+
output_bmm = torch.bmm(self.weight, input_reshaped)
|
82 |
+
|
83 |
+
# Reshape back to original shape and flatten the group dimension
|
84 |
+
output = rearrange(output_bmm, 'k d_out (b t) -> b t (k d_out)', b=batch_size, t=t, k=k)
|
85 |
+
else:
|
86 |
+
output = torch.einsum('bsgi,goi->bsgo', input, self.weight)
|
87 |
+
output = rearrange(output, 'b t k d_out -> b t (k d_out)')
|
88 |
+
|
89 |
+
return output
|
90 |
+
|
91 |
+
|
92 |
+
# class MultiChannelGroupLinear(nn.Module):
|
93 |
+
# """ Not Implemented Yet """
|
94 |
+
# def __init__(self, in_ch=26, in_dim=128, out_ch=13, out_dim=512):
|
95 |
+
# super().__init__()
|
96 |
+
|
97 |
+
# self.in_ch = in_ch
|
98 |
+
# self.in_dim = in_dim
|
99 |
+
# self.out_ch = out_ch
|
100 |
+
# self.out_dim = out_dim
|
101 |
+
# self.in_ch_per_group = in_ch // out_ch
|
102 |
+
|
103 |
+
# self.layer = GroupLinearFlatten(in_features=)
|
104 |
+
|
105 |
+
|
106 |
+
class MultiChannelLinearProjection(nn.Module):
|
107 |
+
|
108 |
+
def __init__(self, in_ch=26, in_dim=128, out_ch=13, out_dim=512):
|
109 |
+
super().__init__()
|
110 |
+
self.in_ch = in_ch
|
111 |
+
self.in_dim = in_dim
|
112 |
+
self.out_ch = out_ch
|
113 |
+
self.out_dim = out_dim
|
114 |
+
|
115 |
+
self.in_ch_per_group = in_ch // out_ch
|
116 |
+
self.linear_in_ch = in_ch // self.in_ch_per_group
|
117 |
+
self.linear_in_dim = in_dim * self.in_ch_per_group
|
118 |
+
|
119 |
+
# Reshaped Input shape: (b, t, in_dim//in_ch_per_group, in_dim*in_ch_per_group)
|
120 |
+
# Output shape: (b, t, out_ch, out_dim)
|
121 |
+
if in_dim * self.in_ch_per_group == out_dim:
|
122 |
+
self.linear = nn.Identity()
|
123 |
+
else:
|
124 |
+
self.linear = nn.Linear(in_features=self.linear_in_dim, out_features=out_dim, bias=False)
|
125 |
+
|
126 |
+
def forward(self, x):
|
127 |
+
"""
|
128 |
+
Args:
|
129 |
+
x: (B, T, C, D)
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
x: (B, C_target, T, D_target)
|
133 |
+
"""
|
134 |
+
x = rearrange(x, 'b t (c1 c2) d -> b c1 t (c2 d)', c1=self.linear_in_ch, c2=self.in_ch_per_group)
|
135 |
+
return self.linear(x)
|
136 |
+
|
137 |
+
|
138 |
+
def get_multi_channel_projection_layer(input_shape: Tuple[int], output_shape: Tuple[int], proj_type: str) -> nn.Module:
|
139 |
+
""" This function returns one of the projection layers for multi-channel models."""
|
140 |
+
in_ch = input_shape[-2]
|
141 |
+
in_dim = input_shape[-1]
|
142 |
+
out_ch = output_shape[-2]
|
143 |
+
out_dim = output_shape[-1]
|
144 |
+
|
145 |
+
if proj_type == 'mc_shared_linear':
|
146 |
+
return MultiChannelLinearProjection(in_ch, in_dim, out_ch, out_dim)
|
147 |
+
|
148 |
+
|
149 |
+
def test_multi_channel_linear_projection():
|
150 |
+
x = torch.randn(2, 10, 26, 128) # (b, t, c, d)
|
151 |
+
mclp = MultiChannelLinearProjection(in_ch=26, in_dim=128, out_ch=13, out_dim=256) # actually nn.Identity()
|
152 |
+
assert type(nn.Identity()) == type(mclp.linear)
|
153 |
+
assert mclp(x).shape == (2, 13, 10, 256) # (b, _c, t, _d)
|
154 |
+
|
155 |
+
x = torch.randn(2, 10, 26, 128) # (b, t, c, d)
|
156 |
+
mclp = MultiChannelLinearProjection(in_ch=26, in_dim=128, out_ch=13, out_dim=512) # actually nn.Identity()
|
157 |
+
assert torch.nn.modules.linear.Linear == type(mclp.linear)
|
158 |
+
assert mclp(x).shape == (2, 13, 10, 512) # (b, _c, t, _d)
|
159 |
+
|
160 |
+
|
161 |
+
class FlattenMLP(nn.Module):
|
162 |
+
|
163 |
+
def __init__(self, in_features, flatten_out_features, num_groups, hidden_dim=None, activation=None):
|
164 |
+
super().__init__()
|
165 |
+
|
166 |
+
self.in_features = in_features
|
167 |
+
self.num_groups = num_groups
|
168 |
+
|
169 |
+
# Calculate flattened input dimension
|
170 |
+
self.flat_in_dim = in_features * num_groups
|
171 |
+
if hidden_dim is None:
|
172 |
+
hidden_dim = self.flat_in_dim // 2
|
173 |
+
self.hidden_dim = hidden_dim
|
174 |
+
|
175 |
+
# Check if flatten_out_features is divisible by in_features
|
176 |
+
assert flatten_out_features % in_features == 0, "flatten_out_features should be divisible by in_features."
|
177 |
+
|
178 |
+
# Define layers
|
179 |
+
self.layers = nn.Sequential(nn.Flatten(2, 3), nn.Linear(self.flat_in_dim, hidden_dim), nn.LayerNorm(hidden_dim),
|
180 |
+
activation() if activation else nn.Identity(), nn.Linear(hidden_dim, hidden_dim),
|
181 |
+
nn.LayerNorm(hidden_dim),
|
182 |
+
activation() if activation else nn.Identity(),
|
183 |
+
nn.Linear(hidden_dim, flatten_out_features))
|
184 |
+
|
185 |
+
def forward(self, x):
|
186 |
+
# x shape: (batch, seq, num_groups, in_features)
|
187 |
+
return self.layers(x)
|
188 |
+
|
189 |
+
|
190 |
+
class LinearProjection(nn.Module):
|
191 |
+
|
192 |
+
def __init__(self, in_features, flatten_out_features, num_groups):
|
193 |
+
super().__init__()
|
194 |
+
|
195 |
+
# Calculate flattened input dimension
|
196 |
+
self.flat_in_dim = in_features * num_groups
|
197 |
+
self.projection_layer = nn.Linear(in_features=self.flat_in_dim, out_features=flatten_out_features, bias=False)
|
198 |
+
|
199 |
+
def forward(self, x):
|
200 |
+
# x shape: (batch, seq, num_groups, in_features)
|
201 |
+
batch_size, t, _, _ = x.size()
|
202 |
+
x_flattened = x.reshape(batch_size, t, -1) # Flattening num_groups and in_features
|
203 |
+
return self.projection_layer(x_flattened)
|
204 |
+
|
205 |
+
|
206 |
+
class DepthwiseConvProjection(nn.Module):
|
207 |
+
|
208 |
+
def __init__(self, in_features, flatten_out_features, num_groups, depth):
|
209 |
+
super().__init__()
|
210 |
+
d_out = flatten_out_features // in_features
|
211 |
+
|
212 |
+
self.conv = nn.Conv2d(in_channels=num_groups,
|
213 |
+
out_channels=num_groups * d_out,
|
214 |
+
kernel_size=(1, depth),
|
215 |
+
groups=num_groups)
|
216 |
+
|
217 |
+
self.fc = nn.Linear(num_groups * d_out * (in_features - depth + 1), flatten_out_features)
|
218 |
+
|
219 |
+
def forward(self, x):
|
220 |
+
# Swap the dimensions of k and t to match expected input for depthwise convolution
|
221 |
+
x = x.permute(0, 2, 1, 3) # shape: (b, k, t, d)
|
222 |
+
|
223 |
+
# Convolutional layer
|
224 |
+
x = self.conv(x) # shape: (b, k*d_out, t, d-depth+1)
|
225 |
+
|
226 |
+
# Reshape the tensor for the Linear layer
|
227 |
+
batch_size, _, t, _ = x.size()
|
228 |
+
x = x.reshape(batch_size, t, -1)
|
229 |
+
return self.fc(x)
|
230 |
+
|
231 |
+
|
232 |
+
def get_projection_layer(input_shape: Tuple[int], output_shape: Tuple[int], proj_type: str) -> nn.Module:
|
233 |
+
""" This function returns one of the projection layers defined below. """
|
234 |
+
if len(input_shape) == 2:
|
235 |
+
_, d_source = input_shape
|
236 |
+
elif len(input_shape) == 3:
|
237 |
+
_, k_source, d_source = input_shape
|
238 |
+
if len(output_shape) == 2:
|
239 |
+
_, d_target = output_shape
|
240 |
+
elif len(output_shape) == 3:
|
241 |
+
_, k_target, d_target = output_shape
|
242 |
+
|
243 |
+
if 'linear' == proj_type:
|
244 |
+
return LinearProjection(in_features=d_source, flatten_out_features=d_target, num_groups=k_source)
|
245 |
+
elif 'mlp' in proj_type:
|
246 |
+
if 'gelu' in proj_type:
|
247 |
+
return FlattenMLP(in_features=d_source,
|
248 |
+
flatten_out_features=d_target,
|
249 |
+
num_groups=k_source,
|
250 |
+
activation=nn.GELU)
|
251 |
+
elif 'relu' in proj_type:
|
252 |
+
return FlattenMLP(in_features=d_source,
|
253 |
+
flatten_out_features=d_target,
|
254 |
+
num_groups=k_source,
|
255 |
+
activation=nn.ReLU)
|
256 |
+
else:
|
257 |
+
return FlattenMLP(in_features=d_source, flatten_out_features=d_target, num_groups=k_source, activation=None)
|
258 |
+
elif 'conv' in proj_type:
|
259 |
+
if 'conv4' == proj_type:
|
260 |
+
return DepthwiseConvProjection(in_features=d_source,
|
261 |
+
flatten_out_features=d_target,
|
262 |
+
num_groups=k_source,
|
263 |
+
depth=4)
|
264 |
+
elif 'conv16' == proj_type:
|
265 |
+
return DepthwiseConvProjection(in_features=d_source,
|
266 |
+
flatten_out_features=d_target,
|
267 |
+
num_groups=k_source,
|
268 |
+
depth=16)
|
269 |
+
elif 'conv32' == proj_type:
|
270 |
+
return DepthwiseConvProjection(in_features=d_source,
|
271 |
+
flatten_out_features=d_target,
|
272 |
+
num_groups=k_source,
|
273 |
+
depth=32)
|
274 |
+
elif 'conv64' == proj_type:
|
275 |
+
return DepthwiseConvProjection(in_features=d_source,
|
276 |
+
flatten_out_features=d_target,
|
277 |
+
num_groups=k_source,
|
278 |
+
depth=64)
|
279 |
+
else: # conv depth 1
|
280 |
+
return DepthwiseConvProjection(in_features=d_source,
|
281 |
+
flatten_out_features=d_target,
|
282 |
+
num_groups=k_source,
|
283 |
+
depth=1)
|
284 |
+
elif 'group_linear' == proj_type:
|
285 |
+
assert d_source % k_source == 0, "d_source and k_source must be divisible for group_linear projection."
