Add files using upload-large-folder tool
Browse files- extras/check_drum_channel_slakh.py +24 -0
- extras/dataset_mutable_var_sanity_check.py +81 -0
- extras/demo_intra_augmentation.py +52 -0
- extras/examples/singing_note_events.npy +3 -0
- extras/examples/singing_notes.npy +3 -0
- extras/fig/label_smooth_interval_of_interest.png +0 -0
- extras/fig/pitchshift_benchnmark.png +0 -0
- extras/fig/pitchshift_stretch_and_resampler_process_time.png +0 -0
- extras/label_smoothing.py +67 -0
- extras/npy_speed_benchmark.py +187 -0
- extras/perceivertf_inspect.py +640 -0
- extras/perceivertf_multi_inspect.py +778 -0
- extras/pitch_shift_benchmark.py +167 -0
- extras/run_spleeter_mir1k.sh +17 -0
- extras/run_spleeter_mirst500.sh +13 -0
- model/__pycache__/conformer_mod.cpython-310.pyc +0 -0
extras/check_drum_channel_slakh.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from utils.mirdata_dev.datasets import slakh16k
|
2 |
+
|
3 |
+
|
4 |
+
def check_drum_channel_slakh(data_home: str):
|
5 |
+
ds = slakh16k.Dataset(data_home, version='default')
|
6 |
+
for track_id in ds.track_ids:
|
7 |
+
is_drum = ds.track(track_id).is_drum
|
8 |
+
midi = MidiFile(ds.track(track_id).midi_path)
|
9 |
+
cnt = 0
|
10 |
+
for msg in midi:
|
11 |
+
if 'note' in msg.type:
|
12 |
+
if is_drum and (msg.channel != 9):
|
13 |
+
print('found drum track with channel != 9 in track_id: ',
|
14 |
+
track_id)
|
15 |
+
if not is_drum and (msg.channel == 9):
|
16 |
+
print(
|
17 |
+
'found non-drum track with channel == 9 in track_id: ',
|
18 |
+
track_id)
|
19 |
+
if is_drum and (msg.channel == 9):
|
20 |
+
cnt += 1
|
21 |
+
if cnt > 0:
|
22 |
+
print(f'found {cnt} notes in drum track with ch 9 in track_id: ',
|
23 |
+
track_id)
|
24 |
+
return
|
extras/dataset_mutable_var_sanity_check.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
for n in range(1000):
|
2 |
+
sampled_data = ds.__getitem__(n)
|
3 |
+
|
4 |
+
a = deepcopy(sampled_data['note_event_segments'])
|
5 |
+
b = deepcopy(sampled_data['note_event_segments'])
|
6 |
+
|
7 |
+
for (note_events, tie_note_events, start_time) in list(zip(*b.values())):
|
8 |
+
note_events = pitch_shift_note_events(note_events, 2)
|
9 |
+
tie_note_events = pitch_shift_note_events(tie_note_events, 2)
|
10 |
+
|
11 |
+
# compare
|
12 |
+
for i, (note_events, tie_note_events, start_time) in enumerate(list(zip(*b.values()))):
|
13 |
+
for j, ne in enumerate(note_events):
|
14 |
+
if ne.is_drum is False:
|
15 |
+
if ne.pitch != a['note_events'][i][j].pitch + 2:
|
16 |
+
print(i, j)
|
17 |
+
assert ne.pitch == a['note_events'][i][j].pitch + 2
|
18 |
+
|
19 |
+
for k, tne in enumerate(tie_note_events):
|
20 |
+
assert tne.pitch == a['tie_note_events'][i][k].pitch + 2
|
21 |
+
|
22 |
+
print('test {} passed'.format(n))
|
23 |
+
|
24 |
+
|
25 |
+
def assert_note_events_almost_equal(actual_note_events,
|
26 |
+
predicted_note_events,
|
27 |
+
ignore_time=False,
|
28 |
+
ignore_activity=True,
|
29 |
+
delta=5.1e-3):
|
30 |
+
"""
|
31 |
+
Asserts that the given lists of Note instances are equal up to a small
|
32 |
+
floating-point tolerance, similar to `assertAlmostEqual` of `unittest`.