|
286 |
+
return GroupLinearFlatten(in_features=d_source,
|
287 |
+
flatten_out_features=d_target,
|
288 |
+
num_groups=k_source,
|
289 |
+
use_bmm=True)
|
290 |
+
else:
|
291 |
+
raise ValueError(f"Invalid projection type: {proj_type}")
|
292 |
+
|
293 |
+
|
294 |
+
def test_projection_layers():
|
295 |
+
# encoder hidden states: (B, T, K, D)
|
296 |
+
b = 2
|
297 |
+
t = 110 #10
|
298 |
+
k = 24 #16
|
299 |
+
d = 128
|
300 |
+
enc_hs = torch.randn(b, t, k, d)
|
301 |
+
|
302 |
+
# target shape: (B, T, K, D//4)
|
303 |
+
target_flatten_d = 512
|
304 |
+
|
305 |
+
# GroupLinear
|
306 |
+
gl = GroupLinearFlatten(in_features=d, flatten_out_features=target_flatten_d, num_groups=k, use_bmm=True)
|
307 |
+
enc_hs_hat = gl(enc_hs)
|
308 |
+
assert enc_hs_hat.shape == (b, t, target_flatten_d)
|
309 |
+
print('GroupLinear: ', f'{count_parameters(gl)//1000}k') # 65k
|
310 |
+
|
311 |
+
# FlattenMLP
|
312 |
+
fm = FlattenMLP(in_features=d,
|
313 |
+
flatten_out_features=target_flatten_d,
|
314 |
+
num_groups=k,
|
315 |
+
hidden_dim=None,
|
316 |
+
activation=nn.GELU)
|
317 |
+
enc_hs_hat = fm(enc_hs)
|
318 |
+
assert enc_hs_hat.shape == (b, t, target_flatten_d)
|
319 |
+
print('FlattenMLP: ', f'{count_parameters(fm)//1000}k') # 3.6M
|
320 |
+
|
321 |
+
# LinearProjection
|
322 |
+
lp = LinearProjection(in_features=d, flatten_out_features=target_flatten_d, num_groups=k)
|
323 |
+
enc_hs_hat = lp(enc_hs)
|
324 |
+
assert enc_hs_hat.shape == (b, t, target_flatten_d)
|
325 |
+
print('LinearProjection: ', f'{count_parameters(lp)//1000}k') # 1M
|
326 |
+
|
327 |
+
# DepthwiseConvProjection
|
328 |
+
dc = DepthwiseConvProjection(in_features=d, flatten_out_features=target_flatten_d, num_groups=k, depth=16)
|
329 |
+
enc_hs_hat = dc(enc_hs)
|
330 |
+
assert enc_hs_hat.shape == (b, t, target_flatten_d)
|
331 |
+
print('DepthwiseConvProjection: ', f'{count_parameters(dc)//1000}k') # 4M
|
model/ymt3.py
ADDED
@@ -0,0 +1,967 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
"""ymt3.py"""
|
11 |
+
import os
|
12 |
+
from typing import Union, Optional, Tuple, Dict, List, Any
|
13 |
+
from collections import Counter
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
from torch.nn import CrossEntropyLoss
|
18 |
+
import torchaudio # for debugging audio
|
19 |
+
import pytorch_lightning as pl
|
20 |
+
import numpy as np
|
21 |
+
import wandb
|
22 |
+
from einops import rearrange
|
23 |
+
|
24 |
+
from transformers import T5Config
|
25 |
+
from model.t5mod import T5EncoderYMT3, T5DecoderYMT3, MultiChannelT5Decoder
|
26 |
+
from model.t5mod_helper import task_cond_dec_generate
|
27 |
+
from model.perceiver_mod import PerceiverTFEncoder
|
28 |
+
from model.perceiver_helper import PerceiverTFConfig
|
29 |
+
from model.conformer_mod import ConformerYMT3Encoder
|
30 |
+
from model.conformer_helper import ConformerYMT3Config
|
31 |
+
from model.lm_head import LMHead
|
32 |
+
from model.pitchshift_layer import PitchShiftLayer
|
33 |
+
from model.spectrogram import get_spectrogram_layer_from_audio_cfg
|
34 |
+
from model.conv_block import PreEncoderBlockRes3B
|
35 |
+
from model.conv_block import PreEncoderBlockHFTT, PreEncoderBlockRes3BHFTT # added for hFTT-like pre-encoder
|
36 |
+
from model.projection_layer import get_projection_layer, get_multi_channel_projection_layer
|
37 |
+
from model.optimizers import get_optimizer
|
38 |
+
from model.lr_scheduler import get_lr_scheduler
|
39 |
+
|
40 |
+
from utils.note_event_dataclasses import Note
|
41 |
+
from utils.note2event import mix_notes
|
42 |
+
from utils.event2note import merge_zipped_note_events_and_ties_to_notes, DECODING_ERR_TYPES
|
43 |
+
from utils.metrics import compute_track_metrics
|
44 |
+
from utils.metrics import AMTMetrics
|
45 |
+
# from utils.utils import write_model_output_as_npy
|
46 |
+
from utils.utils import write_model_output_as_midi, create_inverse_vocab, write_err_cnt_as_json
|
47 |
+
from utils.utils import Timer
|
48 |
+
from utils.task_manager import TaskManager
|
49 |
+
|
50 |
+
from config.config import audio_cfg as default_audio_cfg
|
51 |
+
from config.config import model_cfg as default_model_cfg
|
52 |
+
from config.config import shared_cfg as default_shared_cfg
|
53 |
+
from config.config import T5_BASE_CFG
|
54 |
+
|
55 |
+
|
56 |
+
class YourMT3(pl.LightningModule):
|
57 |
+
"""YourMT3:
|
58 |
+
|
59 |
+
Lightning wrapper for multi-task music transcription Transformer.
|
60 |
+
|
61 |
+
"""
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
audio_cfg: Optional[Dict] = None,
|
66 |
+
model_cfg: Optional[Dict] = None,
|
67 |
+
shared_cfg: Optional[Dict] = None,
|
68 |
+
pretrained: bool = False,
|
69 |
+
optimizer_name: str = 'adamwscale',
|
70 |
+
scheduler_name: str = 'cosine',
|
71 |
+
base_lr: float = None, # None: 'auto' for AdaFactor, 1e-3 for constant, 1e-2 for cosine
|
72 |
+
max_steps: Optional[int] = None,
|
73 |
+
weight_decay: float = 0.0,
|
74 |
+
init_factor: Optional[Union[str, float]] = None,
|
75 |
+
task_manager: TaskManager = TaskManager(),
|
76 |
+
eval_subtask_key: Optional[str] = "default",
|
77 |
+
eval_vocab: Optional[Dict] = None,
|
78 |
+
eval_drum_vocab: Optional[Dict] = None,
|
79 |
+
write_output_dir: Optional[str] = None,
|
80 |
+
write_output_vocab: Optional[Dict] = None,
|
81 |
+
onset_tolerance: float = 0.05,
|
82 |
+
add_pitch_class_metric: Optional[List[str]] = None,
|
83 |
+
add_melody_metric_to_singing: bool = True,
|
84 |
+
test_optimal_octave_shift: bool = False,
|
85 |
+
test_pitch_shift_layer: Optional[str] = None,
|
86 |
+
**kwargs: Any) -> None:
|
87 |
+
super().__init__()
|
88 |
+
if pretrained is True:
|
89 |
+
raise NotImplementedError("Pretrained model is not supported in this version.")
|
90 |
+
self.test_pitch_shift_layer = test_pitch_shift_layer # debug only
|
91 |
+
|
92 |
+
# Config
|
93 |
+
if model_cfg is None:
|
94 |
+
model_cfg = default_model_cfg # default config, not overwritten by args of trainer
|
95 |
+
if audio_cfg is None:
|
96 |
+
audio_cfg = default_audio_cfg # default config, not overwritten by args of trainer
|
97 |
+
if shared_cfg is None:
|
98 |
+
shared_cfg = default_shared_cfg # default config, not overwritten by args of trainer
|
99 |
+
|
100 |
+
# Spec Layer (need to define here to infer max token length)
|
101 |
+
self.spectrogram, spec_output_shape = get_spectrogram_layer_from_audio_cfg(
|
102 |
+
audio_cfg) # can be spec or melspec; output_shape is (T, F)
|
103 |
+
model_cfg["feat_length"] = spec_output_shape[0] # T of (T, F)
|
104 |
+
|
105 |
+
# Task manger and Tokens
|
106 |
+
self.task_manager = task_manager
|
107 |
+
self.max_total_token_length = self.task_manager.max_total_token_length
|
108 |
+
|
109 |
+
# Task Conditioning
|
110 |
+
self.use_task_cond_encoder = bool(model_cfg["use_task_conditional_encoder"])
|
111 |
+
self.use_task_cond_decoder = bool(model_cfg["use_task_conditional_decoder"])
|
112 |
+
|
113 |
+
# Select Encoder type, Model-specific Config
|
114 |
+
assert model_cfg["encoder_type"] in ["t5", "perceiver-tf", "conformer"]
|
115 |
+
assert model_cfg["decoder_type"] in ["t5", "multi-t5"]
|
116 |
+
self.encoder_type = model_cfg["encoder_type"] # {"t5", "perceiver-tf", "conformer"}
|
117 |
+
self.decoder_type = model_cfg["decoder_type"] # {"t5", "multi-t5"}
|
118 |
+
encoder_config = model_cfg["encoder"][self.encoder_type] # mutable
|
119 |
+
decoder_config = model_cfg["decoder"][self.decoder_type] # mutable
|
120 |
+
|
121 |
+
# Positional Encoding
|
122 |
+
if isinstance(model_cfg["num_max_positions"], str) and model_cfg["num_max_positions"] == 'auto':
|
123 |
+
encoder_config["num_max_positions"] = int(model_cfg["feat_length"] +
|
124 |
+
self.task_manager.max_task_token_length + 10)
|
125 |
+
decoder_config["num_max_positions"] = int(self.max_total_token_length + 10)
|
126 |
+
else:
|
127 |
+
assert isinstance(model_cfg["num_max_positions"], int)
|
128 |
+
encoder_config["num_max_positions"] = model_cfg["num_max_positions"]
|
129 |
+
decoder_config["num_max_positions"] = model_cfg["num_max_positions"]
|
130 |
+
|
131 |
+
# Select Pre-Encoder and Pre-Decoder type
|
132 |
+
if model_cfg["pre_encoder_type"] == "default":
|
133 |
+
model_cfg["pre_encoder_type"] = model_cfg["pre_encoder_type_default"].get(model_cfg["encoder_type"], None)
|
134 |
+
elif model_cfg["pre_encoder_type"] in [None, "none", "None", "0"]:
|
135 |
+
model_cfg["pre_encoder_type"] = None
|
136 |
+
if model_cfg["pre_decoder_type"] == "default":
|
137 |
+
model_cfg["pre_decoder_type"] = model_cfg["pre_decoder_type_default"].get(model_cfg["encoder_type"]).get(
|
138 |
+
model_cfg["decoder_type"], None)
|
139 |
+
elif model_cfg["pre_decoder_type"] in [None, "none", "None", "0"]:
|
140 |
+
model_cfg["pre_decoder_type"] = None
|
141 |
+
self.pre_encoder_type = model_cfg["pre_encoder_type"]
|
142 |
+
self.pre_decoder_type = model_cfg["pre_decoder_type"]
|
143 |
+
|
144 |
+
# Pre-encoder
|
145 |
+
self.pre_encoder = nn.Sequential()
|
146 |
+
if self.pre_encoder_type in ["conv", "conv1d_t", "conv1d_f"]:
|
147 |
+
kernel_size = (3, 3)
|
148 |
+
avp_kernel_size = (1, 2)
|
149 |
+
if self.pre_encoder_type == "conv1d_t":
|
150 |
+
kernel_size = (3, 1)
|
151 |
+
elif self.pre_encoder_type == "conv1d_f":
|
152 |
+
kernel_size = (1, 3)
|
153 |
+
self.pre_encoder.append(
|
154 |
+
PreEncoderBlockRes3B(1,
|
155 |
+
model_cfg["conv_out_channels"],
|
156 |
+
kernel_size=kernel_size,
|
157 |
+
avp_kernerl_size=avp_kernel_size,
|
158 |
+
activation="relu"))
|
159 |
+
pre_enc_output_shape = (spec_output_shape[0], spec_output_shape[1] // 2**3, model_cfg["conv_out_channels"]
|
160 |
+
) # (T, F, C) excluding batch dim
|
161 |
+
elif self.pre_encoder_type == "hftt":
|
162 |
+
self.pre_encoder.append(PreEncoderBlockHFTT())
|
163 |
+
pre_enc_output_shape = (spec_output_shape[0], spec_output_shape[1], 128) # (T, F, C) excluding batch dim
|
164 |
+
elif self.pre_encoder_type == "res3b_hftt":
|
165 |
+
self.pre_encoder.append(PreEncoderBlockRes3BHFTT())
|
166 |
+
pre_enc_output_shape = (spec_output_shape[0], spec_output_shape[1] // 2**3, 128)
|
167 |
+
else:
|
168 |
+
pre_enc_output_shape = spec_output_shape # (T, F) excluding batch dim
|
169 |
+
|
170 |
+
# Auto-infer `d_feat` and `d_model`, `vocab_size`, and `num_max_positions`
|
171 |
+
if isinstance(model_cfg["d_feat"], str) and model_cfg["d_feat"] == 'auto':
|
172 |
+
if self.encoder_type == "perceiver-tf" and encoder_config["attention_to_channel"] is True:
|
173 |
+
model_cfg["d_feat"] = pre_enc_output_shape[-2] # TODO: better readablity
|
174 |
+
else:
|
175 |
+
model_cfg["d_feat"] = pre_enc_output_shape[-1] # C of (T, F, C) or F or (T, F)
|
176 |
+
|
177 |
+
if self.encoder_type == "perceiver-tf" and isinstance(encoder_config["d_model"], str):
|
178 |
+
if encoder_config["d_model"] == 'q':
|
179 |
+
encoder_config["d_model"] = encoder_config["d_latent"]
|
180 |
+
elif encoder_config["d_model"] == 'kv':
|
181 |
+
encoder_config["d_model"] = model_cfg["d_feat"]
|
182 |
+
else:
|
183 |
+
raise ValueError(f"Unknown d_model: {encoder_config['d_model']}")
|
184 |
+
|
185 |
+
# # required for PerceiverTF with attention_to_channel option
|
186 |
+
# if self.encoder_type == "perceiver-tf":
|
187 |
+
# if encoder_config["attention_to_channel"] is True:
|
188 |
+
# encoder_config["kv_dim"] = model_cfg["d_feat"] # TODO: better readablity
|
189 |
+
# else:
|
190 |
+
# encoder_config["kv_dim"] = model_cfg["conv_out_channels"]
|
191 |
+
|
192 |
+
if isinstance(model_cfg["vocab_size"], str) and model_cfg["vocab_size"] == 'auto':
|
193 |
+
model_cfg["vocab_size"] = task_manager.num_tokens
|
194 |
+
|
195 |
+
if isinstance(model_cfg["num_max_positions"], str) and model_cfg["num_max_positions"] == 'auto':
|
196 |
+
model_cfg["num_max_positions"] = int(
|
197 |
+
max(model_cfg["feat_length"], model_cfg["event_length"]) + self.task_manager.max_task_token_length + 10)
|
198 |
+
|
199 |
+
# Pre-decoder
|
200 |
+
self.pre_decoder = nn.Sequential()
|
201 |
+
if self.encoder_type == "perceiver-tf" and self.decoder_type == "t5":
|
202 |
+
t, f, c = pre_enc_output_shape # perceiver-tf: (110, 128, 128) for 2s
|
203 |
+
encoder_output_shape = (t, encoder_config["num_latents"], encoder_config["d_latent"]) # (T, K, D_source)
|
204 |
+
decoder_input_shape = (t, decoder_config["d_model"]) # (T, D_target)
|
205 |
+
proj_layer = get_projection_layer(input_shape=encoder_output_shape,
|
206 |
+
output_shape=decoder_input_shape,
|
207 |
+
proj_type=self.pre_decoder_type)
|
208 |
+
self.pre_encoder_output_shape = pre_enc_output_shape
|
209 |
+
self.encoder_output_shape = encoder_output_shape
|
210 |
+
self.decoder_input_shape = decoder_input_shape
|
211 |
+
self.pre_decoder.append(proj_layer)
|
212 |
+
elif self.encoder_type in ["t5", "conformer"] and self.decoder_type == "t5":
|
213 |
+
pass
|
214 |
+
elif self.encoder_type == "perceiver-tf" and self.decoder_type == "multi-t5":
|
215 |
+
# NOTE: this is experiemental, only for multi-channel decoding with 13 classes
|
216 |
+
assert encoder_config["num_latents"] % decoder_config["num_channels"] == 0
|
217 |
+
encoder_output_shape = (encoder_config["num_latents"], encoder_config["d_model"])
|
218 |
+
decoder_input_shape = (decoder_config["num_channels"], decoder_config["d_model"])
|
219 |
+
proj_layer = get_multi_channel_projection_layer(input_shape=encoder_output_shape,
|
220 |
+
output_shape=decoder_input_shape,
|
221 |
+
proj_type=self.pre_decoder_type)
|
222 |
+
self.pre_decoder.append(proj_layer)
|
223 |
+
else:
|
224 |
+
raise NotImplementedError(
|
225 |
+
f"Encoder type {self.encoder_type} and decoder type {self.decoder_type} is not implemented yet.")
|
226 |
+
|
227 |
+
# Positional Encoding, Vocab, etc.
|
228 |
+
if self.encoder_type in ["t5", "conformer"]:
|
229 |
+
encoder_config["num_max_positions"] = decoder_config["num_max_positions"] = model_cfg["num_max_positions"]
|
230 |
+
else: # perceiver-tf uses separate positional encoding
|
231 |
+
encoder_config["num_max_positions"] = model_cfg["feat_length"]
|
232 |
+
decoder_config["num_max_positions"] = model_cfg["num_max_positions"]
|
233 |
+
encoder_config["vocab_size"] = decoder_config["vocab_size"] = model_cfg["vocab_size"]
|
234 |
+
|
235 |
+
# Print and save updated configs
|
236 |
+
self.audio_cfg = audio_cfg
|
237 |
+
self.model_cfg = model_cfg
|
238 |
+
self.shared_cfg = shared_cfg
|
239 |
+
self.save_hyperparameters()
|
240 |
+
if self.global_rank == 0:
|
241 |
+
print(self.hparams)
|
242 |
+
|
243 |
+
# Encoder and Decoder and LM-head
|
244 |
+
self.encoder = None
|
245 |
+
self.decoder = None
|
246 |
+
self.lm_head = LMHead(decoder_config, 1.0, model_cfg["tie_word_embeddings"])
|
247 |
+
self.embed_tokens = nn.Embedding(decoder_config["vocab_size"], decoder_config["d_model"])
|
248 |
+
self.embed_tokens.weight.data.normal_(mean=0.0, std=1.0)
|
249 |
+
self.shift_right_fn = None
|
250 |
+
self.set_encoder_decoder() # shift_right_fn is also set here
|
251 |
+
|
252 |
+
# Model as ModuleDict
|
253 |
+
# self.model = nn.ModuleDict({
|
254 |
+
# "pitchshift": self.pitchshift, # no grad; created in setup() only for training,
|
255 |
+
# and called by training_step()
|
256 |
+
# "spectrogram": self.spectrogram, # no grad
|
257 |
+
# "pre_encoder": self.pre_encoder,
|
258 |
+
# "encoder": self.encoder,
|
259 |
+
# "pre_decoder": self.pre_decoder,
|
260 |
+
# "decoder": self.decoder,
|
261 |
+
# "embed_tokens": self.embed_tokens,
|
262 |
+
# "lm_head": self.lm_head,
|
263 |
+
# })
|
264 |
+
|
265 |
+
# Tables (for logging)
|
266 |
+
columns = ['Ep', 'Track ID', 'Pred Events', 'Actual Events', 'Pred Notes', 'Actual Notes']
|
267 |
+
self.sample_table = wandb.Table(columns=columns)
|
268 |
+
|
269 |
+
# Output MIDI
|
270 |
+
if write_output_dir is not None:
|
271 |
+
if write_output_vocab is None:
|
272 |
+
from config.vocabulary import program_vocab_presets
|
273 |
+
self.midi_output_vocab = program_vocab_presets["gm_ext_plus"]
|
274 |
+
else:
|
275 |
+
self.midi_output_vocab = write_output_vocab
|
276 |
+
self.midi_output_inverse_vocab = create_inverse_vocab(self.midi_output_vocab)
|
277 |
+
|
278 |
+
def set_encoder_decoder(self) -> None:
|
279 |
+
"""Set encoder, decoder, lm_head and emb_tokens from self.model_cfg"""
|
280 |
+
|
281 |
+
# Generate and update T5Config
|
282 |
+
t5_basename = self.model_cfg["t5_basename"]
|
283 |
+
if t5_basename in T5_BASE_CFG.keys():
|
284 |
+
# Load from pre-defined config in config.py
|
285 |
+
t5_config = T5Config(**T5_BASE_CFG[t5_basename])
|
286 |
+
else:
|
287 |
+
# Load from HuggingFace hub
|
288 |
+
t5_config = T5Config.from_pretrained(t5_basename)
|
289 |
+
|
290 |
+
# Create encoder, decoder, lm_head and embed_tokens
|
291 |
+
if self.encoder_type == "t5":
|
292 |
+
self.encoder = T5EncoderYMT3(self.model_cfg["encoder"]["t5"], t5_config)
|
293 |
+
elif self.encoder_type == "perceiver-tf":
|
294 |
+
perceivertf_config = PerceiverTFConfig()
|
295 |
+
perceivertf_config.update(self.model_cfg["encoder"]["perceiver-tf"])
|
296 |
+
self.encoder = PerceiverTFEncoder(perceivertf_config)
|
297 |
+
elif self.encoder_type == "conformer":
|
298 |
+
conformer_config = ConformerYMT3Config()
|
299 |
+
conformer_config.update(self.model_cfg["encoder"]["conformer"])
|
300 |
+
self.encoder = ConformerYMT3Encoder(conformer_config)
|
301 |
+
|
302 |
+
if self.decoder_type == "t5":
|
303 |
+
self.decoder = T5DecoderYMT3(self.model_cfg["decoder"]["t5"], t5_config)
|
304 |
+
elif self.decoder_type == "multi-t5":
|
305 |
+
self.decoder = MultiChannelT5Decoder(self.model_cfg["decoder"]["multi-t5"], t5_config)
|
306 |
+
|
307 |
+
# `shift_right` function for decoding
|
308 |
+
self.shift_right_fn = self.decoder._shift_right
|
309 |
+
|
310 |
+
def setup(self, stage: str) -> None:
|
311 |
+
# Defining metrics
|
312 |
+
if self.hparams.eval_vocab is None:
|
313 |
+
extra_classes_per_dataset = [None]
|
314 |
+
else:
|
315 |
+
extra_classes_per_dataset = [
|
316 |
+
list(v.keys()) if v is not None else None for v in self.hparams.eval_vocab
|
317 |
+
] # e.g. [['Piano'], ['Guitar'], ['Piano'], ['Piano', 'Strings', 'Winds'], None]
|
318 |
+
|
319 |
+
# For direct addition of extra metrics using full metric name
|
320 |
+
extra_metrics = None
|
321 |
+
if self.hparams.add_melody_metric_to_singing is True:
|
322 |
+
extra_metrics = ["melody_rpa_Singing Voice", "melody_rca_Singing Voice", "melody_oa_Singing Voice"]
|
323 |
+
|
324 |
+
# Add pitch class metric
|
325 |
+
if self.hparams.add_pitch_class_metric is not None:
|
326 |
+
for sublist in extra_classes_per_dataset:
|
327 |
+
for name in self.hparams.add_pitch_class_metric:
|
328 |
+
if sublist is not None and name in sublist:
|
329 |
+
sublist += [name + "_pc"]
|
330 |
+
|
331 |
+
extra_classes_unique = list(
|
332 |
+
set(item for sublist in extra_classes_per_dataset if sublist is not None
|
333 |
+
for item in sublist)) # e.g. ['Strings', 'Winds', 'Guitar', 'Piano']
|
334 |
+
dm = self.trainer.datamodule