|
33 |
+
Tolerance is 5e-3 by default, which is 5 ms for 100 ticks-per-second.
|
34 |
+
|
35 |
+
If `ignore_time` is True, then the time field is ignored. (useful for
|
36 |
+
comparing tie note events, default is False)
|
37 |
+
|
38 |
+
If `ignore_activity` is True, then the activity field is ignored (default
|
39 |
+
is True).
|
40 |
+
"""
|
41 |
+
assert len(actual_note_events) == len(predicted_note_events)
|
42 |
+
for j, (actual_note_event,
|
43 |
+
predicted_note_event) in enumerate(zip(actual_note_events, predicted_note_events)):
|
44 |
+
if ignore_time is False:
|
45 |
+
assert abs(actual_note_event.time - predicted_note_event.time) <= delta
|
46 |
+
assert actual_note_event.is_drum == predicted_note_event.is_drum
|
47 |
+
if actual_note_event.is_drum is False and predicted_note_event.is_drum is False:
|
48 |
+
assert actual_note_event.program == predicted_note_event.program
|
49 |
+
assert actual_note_event.pitch == predicted_note_event.pitch
|
50 |
+
assert actual_note_event.velocity == predicted_note_event.velocity
|
51 |
+
if ignore_activity is False:
|
52 |
+
assert actual_note_event.activity == predicted_note_event.activity
|
53 |
+
|
54 |
+
|
55 |
+
cache_old = deepcopy(dict(ds.cache))
|
56 |
+
for n in range(500):
|
57 |
+
sampled_data = ds.__getitem__(n)
|
58 |
+
cache_new = ds.cache
|
59 |
+
cnt = 0
|
60 |
+
for k, v in cache_new.items():
|
61 |
+
if k in cache_old:
|
62 |
+
cnt += 1
|
63 |
+
assert (cache_new[k]['programs'] == cache_old[k]['programs']).all()
|
64 |
+
assert (cache_new[k]['is_drum'] == cache_old[k]['is_drum']).all()
|
65 |
+
assert (cache_new[k]['has_stems'] == cache_old[k]['has_stems'])
|
66 |
+
assert (cache_new[k]['has_unannotated'] == cache_old[k]['has_unannotated'])
|
67 |
+
assert (cache_new[k]['audio_array'] == cache_old[k]['audio_array']).all()
|
68 |
+
|
69 |
+
for nes_new, nes_old in zip(cache_new[k]['note_event_segments']['note_events'],
|
70 |
+
cache_old[k]['note_event_segments']['note_events']):
|
71 |
+
assert_note_events_almost_equal(nes_new, nes_old)
|
72 |
+
|
73 |
+
for tnes_new, tnes_old in zip(cache_new[k]['note_event_segments']['tie_note_events'],
|
74 |
+
cache_old[k]['note_event_segments']['tie_note_events']):
|
75 |
+
assert_note_events_almost_equal(tnes_new, tnes_old, ignore_time=True)
|
76 |
+
|
77 |
+
for s_new, s_old in zip(cache_new[k]['note_event_segments']['start_times'],
|
78 |
+
cache_old[k]['note_event_segments']['start_times']):
|
79 |
+
assert s_new == s_old
|
80 |
+
cache_old = deepcopy(dict(ds.cache))
|
81 |
+
print(n, cnt)
|
extras/demo_intra_augmentation.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The YourMT3 Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Please see the details in the LICENSE file.