|
335 |
+
|
336 |
+
# Train/Vaidation-only
|
337 |
+
if stage == "fit":
|
338 |
+
self.val_metrics_macro = AMTMetrics(prefix=f'validation/macro_', extra_classes=extra_classes_unique)
|
339 |
+
self.val_metrics = nn.ModuleList() # val_metric is a list of AMTMetrics objects
|
340 |
+
for i in range(dm.num_val_dataloaders):
|
341 |
+
self.val_metrics.append(
|
342 |
+
AMTMetrics(prefix=f'validation/({dm.get_val_dataset_name(i)})',
|
343 |
+
extra_classes=extra_classes_per_dataset[i],
|
344 |
+
error_types=DECODING_ERR_TYPES))
|
345 |
+
|
346 |
+
# Add pitchshift layer
|
347 |
+
if self.shared_cfg["AUGMENTATION"]["train_pitch_shift_range"] in [None, [0, 0]]:
|
348 |
+
self.pitchshift = None
|
349 |
+
else:
|
350 |
+
# torchaudio pitchshifter requires a dummy input for initialization in DDP
|
351 |
+
input_shape = (self.shared_cfg["BSZ"]["train_local"], 1, self.audio_cfg["input_frames"])
|
352 |
+
self.pitchshift = PitchShiftLayer(
|
353 |
+
pshift_range=self.shared_cfg["AUGMENTATION"]["train_pitch_shift_range"],
|
354 |
+
expected_input_shape=input_shape,
|
355 |
+
device=self.device)
|
356 |
+
|
357 |
+
# Test-only
|
358 |
+
elif stage == "test":
|
359 |
+
# self.test_metrics_macro = AMTMetrics(
|
360 |
+
# prefix=f'test/macro_', extra_classes=extra_classes_unique)
|
361 |
+
self.test_metrics = nn.ModuleList()
|
362 |
+
for i in range(dm.num_test_dataloaders):
|
363 |
+
self.test_metrics.append(
|
364 |
+
AMTMetrics(prefix=f'test/({dm.get_test_dataset_name(i)})',
|
365 |
+
extra_classes=extra_classes_per_dataset[i],
|
366 |
+
extra_metrics=extra_metrics,
|
367 |
+
error_types=DECODING_ERR_TYPES))
|
368 |
+
|
369 |
+
# Test pitch shift layer: debug only
|
370 |
+
if self.test_pitch_shift_layer is not None:
|
371 |
+
self.test_pitch_shift_semitone = int(self.test_pitch_shift_layer)
|
372 |
+
self.pitchshift = PitchShiftLayer(
|
373 |
+
pshift_range=[self.test_pitch_shift_semitone, self.test_pitch_shift_semitone])
|
374 |
+
|
375 |
+
def configure_optimizers(self) -> None:
|
376 |
+
"""Configure optimizer and scheduler"""
|
377 |
+
optimizer, base_lr = get_optimizer(models_dict=self.named_parameters(),
|
378 |
+
optimizer_name=self.hparams.optimizer_name,
|
379 |
+
base_lr=self.hparams.base_lr,
|
380 |
+
weight_decay=self.hparams.weight_decay)
|
381 |
+
|
382 |
+
if self.hparams.optimizer_name.lower() == 'adafactor' and self.hparams.base_lr == None:
|
383 |
+
print("Using AdaFactor with auto learning rate and no scheduler")
|
384 |
+
return [optimizer]
|
385 |
+
if self.hparams.optimizer_name.lower() == 'dadaptadam':
|
386 |
+
print("Using dAdaptAdam with auto learning rate and no scheduler")
|
387 |
+
return [optimizer]
|
388 |
+
elif self.hparams.base_lr == None:
|
389 |
+
print(f"Using default learning rate {base_lr} of {self.hparams.optimizer_name} as base learning rate.")
|
390 |
+
self.hparams.base_lr = base_lr
|
391 |
+
|
392 |
+
scheduler_cfg = self.shared_cfg["LR_SCHEDULE"]
|
393 |
+
if self.hparams.max_steps != -1:
|
394 |
+
# overwrite total_steps
|
395 |
+
scheduler_cfg["total_steps"] = self.hparams.max_steps
|
396 |
+
_lr_scheduler = get_lr_scheduler(optimizer,
|
397 |
+
scheduler_name=self.hparams.scheduler_name,
|
398 |
+
base_lr=base_lr,
|
399 |
+
scheduler_cfg=scheduler_cfg)
|
400 |
+
|
401 |
+
lr_scheduler = {'scheduler': _lr_scheduler, 'interval': 'step', 'frequency': 1}
|
402 |
+
return [optimizer], [lr_scheduler]
|
403 |
+
|
404 |
+
def forward(
|
405 |
+
self,
|
406 |
+
x: torch.FloatTensor,
|
407 |
+
target_tokens: torch.LongTensor,
|
408 |
+
# task_tokens: Optional[torch.LongTensor] = None,
|
409 |
+
**kwargs) -> Dict:
|
410 |
+
""" Forward pass with teacher-forcing for training and validation.
|
411 |
+
Args:
|
412 |
+
x: (B, 1, T) waveform with default T=32767
|
413 |
+
target_tokens: (B, C, N) tokenized sequence of length N=event_length
|
414 |
+
task_tokens: (B, C, task_len) tokenized task
|
415 |
+
|
416 |
+
Returns:
|
417 |
+
{
|
418 |
+
'logits': (B, N + task_len + 1, vocab_size)
|
419 |
+
'loss': (1, )
|
420 |
+
}
|
421 |
+
|
422 |
+
NOTE: all the commented shapes are in the case of original MT3 setup.
|
423 |
+
"""
|
424 |
+
x = self.spectrogram(x) # mel-/spectrogram: (b, 256, 512) or (B, T, F)
|
425 |
+
x = self.pre_encoder(x) # projection to d_model: (B, 256, 512)
|
426 |
+
|
427 |
+
# TODO: task_cond_encoder would not work properly because of 3-d task_tokens
|
428 |
+
# if task_tokens is not None and task_tokens.numel() > 0 and self.use_task_cond_encoder is True:
|
429 |
+
# # append task embedding to encoder input
|
430 |
+
# task_embed = self.embed_tokens(task_tokens) # (B, task_len, 512)
|
431 |
+
# x = torch.cat([task_embed, x], dim=1) # (B, task_len + 256, 512)
|
432 |
+
enc_hs = self.encoder(inputs_embeds=x)["last_hidden_state"] # (B, T', D)
|
433 |
+
enc_hs = self.pre_decoder(enc_hs) # (B, T', D) or (B, K, T, D)
|
434 |
+
|
435 |
+
# if task_tokens is not None and task_tokens.numel() > 0 and self.use_task_cond_decoder is True:
|
436 |
+
# # append task token to decoder input and output label
|
437 |
+
# labels = torch.cat([task_tokens, target_tokens], dim=2) # (B, C, task_len + N)
|
438 |
+
# else:
|
439 |
+
# labels = target_tokens # (B, C, N)
|
440 |
+
labels = target_tokens # (B, C, N)
|
441 |
+
if labels.shape[1] == 1: # for single-channel decoders, e.g. t5.
|
442 |
+
labels = labels.squeeze(1) # (B, N)
|
443 |
+
|
444 |
+
dec_input_ids = self.shift_right_fn(labels) # t5:(B, N), multi-t5:(B, C, N)
|
445 |
+
dec_inputs_embeds = self.embed_tokens(dec_input_ids) # t5:(B, N, D), multi-t5:(B, C, N, D)
|
446 |
+
dec_hs, _ = self.decoder(inputs_embeds=dec_inputs_embeds, encoder_hidden_states=enc_hs, return_dict=False)
|
447 |
+
|
448 |
+
if self.model_cfg["tie_word_embeddings"] is True:
|
449 |
+
dec_hs = dec_hs * (self.model_cfg["decoder"][self.decoder_type]["d_model"]**-0.5)
|
450 |
+
|
451 |
+
logits = self.lm_head(dec_hs)
|
452 |
+
|
453 |
+
loss = None
|
454 |
+
labels = labels.masked_fill(labels == 0, value=-100) # ignore pad tokens for loss
|
455 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
456 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
457 |
+
return {"logits": logits, "loss": loss}
|
458 |
+
|
459 |
+
def inference(self,
|
460 |
+
x: torch.FloatTensor,
|
461 |
+
task_tokens: Optional[torch.LongTensor] = None,
|
462 |
+
max_token_length: Optional[int] = None,
|
463 |
+
**kwargs: Any) -> torch.Tensor:
|
464 |
+
""" Inference from audio batch by cached autoregressive decoding.
|
465 |
+
Args:
|
466 |
+
x: (b, 1, t) waveform with t=32767
|
467 |
+
task_token: (b, c, task_len) tokenized task. If None, will not append task embeddings (from task_tokens) to input.
|
468 |
+
max_length: Maximum length of generated sequence. If None, self.max_total_token_length.
|
469 |
+
**kwargs: https://huggingface.co/docs/transformers/v4.27.2/en/main_classes/text_generation#transformers.GenerationMixin.generate
|
470 |
+
|
471 |
+
Returns:
|
472 |
+
res_tokens: (b, n) resulting tokenized sequence of variable length < max_length
|
473 |
+
"""
|
474 |
+
if self.test_pitch_shift_layer is not None:
|
475 |
+
x_ps = self.pitchshift(x, self.test_pitch_shift_semitone)
|
476 |
+
x = x_ps
|
477 |
+
|
478 |
+
# From spectrogram to pre-decoder is the same pipeline as in forward()
|
479 |
+
x = self.spectrogram(x) # mel-/spectrogram: (b, 256, 512) or (B, T, F)
|
480 |
+
x = self.pre_encoder(x) # projection to d_model: (B, 256, 512)
|
481 |
+
if task_tokens is not None and task_tokens.numel() > 0 and self.use_task_cond_encoder is True:
|
482 |
+
# append task embedding to encoder input
|
483 |
+
task_embed = self.embed_tokens(task_tokens) # (B, task_len, 512)
|
484 |
+
x = torch.cat([task_embed, x], dim=1) # (B, task_len + 256, 512)
|
485 |
+
enc_hs = self.encoder(inputs_embeds=x)["last_hidden_state"] # (B, task_len + 256, 512)
|
486 |
+
enc_hs = self.pre_decoder(enc_hs) # (B, task_len + 256, 512)
|
487 |
+
|
488 |
+
# Cached-autoregressive decoding with task token (can be None) as prefix
|
489 |
+
if max_token_length is None:
|
490 |
+
max_token_length = self.max_total_token_length
|
491 |
+
|
492 |
+
pred_ids = task_cond_dec_generate(decoder=self.decoder,
|
493 |
+
decoder_type=self.decoder_type,
|
494 |
+
embed_tokens=self.embed_tokens,
|
495 |
+
lm_head=self.lm_head,
|
496 |
+
encoder_hidden_states=enc_hs,
|
497 |
+
shift_right_fn=self.shift_right_fn,
|
498 |
+
prefix_ids=task_tokens,
|
499 |
+
max_length=max_token_length) # (B, task_len + N) or (B, C, task_len + N)
|
500 |
+
if pred_ids.dim() == 2:
|
501 |
+
pred_ids = pred_ids.unsqueeze(1) # (B, 1, task_len + N)
|
502 |
+
|
503 |
+
if self.test_pitch_shift_layer is None:
|
504 |
+
return pred_ids
|
505 |
+
else:
|
506 |
+
return pred_ids, x_ps
|
507 |
+
|
508 |
+
def inference_file(
|
509 |
+
self,
|
510 |
+
bsz: int,
|
511 |
+
audio_segments: torch.FloatTensor, # (n_items, 1, segment_len): from a single file
|
512 |
+
note_token_array: Optional[torch.LongTensor] = None,
|
513 |
+
task_token_array: Optional[torch.LongTensor] = None,
|
514 |
+
# subtask_key: Optional[str] = "default"
|
515 |
+
) -> Tuple[List[np.ndarray], Optional[torch.Tensor]]:
|
516 |
+
""" Inference from audio batch by autoregressive decoding:
|
517 |
+
Args:
|
518 |
+
bsz: batch size
|
519 |
+
audio_segments: (n_items, 1, segment_len): segmented audio from a single file
|
520 |
+
note_token_array: (n_items, max_token_len): Optional. If token_array is None, will not return loss.
|
521 |
+
subtask_key: (str): If None, not using subtask prefix. By default, using "default" defined in task manager.
|
522 |
+
"""
|
523 |
+
# if subtask_key is not None:
|
524 |
+
# _subtask_token = torch.LongTensor(
|
525 |
+
# self.task_manager.get_eval_subtask_prefix_dict()[subtask_key]).to(self.device)
|
526 |
+
|
527 |
+
n_items = audio_segments.shape[0]
|
528 |
+
loss = 0.
|
529 |
+
pred_token_array_file = [] # each element is (B, C, L) np.ndarray
|
530 |
+
x_ps_concat = []
|
531 |
+
|
532 |
+
for i in range(0, n_items, bsz):
|
533 |
+
if i + bsz > n_items: # last batch can be smaller
|
534 |
+
x = audio_segments[i:n_items].to(self.device)
|
535 |
+
# if subtask_key is not None:
|
536 |
+
# b = n_items - i # bsz for the last batch
|
537 |
+
# task_tokens = _subtask_token.expand((b, -1)) # (b, task_len)
|
538 |
+
if note_token_array is not None:
|
539 |
+
target_tokens = note_token_array[i:n_items].to(self.device)
|
540 |
+
if task_token_array is not None and task_token_array.numel() > 0:
|
541 |
+
task_tokens = task_token_array[i:n_items].to(self.device)
|
542 |
+
else:
|
543 |
+
task_tokens = None
|
544 |
+
else:
|
545 |
+
x = audio_segments[i:i + bsz].to(self.device) # (bsz, 1, segment_len)
|
546 |
+
# if subtask_key is not None:
|
547 |
+
# task_tokens = _subtask_token.expand((bsz, -1)) # (bsz, task_len)
|
548 |
+
if note_token_array is not None:
|
549 |
+
target_tokens = note_token_array[i:i + bsz].to(self.device) # (bsz, token_len)
|
550 |
+
if task_token_array is not None and task_token_array.numel() > 0:
|
551 |
+
task_tokens = task_token_array[i:i + bsz].to(self.device)
|
552 |
+
else:
|
553 |
+
task_tokens = None
|
554 |
+
|
555 |
+
# token prediction (fast-autoregressive decoding)
|
556 |
+
# if subtask_key is not None:
|
557 |
+
# preds = self.inference(x, task_tokens).detach().cpu().numpy()
|
558 |
+
# else:
|
559 |
+
# preds = self.inference(x).detach().cpu().numpy()
|
560 |
+
|
561 |
+
if self.test_pitch_shift_layer is not None: # debug only
|
562 |
+
preds, x_ps = self.inference(x, task_tokens)
|
563 |
+
preds = preds.detach().cpu().numpy()
|
564 |
+
x_ps_concat.append(x_ps.detach().cpu())
|
565 |
+
else:
|
566 |
+
preds = self.inference(x, task_tokens).detach().cpu().numpy()
|
567 |
+
if len(preds) != len(x):
|
568 |
+
raise ValueError(f'preds: {len(preds)}, x: {len(x)}')
|
569 |
+
pred_token_array_file.append(preds)
|
570 |
+
|
571 |
+
# validation loss (by teacher forcing)
|
572 |
+
if note_token_array is not None:
|
573 |
+
loss_weight = x.shape[0] / n_items
|
574 |
+
loss += self(x, target_tokens)['loss'] * loss_weight
|
575 |
+
# loss += self(x, target_tokens, task_tokens)['loss'] * loss_weight
|
576 |
+
else:
|
577 |
+
loss = None
|
578 |
+
|
579 |
+
if self.test_pitch_shift_layer is not None: # debug only
|
580 |
+
if self.hparams.write_output_dir is not None:
|
581 |
+
x_ps_concat = torch.cat(x_ps_concat, dim=0)
|
582 |
+
return pred_token_array_file, loss, x_ps_concat.flatten().unsqueeze(0)
|
583 |
+
else:
|
584 |
+
return pred_token_array_file, loss
|
585 |
+
|
586 |
+
def training_step(self, batch, batch_idx) -> torch.Tensor:
|
587 |
+
# batch: {
|
588 |
+
# 'dataset1': [Tuple[audio_segments(b, 1, t), tokens(b, max_token_len), ...]]
|
589 |
+
# 'dataset2': [Tuple[audio_segments(b, 1, t), tokens(b, max_token_len), ...]]
|
590 |
+
# 'dataset3': ...
|
591 |
+
# }
|
592 |
+
audio_segments, note_tokens, pshift_steps = [torch.cat(t, dim=0) for t in zip(*batch.values())]
|
593 |
+
|
594 |
+
if self.pitchshift is not None:
|
595 |
+
# Pitch shift
|
596 |
+
n_groups = len(batch)
|
597 |
+
audio_segments = torch.chunk(audio_segments, n_groups, dim=0)
|
598 |
+
pshift_steps = torch.chunk(pshift_steps, n_groups, dim=0)
|
599 |
+
for p in pshift_steps:
|
600 |
+
assert p.eq(p[0]).all().item()
|
601 |
+
|
602 |
+
audio_segments = torch.cat([self.pitchshift(a, p[0].item()) for a, p in zip(audio_segments, pshift_steps)],
|
603 |
+
dim=0)
|
604 |
+
|
605 |
+
loss = self(audio_segments, note_tokens)['loss']
|
606 |
+
self.log('train_loss',
|
607 |
+
loss,
|
608 |
+
on_step=True,
|
609 |
+
on_epoch=True,
|
610 |
+
prog_bar=True,
|
611 |
+
batch_size=note_tokens.shape[0],
|
612 |
+
sync_dist=True)
|
613 |
+
# print('lr', self.trainer.optimizers[0].param_groups[0]['lr'])
|
614 |
+
return loss
|
615 |
+
|
616 |
+
def validation_step(self, batch, batch_idx, dataloader_idx=0) -> Dict:
|
617 |
+
# File-wise validation
|
618 |
+
if self.task_manager.num_decoding_channels == 1:
|
619 |
+
bsz = self.shared_cfg["BSZ"]["validation"]
|
620 |
+
else:
|
621 |
+
bsz = self.shared_cfg["BSZ"]["validation"] // self.task_manager.num_decoding_channels * 3
|
622 |
+
# audio_segments, notes_dict, note_token_array, task_token_array = batch
|
623 |
+
audio_segments, notes_dict, note_token_array = batch
|
624 |
+
task_token_array = None
|
625 |
+
|
626 |
+
# Loop through the tensor in chunks of bsz (=subbsz actually)
|
627 |
+
n_items = audio_segments.shape[0]
|
628 |
+
start_secs_file = [32767 * i / 16000 for i in range(n_items)]
|
629 |
+
with Timer() as t:
|
630 |
+
pred_token_array_file, loss = self.inference_file(bsz, audio_segments, note_token_array, task_token_array)
|
631 |
+
"""
|
632 |
+
notes_dict: # Ground truth notes
|
633 |
+
{
|
634 |
+
'mtrack_id': int,
|
635 |
+
'program': List[int],
|
636 |
+
'is_drum': bool,
|
637 |
+
'duration_sec': float,
|
638 |
+
'notes': List[Note],
|
639 |
+
}
|
640 |
+
"""
|
641 |
+
# Process a list of channel-wise token arrays for a file
|
642 |
+
num_channels = self.task_manager.num_decoding_channels
|
643 |
+
pred_notes_in_file = []
|
644 |
+
n_err_cnt = Counter()
|
645 |
+
for ch in range(num_channels):
|
646 |
+
pred_token_array_ch = [arr[:, ch, :] for arr in pred_token_array_file] # (B, L)
|
647 |
+
zipped_note_events_and_tie, list_events, ne_err_cnt = self.task_manager.detokenize_list_batches(
|
648 |
+
pred_token_array_ch, start_secs_file, return_events=True)
|
649 |
+
pred_notes_ch, n_err_cnt_ch = merge_zipped_note_events_and_ties_to_notes(zipped_note_events_and_tie)
|
650 |
+
pred_notes_in_file.append(pred_notes_ch)
|
651 |
+
n_err_cnt += n_err_cnt_ch
|
652 |
+
pred_notes = mix_notes(pred_notes_in_file) # This is the mixed notes from all channels
|
653 |
+
|
654 |
+
if self.hparams.write_output_dir is not None:
|
655 |
+
track_info = [notes_dict[k] for k in notes_dict.keys() if k.endswith("_id")][0]
|
656 |
+
dataset_info = [k for k in notes_dict.keys() if k.endswith('_id')][0][:-3]
|
657 |
+
# write_model_output_as_npy(zipped_note_events_and_tie, self.hparams.write_output_dir,
|
658 |
+
# track_info)
|
659 |
+
write_model_output_as_midi(pred_notes,
|
660 |
+
self.hparams.write_output_dir,
|
661 |
+
track_info,
|
662 |
+
self.midi_output_inverse_vocab,
|
663 |
+
output_dir_suffix=str(dataset_info) + '_' +
|
664 |
+
str(self.hparams.eval_subtask_key))
|
665 |
+
# generate sample text to display in log table
|
666 |
+
# pred_events_text = [str([list_events[0][:200]])]
|
667 |
+
# pred_notes_text = [str([pred_notes[:200]])]
|
668 |
+
|
669 |
+
# this is local GPU metric per file, not global metric in DDP
|
670 |
+
drum_metric, non_drum_metric, instr_metric = compute_track_metrics(
|
671 |
+
pred_notes,
|
672 |
+
notes_dict['notes'],
|
673 |
+
eval_vocab=self.hparams.eval_vocab[dataloader_idx],
|
674 |
+
eval_drum_vocab=self.hparams.eval_drum_vocab,
|
675 |
+
onset_tolerance=self.hparams.onset_tolerance,
|
676 |
+
add_pitch_class_metric=self.hparams.add_pitch_class_metric)
|
677 |
+
self.val_metrics[dataloader_idx].bulk_update(drum_metric)
|
678 |
+
self.val_metrics[dataloader_idx].bulk_update(non_drum_metric)
|
679 |
+
self.val_metrics[dataloader_idx].bulk_update(instr_metric)
|
680 |
+
self.val_metrics_macro.bulk_update(drum_metric)
|
681 |
+
self.val_metrics_macro.bulk_update(non_drum_metric)
|
682 |
+
self.val_metrics_macro.bulk_update(instr_metric)
|
683 |
+
|
684 |
+
# Log sample table: predicted notes and ground truth notes
|
685 |
+
# if batch_idx in (0, 1) and self.global_rank == 0:
|
686 |
+
# actual_notes_text = [str([notes_dict['notes'][:200]])]
|
687 |
+
# actual_tokens = token_array[0, :200].detach().cpu().numpy().tolist()
|
688 |
+
# actual_events_text = [str(self.tokenizer._decode(actual_tokens))]
|
689 |
+
# track_info = [notes_dict[k] for k in notes_dict.keys() if k.endswith("_id")]
|
690 |
+
# self.sample_table.add_data(self.current_epoch, track_info, pred_events_text,
|
691 |
+
# actual_events_text, pred_notes_text, actual_notes_text)
|
692 |
+
# self.logger.log_table('Samples', self.sample_table.columns, self.sample_table.data)
|
693 |
+
|
694 |
+
decoding_time_sec = t.elapsed_time()
|
695 |
+
self.log('val_loss', loss, prog_bar=True, batch_size=n_items, sync_dist=True)
|
696 |
+
# self.val_metrics[dataloader_idx].bulk_update_errors({'decoding_time': decoding_time_sec})
|
697 |
+
|
698 |
+
def on_validation_epoch_end(self) -> None:
|
699 |
+
for val_metrics in self.val_metrics:
|
700 |
+
self.log_dict(val_metrics.bulk_compute(), sync_dist=True)
|
701 |
+
val_metrics.bulk_reset()
|
702 |
+
self.log_dict(self.val_metrics_macro.bulk_compute(), sync_dist=True)
|
703 |
+
self.val_metrics_macro.bulk_reset()
|
704 |
+
|
705 |
+
def test_step(self, batch, batch_idx, dataloader_idx=0) -> Dict:
|
706 |
+
# File-wise evaluation
|
707 |
+
if self.task_manager.num_decoding_channels == 1:
|
708 |
+
bsz = self.shared_cfg["BSZ"]["validation"]
|
709 |
+
else:
|
710 |
+
bsz = self.shared_cfg["BSZ"]["validation"] // self.task_manager.num_decoding_channels * 3
|
711 |
+
# audio_segments, notes_dict, note_token_array, task_token_array = batch
|
712 |
+
audio_segments, notes_dict, note_token_array = batch
|
713 |
+
task_token_array = None
|
714 |
+
|
715 |
+
# Test pitch shift layer: debug only
|
716 |
+
if self.test_pitch_shift_layer is not None and self.test_pitch_shift_semitone != 0:
|
717 |
+
for n in notes_dict['notes']:
|
718 |
+
if n.is_drum == False:
|
719 |
+
n.pitch = n.pitch + self.test_pitch_shift_semitone
|
720 |
+
|
721 |
+
# Loop through the tensor in chunks of bsz (=subbsz actually)
|
722 |
+
n_items = audio_segments.shape[0]
|
723 |
+
start_secs_file = [32767 * i / 16000 for i in range(n_items)]
|
724 |
+
|
725 |
+
if self.test_pitch_shift_layer is not None and self.hparams.write_output_dir is not None:
|
726 |
+
pred_token_array_file, loss, x_ps = self.inference_file(bsz, audio_segments, None, None)
|
727 |
+
else:
|
728 |
+
pred_token_array_file, loss = self.inference_file(bsz, audio_segments, None, None)
|
729 |
+
if len(pred_token_array_file) > 0:
|
730 |
+
|
731 |
+
# Process a list of channel-wise token arrays for a file
|
732 |
+
num_channels = self.task_manager.num_decoding_channels
|
733 |
+
pred_notes_in_file = []
|
734 |
+
n_err_cnt = Counter()
|
735 |
+
for ch in range(num_channels):
|
736 |
+
pred_token_array_ch = [arr[:, ch, :] for arr in pred_token_array_file] # (B, L)
|
737 |
+
zipped_note_events_and_tie, list_events, ne_err_cnt = self.task_manager.detokenize_list_batches(
|
738 |
+
pred_token_array_ch, start_secs_file, return_events=True)
|
739 |
+
pred_notes_ch, n_err_cnt_ch = merge_zipped_note_events_and_ties_to_notes(zipped_note_events_and_tie)
|
740 |
+
pred_notes_in_file.append(pred_notes_ch)
|
741 |
+
n_err_cnt += n_err_cnt_ch
|
742 |
+
pred_notes = mix_notes(pred_notes_in_file) # This is the mixed notes from all channels
|
743 |
+
|
744 |
+
if self.test_pitch_shift_layer is not None and self.hparams.write_output_dir is not None:
|
745 |
+
# debug only
|
746 |
+
wav_output_dir = os.path.join(self.hparams.write_output_dir, f"model_output_{dataset_info}")
|
747 |
+
os.makedirs(wav_output_dir, exist_ok=True)
|
748 |
+
wav_output_file = os.path.join(wav_output_dir, f"{track_info}_ps_{self.test_pitch_shift_semitone}.wav")
|
749 |
+
torchaudio.save(wav_output_file, x_ps.squeeze(1), 16000, bits_per_sample=16)
|
750 |
+
|
751 |
+
drum_metric, non_drum_metric, instr_metric = compute_track_metrics(
|
752 |
+
pred_notes,
|
753 |
+
notes_dict['notes'],
|
754 |
+
eval_vocab=self.hparams.eval_vocab[dataloader_idx],
|
755 |
+
eval_drum_vocab=self.hparams.eval_drum_vocab,
|
756 |
+
onset_tolerance=self.hparams.onset_tolerance,
|
757 |
+
add_pitch_class_metric=self.hparams.add_pitch_class_metric,
|
758 |
+
add_melody_metric=['Singing Voice'] if self.hparams.add_melody_metric_to_singing else None,
|
759 |
+
add_frame_metric=True,
|
760 |
+
add_micro_metric=True,
|
761 |
+
add_multi_f_metric=True)
|
762 |
+
|
763 |
+
if self.hparams.write_output_dir is not None and self.global_rank == 0:
|
764 |
+
# write model output to file
|
765 |
+
track_info = [notes_dict[k] for k in notes_dict.keys() if k.endswith("_id")][0]
|
766 |
+
dataset_info = [k for k in notes_dict.keys() if k.endswith('_id')][0][:-3]
|
767 |
+
f_score = f"OnF{non_drum_metric['onset_f']:.2f}_MulF{instr_metric['multi_f']:.2f}"
|
768 |
+
write_model_output_as_midi(pred_notes,
|
769 |
+
self.hparams.write_output_dir,
|
770 |
+
track_info,
|
771 |
+
self.midi_output_inverse_vocab,
|
772 |
+
output_dir_suffix=str(dataset_info) + '_' +
|
773 |
+
str(self.hparams.eval_subtask_key) + '_' + f_score)
|
774 |
+
write_err_cnt_as_json(track_info, self.hparams.write_output_dir,
|
775 |
+
str(dataset_info) + '_' + str(self.hparams.eval_subtask_key) + '_' + f_score,
|
776 |
+
n_err_cnt, ne_err_cnt)
|
777 |
+
|
778 |
+
# Test with optimal octave shift
|
779 |
+
if self.hparams.test_optimal_octave_shift:
|
780 |
+
track_info = [notes_dict[k] for k in notes_dict.keys() if k.endswith("_id")][0]
|
781 |
+
dataset_info = [k for k in notes_dict.keys() if k.endswith('_id')][0][:-3]
|
782 |
+
score = [instr_metric['onset_f_Bass']]
|
783 |
+
ref_notes_plus = []
|
784 |
+
ref_notes_minus = []
|
785 |
+
for note in notes_dict['notes']:
|
786 |
+
if note.is_drum == True:
|
787 |
+
ref_notes_plus.append(note)
|
788 |
+
ref_notes_minus.append(note)
|
789 |
+
else:
|
790 |
+
ref_notes_plus.append(
|
791 |
+
Note(is_drum=note.is_drum,
|
792 |
+
program=note.program,
|
793 |
+
onset=note.onset,
|
794 |
+
offset=note.offset,
|
795 |
+
pitch=note.pitch + 12,
|
796 |
+
velocity=note.velocity))
|
797 |
+
ref_notes_minus.append(
|
798 |
+
Note(is_drum=note.is_drum,
|
799 |
+
program=note.program,
|
800 |
+
onset=note.onset,
|
801 |
+
offset=note.offset,
|
802 |
+
pitch=note.pitch - 12,
|
803 |
+
velocity=note.velocity))
|
804 |
+
|
805 |
+
drum_metric_plus, non_drum_metric_plus, instr_metric_plus = compute_track_metrics(
|
806 |
+
pred_notes,
|
807 |
+
ref_notes_plus,
|
808 |
+
eval_vocab=self.hparams.eval_vocab[dataloader_idx],
|
809 |
+
eval_drum_vocab=self.hparams.eval_drum_vocab,
|
810 |
+
onset_tolerance=self.hparams.onset_tolerance,
|
811 |
+
add_pitch_class_metric=self.hparams.add_pitch_class_metric)
|
812 |
+
drum_metric_minus, non_drum_metric_minus, instr_metric_minus = compute_track_metrics(
|
813 |
+
ref_notes_minus,
|
814 |
+
notes_dict['notes'],
|
815 |
+
eval_vocab=self.hparams.eval_vocab[dataloader_idx],
|
816 |
+
eval_drum_vocab=self.hparams.eval_drum_vocab,
|
817 |
+
onset_tolerance=self.hparams.onset_tolerance,
|
818 |
+
add_pitch_class_metric=self.hparams.add_pitch_class_metric)
|
819 |
+
|
820 |
+
score.append(instr_metric_plus['onset_f_Bass'])
|
821 |
+
score.append(instr_metric_minus['onset_f_Bass'])
|
822 |
+
max_index = score.index(max(score))
|
823 |
+
if max_index == 0:
|
824 |
+
print(f"ZERO: {track_info}, z/p/m: {score[0]:.2f}/{score[1]:.2f}/{score[2]:.2f}")
|
825 |
+
elif max_index == 1:
|
826 |
+
# plus
|
827 |
+
instr_metric['onset_f_Bass'] = instr_metric_plus['onset_f_Bass']
|
828 |
+
print(f"PLUS: {track_info}, z/p/m: {score[0]:.2f}/{score[1]:.2f}/{score[2]:.2f}")
|
829 |
+
write_model_output_as_midi(ref_notes_plus,
|
830 |
+
self.hparams.write_output_dir,
|
831 |
+
track_info + '_ref_octave_plus',
|
832 |
+
self.midi_output_inverse_vocab,
|
833 |
+
output_dir_suffix=str(dataset_info) + '_' +
|
834 |
+
str(self.hparams.eval_subtask_key))
|
835 |
+
else:
|
836 |
+
# minus
|
837 |
+
instr_metric['onset_f_Bass'] = instr_metric_minus['onset_f_Bass']
|
838 |
+
print(f"MINUS: {track_info}, z/p/m: {score[0]:.2f}/{score[1]:.2f}/{score[2]:.2f}")
|
839 |
+
write_model_output_as_midi(ref_notes_minus,
|
840 |
+
self.hparams.write_output_dir,
|
841 |
+
track_info + '_ref_octave_minus',
|
842 |
+
self.midi_output_,
|
843 |
+
output_dir_suffix=str(dataset_info) + '_' +
|
844 |
+
str(self.hparams.eval_subtask_key))
|
845 |
+
|
846 |
+
self.test_metrics[dataloader_idx].bulk_update(drum_metric)
|
847 |
+
self.test_metrics[dataloader_idx].bulk_update(non_drum_metric)
|
848 |
+
self.test_metrics[dataloader_idx].bulk_update(instr_metric)
|
849 |
+
# self.test_metrics_macro.bulk_update(drum_metric)
|
850 |
+
# self.test_metrics_macro.bulk_update(non_drum_metric)
|
851 |
+
# self.test_metrics_macro.bulk_update(instr_metric)
|
852 |
+
|
853 |
+
def on_test_epoch_end(self) -> None:
|
854 |
+
# all_gather is done seeminglesly by torchmetrics
|
855 |
+
for test_metrics in self.test_metrics:
|
856 |
+
self.log_dict(test_metrics.bulk_compute(), sync_dist=True)
|
857 |
+
test_metrics.bulk_reset()
|
858 |
+
# self.log_dict(self.test_metrics_macro.bulk_compute(), sync_dist=True)
|
859 |
+
# self.test_metrics_macro.bulk_reset()
|
860 |
+
|
861 |
+
|
862 |
+
def test_case_forward_mt3():
|
863 |
+
import torch
|
864 |
+
from config.config import audio_cfg, model_cfg, shared_cfg
|
865 |
+
from model.ymt3 import YourMT3
|
866 |
+
model = YourMT3()
|
867 |
+
model.eval()
|
868 |
+
x = torch.randn(2, 1, 32767)
|
869 |
+
labels = torch.randint(0, 596, (2, 1, 1024), requires_grad=False) # (B, C=1, T)
|
870 |
+
task_tokens = torch.LongTensor([])
|
871 |
+
output = model.forward(x, labels, task_tokens)
|
872 |
+
logits, loss = output['logits'], output['loss']
|
873 |
+
assert logits.shape == (2, 1024, 596) # (B, N, vocab_size)
|
874 |
+
|
875 |
+
|
876 |
+
def test_case_inference_mt3():
|
877 |
+
import torch
|
878 |
+
from config.config import audio_cfg, model_cfg, shared_cfg
|
879 |
+
from model.ymt3 import YourMT3
|
880 |
+
model_cfg["num_max_positions"] = 1024 + 3 + 1
|
881 |
+
model = YourMT3(model_cfg=model_cfg)
|
882 |
+
model.eval()
|
883 |
+
x = torch.randn(2, 1, 32767)
|
884 |
+
task_tokens = torch.randint(0, 596, (2, 3), requires_grad=False)
|
885 |
+
pred_ids = model.inference(x, task_tokens, max_token_length=10) # (2, 3, 9) (B, C, L-task_len)
|
886 |
+
# TODO: need to check the length of pred_ids when task_tokens is not None
|
887 |
+
|
888 |
+
|
889 |
+
def test_case_forward_enc_perceiver_tf_dec_t5():
|
890 |
+
import torch
|
891 |
+
from model.ymt3 import YourMT3
|
892 |
+
from config.config import audio_cfg, model_cfg, shared_cfg
|
893 |
+
model_cfg["encoder_type"] = "perceiver-tf"
|
894 |
+
audio_cfg["codec"] = "spec"
|
895 |
+
audio_cfg["hop_length"] = 300
|
896 |
+
|
897 |
+
model = YourMT3(audio_cfg=audio_cfg, model_cfg=model_cfg)
|
898 |
+
model.eval()
|
899 |
+
|
900 |
+
x = torch.randn(2, 1, 32767)
|
901 |
+
labels = torch.randint(0, 596, (2, 1, 1024), requires_grad=False)
|
902 |
+
|
903 |
+
# forward
|
904 |
+
output = model.forward(x, labels)
|
905 |
+
logits, loss = output['logits'], output['loss'] # logits: (2, 1024, 596) (B, N, vocab_size)
|
906 |
+
|
907 |
+
# inference
|
908 |
+
pred_ids = model.inference(x, None, max_token_length=3) # (2, 1, 3) (B, C, L)
|
909 |
+
|
910 |
+
|
911 |
+
def test_case_forward_enc_conformer_dec_t5():
|
912 |
+
import torch
|
913 |
+
from model.ymt3 import YourMT3
|
914 |
+
from config.config import audio_cfg, model_cfg, shared_cfg
|
915 |
+
model_cfg["encoder_type"] = "conformer"
|
916 |
+
audio_cfg["codec"] = "melspec"
|
917 |
+
audio_cfg["hop_length"] = 128
|
918 |
+
model = YourMT3(audio_cfg=audio_cfg, model_cfg=model_cfg)
|
919 |
+
model.eval()
|
920 |
+
|
921 |
+
x = torch.randn(2, 1, 32767)
|
922 |
+
labels = torch.randint(0, 596, (2, 1024), requires_grad=False)
|
923 |
+
|
924 |
+
# forward
|
925 |
+
output = model.forward(x, labels)
|
926 |
+
logits, loss = output['logits'], output['loss'] # logits: (2, 1024, 596) (B, N, vocab_size)
|
927 |
+
|
928 |
+
# inference
|
929 |
+
pred_ids = model.inference(x, None, 20) # (2, 1, 20) (B, C, L)
|
930 |
+
|
931 |
+
|
932 |
+
def test_case_enc_perceiver_tf_dec_multi_t5():
|
933 |
+
import torch
|
934 |
+
from model.ymt3 import YourMT3
|
935 |
+
from config.config import audio_cfg, model_cfg, shared_cfg
|
936 |
+
model_cfg["encoder_type"] = "perceiver-tf"
|
937 |
+
model_cfg["decoder_type"] = "multi-t5"
|
938 |
+
model_cfg["encoder"]["perceiver-tf"]["attention_to_channel"] = True
|
939 |
+
model_cfg["encoder"]["perceiver-tf"]["num_latents"] = 26
|
940 |
+
audio_cfg["codec"] = "spec"
|
941 |
+
audio_cfg["hop_length"] = 300
|
942 |
+
model = YourMT3(audio_cfg=audio_cfg, model_cfg=model_cfg)
|
943 |
+
model.eval()
|
944 |
+
|
945 |
+
x = torch.randn(2, 1, 32767)
|
946 |
+
labels = torch.randint(0, 596, (2, 13, 200), requires_grad=False) # (B, C, T)
|
947 |
+
|
948 |
+
# x = model.spectrogram(x)
|
949 |
+
# x = model.pre_encoder(x) # (2, 110, 128, 128) (B, T, C, D)
|
950 |
+
# enc_hs = model.encoder(inputs_embeds=x)["last_hidden_state"] # (2, 110, 128, 128) (B, T, C, D)
|
951 |
+
# enc_hs = model.pre_decoder(enc_hs) # (2, 13, 110, 512) (B, C, T, D)
|
952 |
+
|
953 |
+
# dec_input_ids = model.shift_right_fn(labels) # (2, 13, 200) (B, C, T)
|
954 |
+
# dec_inputs_embeds = model.embed_tokens(dec_input_ids) # (2, 13, 200, 512) (B, C, T, D)
|
955 |
+
# dec_hs, _ = model.decoder(
|
956 |
+
# inputs_embeds=dec_inputs_embeds, encoder_hidden_states=enc_hs, return_dict=False)
|
957 |
+
# logits = model.lm_head(dec_hs) # (2, 13, 200, 596) (B, C, T, vocab_size)
|
958 |
+
|
959 |
+
# forward
|
960 |
+
x = torch.randn(2, 1, 32767)
|
961 |
+
labels = torch.randint(0, 596, (2, 13, 200), requires_grad=False) # (B, C, T)
|
962 |
+
output = model.forward(x, labels)
|
963 |
+
logits, loss = output['logits'], output['loss'] # (2, 13, 200, 596) (B, C, T, vocab_size)
|
964 |
+
|
965 |
+
# inference
|
966 |
+
model.max_total_token_length = 123 # to save time..
|
967 |
+
pred_ids = model.inference(x, None) # (2, 13, 123) (B, C, L)
|
tests/model/spectrogram_test.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import unittest
|
3 |
+
from model.spectrogram import Melspectrogram
|
4 |
+
|
5 |
+
|
6 |
+
class TestMelspectrogram(unittest.TestCase):
|
7 |
+
|
8 |
+
def test_melspectrogram(self):
|
9 |
+
# Create a Melspectrogram instance with default parameters
|
10 |
+
melspec = Melspectrogram()
|
11 |
+
|
12 |
+
# Create a random input tensor (B, C, T) with T = 32767 samples for 2048 ms
|
13 |
+
x = torch.randn(2, 1, 32767)
|
14 |
+
|
15 |
+
# Compute the Melspectrogram
|
16 |
+
y = melspec(x)
|
17 |
+
|
18 |
+
# Check the output shape
|
19 |
+
self.assertEqual(y.shape, (2, 256, 512))
|
20 |
+
|
21 |
+
# Check if the output contains NaN values
|
22 |
+
self.assertFalse(torch.isnan(y).any())
|
23 |
+
|
24 |
+
# Check if the output contains infinite values
|
25 |
+
self.assertFalse(torch.isinf(y).any())
|
26 |
+
|
27 |
+
|
28 |
+
if __name__ == "__main__":
|
29 |
+
unittest.main()
|
utils/README.md
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YourMT3: Utils
|
2 |
+
|
3 |
+
|
4 |
+
## CachedAudioDataset
|
5 |
+
|
6 |
+
```mermaid
|
7 |
+
graph TB
|
8 |
+
A[Call __getitem__]:::main --> B1(Update cache):::process
|
9 |
+
A --> B2(Get segments from cache):::process
|
10 |
+
B1 --> C1[Load & cut audio]:::subprocess
|
11 |
+
C1 --> C2[Load & cut note events]:::subprocess
|
12 |
+
C2 --> C3[Augment data]:::subprocess
|
13 |
+
C3 --> C4[Tokenize & pad events]:::subprocess
|
14 |
+
C4 --> C5[Save to cache]:::subprocess
|
15 |
+
B2 --> D1[Return audio segments]:::output
|
16 |
+
B2 --> D2[Return tokens]:::output
|
17 |
+
|
18 |
+
classDef main fill:#FED7E2,stroke:#000000;
|
19 |
+
classDef process fill:#FEE2E2,stroke:#000000;
|
20 |
+
classDef subprocess fill:#E0F0F4,stroke:#000000;
|
21 |
+
classDef output fill:#F0E6EF,stroke:#000000;
|
22 |
+
```
|
utils/__pycache__/event2note.cpython-310.pyc
ADDED
Binary file (6.76 kB). View file
|
|
utils/__pycache__/midi.cpython-310.pyc
ADDED
Binary file (9.32 kB). View file
|
|
utils/__pycache__/note_event_dataclasses.cpython-310.pyc
ADDED
Binary file (2.59 kB). View file
|
|
utils/audio.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
"""audio.py"""
|
11 |
+
import os
|
12 |
+
import subprocess
|
13 |
+
import numpy as np
|
14 |
+
import wave
|
15 |
+
import math
|
16 |
+
from typing import Tuple, List
|
17 |
+
from numpy.lib.stride_tricks import as_strided
|
18 |
+
|
19 |
+
|
20 |
+
def load_audio_file(filename: str,
|
21 |
+
seg_start_sec: float = 0.,
|
22 |
+
seg_length_sec: float = 0.,
|
23 |
+
fs: int = 16000,
|
24 |
+
dtype: np.dtype = np.float64) -> np.ndarray:
|
25 |
+
"""Load audio file and return the segment of audio."""
|
26 |
+
start_frame_idx = int(np.floor(seg_start_sec * fs))
|
27 |
+
seg_length_frame = int(np.floor(seg_length_sec * fs))
|
28 |
+
end_frame_idx = start_frame_idx + seg_length_frame
|
29 |
+
|
30 |
+
file_ext = filename[-3:]
|
31 |
+
|
32 |
+
if file_ext == 'wav':
|
33 |
+
with wave.open(filename, 'r') as f:
|
34 |
+
f.setpos(start_frame_idx)
|
35 |
+
if seg_length_sec == 0:
|
36 |
+
x = f.readframes(f.getnframes())
|
37 |
+
else:
|
38 |
+
x = f.readframes(end_frame_idx - start_frame_idx)
|
39 |
+
|
40 |
+
if dtype == np.float64:
|
41 |
+
x = np.frombuffer(x, dtype=np.int16) / 2**15
|
42 |
+
elif dtype == np.float32:
|
43 |
+
x = np.frombuffer(x, dtype=np.int16) / 2**15
|
44 |
+
x = x.astype(np.float32)
|
45 |
+
elif dtype == np.int16:
|
46 |
+
x = np.frombuffer(x, dtype=np.int16)
|
47 |
+
elif dtype is None:
|
48 |
+
pass
|
49 |
+
else:
|
50 |
+
raise NotImplementedError(f"Unsupported dtype: {dtype}")
|
51 |
+
else:
|
52 |
+
raise NotImplementedError(f"Unsupported file extension: {file_ext}")
|
53 |
+
|
54 |
+
return x
|
55 |
+
|
56 |
+
|
57 |
+
def get_audio_file_info(filename: str) -> Tuple[int, int, int]:
|
58 |
+
"""Get audio file info.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
filename: path to the audio file
|
62 |
+
Returns:
|
63 |
+
fs: sampling rate
|
64 |
+
n_frames: number of frames
|
65 |
+
n_channels: number of channels
|
66 |
+
|
67 |
+
"""
|
68 |
+
file_ext = filename[-3:]
|
69 |
+
|
70 |
+
if file_ext == 'wav':
|
71 |
+
with wave.open(filename, 'r') as f:
|
72 |
+
fs = f.getframerate()
|
73 |
+
n_frames = f.getnframes()
|
74 |
+
n_channels = f.getnchannels()
|
75 |
+
else:
|
76 |
+
raise NotImplementedError(f"Unsupported file extension: {file_ext}")
|
77 |
+
|
78 |
+
return fs, n_frames, n_channels
|
79 |
+
|
80 |
+
|
81 |
+
def get_segments_from_numpy_array(arr: np.ndarray,
|
82 |
+
slice_length: int,
|
83 |
+
start_frame_indices: List[int],
|
84 |
+
dtype: np.dtype = np.float32) -> np.ndarray:
|
85 |
+
"""Get random audio slices from numpy array.
|
86 |
+
|
87 |
+
Args:
|
88 |
+
arr: numpy array of shape (c, n_frames)
|
89 |
+
slice_length: length of the slice
|
90 |
+
start_frame_indices: list of m start frames
|
91 |
+
Returns:
|
92 |
+
slices: numpy array of shape (m, c, slice_length)
|
93 |
+
"""
|
94 |
+
c, max_length = arr.shape
|
95 |
+
max_length = arr.shape[1]
|
96 |
+
m = len(start_frame_indices)
|
97 |
+
|
98 |
+
slices = np.zeros((m, c, slice_length), dtype=dtype)
|
99 |
+
for i, start_frame in enumerate(start_frame_indices):
|
100 |
+
end_frame = start_frame + slice_length
|
101 |
+
assert (end_frame <= max_length - 1)
|
102 |
+
slices[i, :, :] = arr[:, start_frame:end_frame].astype(dtype)
|
103 |
+
return slices
|
104 |
+
|
105 |
+
|
106 |
+
def slice_padded_array(x: np.ndarray, slice_length: int, slice_hop: int, pad: bool = True) -> np.ndarray:
|
107 |
+
"""
|
108 |
+
Slices the input array into overlapping windows based on the given slice length and slice hop.
|
109 |
+
|
110 |
+
Args:
|
111 |
+
x: The input array to be sliced.
|
112 |
+
slice_length: The length of each slice.
|
113 |
+
slice_hop: The number of elements between the start of each slice.
|
114 |
+
pad: If True, the last slice will be padded with zeros if necessary.
|
115 |
+
|
116 |
+
Returns:
|
117 |
+
A numpy array with shape (n_slices, slice_length) containing the slices.
|
118 |
+
"""
|
119 |
+
num_slices = (x.shape[1] - slice_length) // slice_hop + 1
|
120 |
+
remaining = (x.shape[1] - slice_length) % slice_hop
|
121 |
+
|
122 |
+
if pad and remaining > 0:
|
123 |
+
padding = np.zeros((x.shape[0], slice_length - remaining))
|
124 |
+
x = np.hstack((x, padding))
|
125 |
+
num_slices += 1
|
126 |
+
|
127 |
+
shape: Tuple[int, int] = (num_slices, slice_length)
|
128 |
+
strides: Tuple[int, int] = (slice_hop * x.strides[1], x.strides[1])
|
129 |
+
sliced_x = as_strided(x, shape=shape, strides=strides)
|
130 |
+
|
131 |
+
return sliced_x
|
132 |
+
|
133 |
+
|
134 |
+
def slice_padded_array_for_subbatch(x: np.ndarray,
|
135 |
+
slice_length: int,
|
136 |
+
slice_hop: int,
|
137 |
+
pad: bool = True,
|
138 |
+
sub_batch_size: int = 1,
|
139 |
+
dtype: np.dtype = np.float32) -> np.ndarray:
|
140 |
+
"""
|
141 |
+
Slices the input array into overlapping windows based on the given slice length and slice hop,
|
142 |
+
and pads it to make the output divisible by the sub_batch_size.
|
143 |
+
|
144 |
+
NOTE: This method is currently not used.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
x: The input array to be sliced, such as (1, n_frames).
|
148 |
+
slice_length: The length of each slice.
|
149 |
+
slice_hop: The number of elements between the start of each slice.
|
150 |
+
pad: If True, the last slice will be padded with zeros if necessary.
|
151 |
+
sub_batch_size: The desired number of slices to be divisible by.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
A numpy array with shape (n_slices, slice_length) containing the slices.
|
155 |
+
"""
|
156 |
+
num_slices = (x.shape[1] - slice_length) // slice_hop + 1
|
157 |
+
remaining = (x.shape[1] - slice_length) % slice_hop
|
158 |
+
|
159 |
+
if pad and remaining > 0:
|
160 |
+
padding = np.zeros((x.shape[0], slice_length - remaining), dtype=dtype)
|
161 |
+
x = np.hstack((x, padding))
|
162 |
+
num_slices += 1
|
163 |
+
|
164 |
+
# Adjust the padding to make n_slices divisible by sub_batch_size
|
165 |
+
if pad and num_slices % sub_batch_size != 0:
|
166 |
+
additional_padding_needed = (sub_batch_size - (num_slices % sub_batch_size)) * slice_hop
|
167 |
+
additional_padding = np.zeros((x.shape[0], additional_padding_needed), dtype=dtype)
|
168 |
+
x = np.hstack((x, additional_padding))
|
169 |
+
num_slices += (sub_batch_size - (num_slices % sub_batch_size))
|
170 |
+
|
171 |
+
shape: Tuple[int, int] = (num_slices, slice_length)
|
172 |
+
strides: Tuple[int, int] = (slice_hop * x.strides[1], x.strides[1])
|
173 |
+
sliced_x = as_strided(x, shape=shape, strides=strides)
|
174 |
+
|
175 |
+
return sliced_x
|
176 |
+
|
177 |
+
|
178 |
+
def pitch_shift_audio(src_audio_file: os.PathLike,
|
179 |
+
min_pitch_shift: int = -5,
|
180 |
+
max_pitch_shift: int = 6,
|
181 |
+
random_microshift_range: tuple[int, int] = (-10, 11)):
|
182 |
+
"""
|
183 |
+
Pitch shift audio file using the Sox command-line tool.
|
184 |
+
|
185 |
+
NOTE: This method is currently not used. Previously, we used this for
|
186 |
+
offline augmentation for GuitarSet.
|
187 |
+
|
188 |
+
Args:
|
189 |
+
src_audio_file: Path to the input audio file.
|
190 |
+
min_pitch_shift: Minimum pitch shift in semitones.
|
191 |
+
max_pitch_shift: Maximum pitch shift in semitones.
|
192 |
+
random_microshift_range: Range of random microshifts to apply in tenths of a semitone.
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
None
|
196 |
+
|
197 |
+
Raises:
|
198 |
+
CalledProcessError: If the Sox command fails to execute.
|
199 |
+
|
200 |
+
"""
|
201 |
+
|
202 |
+
# files
|
203 |
+
src_audio_dir = os.path.dirname(src_audio_file)
|
204 |
+
src_audio_filename = os.path.basename(src_audio_file).split('.')[0]
|
205 |
+
|
206 |
+
# load source audio
|
207 |
+
try:
|
208 |
+
audio = load_audio_file(src_audio_file, dtype=np.int16)
|
209 |
+
audio = audio / 2**15
|
210 |
+
audio = audio.astype(np.float16)
|
211 |
+
except Exception as e:
|
212 |
+
print(f"Failed to load audio file: {src_audio_file}. {e}")
|
213 |
+
return
|
214 |
+
|
215 |
+
# pitch shift audio for each semitone in the range
|
216 |
+
for pitch_shift in range(min_pitch_shift, max_pitch_shift):
|
217 |
+
if pitch_shift == 0:
|
218 |
+
continue
|
219 |
+
|
220 |
+
# pitch shift audio by sox
|
221 |
+
dst_audio_file = os.path.join(src_audio_dir, f'{src_audio_filename}_pshift{pitch_shift}.wav')
|
222 |
+
shift_semitone = 100 * pitch_shift + np.random.randint(*random_microshift_range)
|
223 |
+
|
224 |
+
# build Sox command
|
225 |
+
command = ['sox', src_audio_file, '-r', '16000', dst_audio_file, 'pitch', str(shift_semitone)]
|
226 |
+
|
227 |
+
try:
|
228 |
+
# execute Sox command and check for errors
|
229 |
+
subprocess.run(command, check=True)
|
230 |
+
print(f"Created {dst_audio_file}")
|
231 |
+
except subprocess.CalledProcessError as e:
|
232 |
+
print(f"Failed to pitch shift audio file: {src_audio_file}, pitch_shift: {pitch_shift}. {e}")
|
233 |
+
|
234 |
+
|
235 |
+
def write_wav_file(filename: str, x: np.ndarray, samplerate: int = 16000) -> None:
|
236 |
+
"""
|
237 |
+
Write a mono PCM WAV file from a NumPy array of audio samples.
|
238 |
+
|
239 |
+
Args:
|
240 |
+
filename (str): The name of the WAV file to be created.
|
241 |
+
x (np.ndarray): A 1D NumPy array containing the audio samples to be written to the WAV file.
|
242 |
+
The audio samples should be in the range [-1, 1].
|
243 |
+
samplerate (int): The sample rate (in Hz) of the audio samples.
|
244 |
+
|
245 |
+
Returns:
|
246 |
+
None
|
247 |
+
"""
|
248 |
+
# Set the WAV file parameters
|
249 |
+
nchannels = 1 # Mono
|
250 |
+
sampwidth = 2 # 16-bit
|
251 |
+
framerate = samplerate
|
252 |
+
nframes = len(x)
|
253 |
+
|
254 |
+
# Scale the audio samples to the range [-32767, 32767]
|
255 |
+
x_scaled = np.array(x * 32767, dtype=np.int16)
|
256 |
+
|
257 |
+
# Set the buffer size for writing the WAV file
|
258 |
+
BUFFER_SIZE = 1024
|
259 |
+
|
260 |
+
# Open the WAV file for writing
|
261 |
+
with wave.open(filename, "wb") as wav_file:
|
262 |
+
# Set the WAV file parameters
|
263 |
+
wav_file.setparams((nchannels, sampwidth, framerate, nframes, "NONE", "NONE"))
|
264 |
+
|
265 |
+
# Write the audio samples to the file in chunks
|
266 |
+
for i in range(0, len(x_scaled), BUFFER_SIZE):
|
267 |
+
# Get the next chunk of audio samples
|
268 |
+
chunk = x_scaled[i:i + BUFFER_SIZE]
|
269 |
+
|
270 |
+
# Convert the chunk of audio samples to a byte string and write it to the WAV file
|
271 |
+
wav_file.writeframes(chunk.tobytes())
|
272 |
+
|
273 |
+
# Close the WAV file
|
274 |
+
wav_file.close()
|
275 |
+
|
276 |
+
|
277 |
+
def guess_onset_offset_by_amp_envelope(x, fs=16000, onset_threshold=0.05, offset_threshold=0.02, frame_size=256):
|
278 |
+
""" Guess onset/offset from audio signal x """
|
279 |
+
amp_env = []
|
280 |
+
num_frames = math.floor(len(x) / frame_size)
|
281 |
+
for t in range(num_frames):
|
282 |
+
lower = t * frame_size
|
283 |
+
upper = (t + 1) * frame_size - 1
|
284 |
+
# Find maximum of each frame and add it to our array
|
285 |
+
amp_env.append(np.max(x[lower:upper]))
|
286 |
+
amp_env = np.array(amp_env)
|
287 |
+
# Find the first index where the amplitude envelope is greater than the threshold
|
288 |
+
onset = np.where(amp_env > onset_threshold)[0][0] * frame_size
|
289 |
+
offset = (len(amp_env) - 1 - np.where(amp_env[::-1] > offset_threshold)[0][0]) * frame_size
|
290 |
+
return onset, offset, amp_env
|
291 |
+
|
292 |
+
|
293 |
+
# from pydub import AudioSegment
|
294 |
+
# def convert_flac_to_wav(input_path, output_path):
|
295 |
+
# # Load FLAC file using Pydub
|
296 |
+
# sound = AudioSegment.from_file(input_path, format="flac")
|
297 |
+
|
298 |
+
# # Set the parameters for the output WAV file
|
299 |
+
# channels = 1 # mono
|
300 |
+
# sample_width = 2 # 16-bit
|
301 |
+
# frame_rate = 16000
|
302 |
+
|
303 |
+
# # Convert the input sound to the specified format
|
304 |
+
# sound = sound.set_frame_rate(frame_rate)
|
305 |
+
# sound = sound.set_channels(channels)
|
306 |
+
# sound = sound.set_sample_width(sample_width)
|
307 |
+
|
308 |
+
# # Save the output WAV file to the specified path
|
309 |
+
# sound.export(output_path, format="wav")
|