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import json
|
13 |
+
import soundfile as sf
|
14 |
+
from utils.datasets_train import get_cache_data_loader
|
15 |
+
|
16 |
+
|
17 |
+
def get_filelist(track_id: int) -> dict:
|
18 |
+
filelist = '../../data/yourmt3_indexes/slakh_train_file_list.json'
|
19 |
+
with open(filelist, 'r') as f:
|
20 |
+
fl = json.load(f)
|
21 |
+
new_filelist = dict()
|
22 |
+
for key, value in fl.items():
|
23 |
+
if int(key) == track_id:
|
24 |
+
new_filelist[0] = value
|
25 |
+
return new_filelist
|
26 |
+
|
27 |
+
|
28 |
+
def get_ds(track_id: int, random_amp_range: list = [1., 1.], stem_aug_prob: float = 0.8):
|
29 |
+
filelist = get_filelist(track_id)
|
30 |
+
dl = get_cache_data_loader(filelist,
|
31 |
+
'train',
|
32 |
+
1,
|
33 |
+
1,
|
34 |
+
random_amp_range=random_amp_range,
|
35 |
+
stem_aug_prob=stem_aug_prob,
|
36 |
+
shuffle=False)
|
37 |
+
ds = dl.dataset
|
38 |
+
return ds
|
39 |
+
|
40 |
+
|
41 |
+
def gen_audio(track_id: int, n_segments: int = 30, random_amp_range: list = [1., 1.], stem_aug_prob: float = 0.8):
|
42 |
+
ds = get_ds(track_id, random_amp_range, stem_aug_prob)
|
43 |
+
audio = []
|
44 |
+
for i in range(n_segments):
|
45 |
+
audio.append(ds.__getitem__(0)[0])
|
46 |
+
# audio.append(ds.__getitem__(i)[0])
|
47 |
+
|
48 |
+
audio = torch.concat(audio, dim=2).numpy()[0, 0, :]
|
49 |
+
sf.write('audio.wav', audio, 16000, subtype='PCM_16')
|
50 |
+
|
51 |
+
|
52 |
+
gen_audio(1, 20)
|
extras/examples/singing_note_events.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8eabaecc837fb052fba68483b965a59d40220fdf2a91a57b5155849c72306ba0
|
3 |
+
size 37504
|
extras/examples/singing_notes.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa8ebde37531514ea145063af32543f8e520a6c34525c98e863e152b66119be8
|
3 |
+
size 15085
|
extras/fig/label_smooth_interval_of_interest.png
ADDED
extras/fig/pitchshift_benchnmark.png
ADDED
extras/fig/pitchshift_stretch_and_resampler_process_time.png
ADDED
extras/label_smoothing.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
a = torch.signal.windows.gaussian(11, sym=True, std=3)
|
6 |
+
plt.plot(a)
|
7 |
+
|
8 |
+
|
9 |
+
def gaussian_smoothing(y_hot, mu=5, sigma=0.865):
|
10 |
+
"""
|
11 |
+
y_hot: one-hot encoded array
|
12 |
+
"""
|
13 |
+
#sigma = np.sqrt(np.abs(np.log(0.05) / ((4 - mu)**2))) / 2
|
14 |
+
|
15 |
+
# Generate index array
|
16 |
+
i = np.arange(len(y_hot))
|
17 |
+
|
18 |
+
# Gaussian function
|
19 |
+
y_smooth = np.exp(-(i - mu)**2 / (2 * sigma**2))
|
20 |
+
|
21 |
+
# Normalize the resulting array
|
22 |
+
y_smooth /= y_smooth.sum()
|
23 |
+
return y_smooth, sigma
|
24 |
+
|
25 |
+
|
26 |
+
# y_ls = (1 - α) * y_hot + α / K, where K is the number of classes, alpha is the smoothing parameter
|
27 |
+
|
28 |
+
y_hot = torch.zeros(11)
|
29 |
+
y_hot[5] = 1
|
30 |
+
plt.plot(y_hot, 'b.-')
|
31 |
+
|
32 |
+
alpha = 0.3
|
33 |
+
y_ls = (1 - alpha) * y_hot + alpha / 10
|
34 |
+
plt.plot(y_ls, 'r.-')
|
35 |
+
|
36 |
+
y_gs, std = gaussian_smoothing(y_hot, A=0.5)
|
37 |
+
plt.plot(y_gs, 'g.-')
|
38 |
+
|
39 |
+
y_gst_a, std = gaussian_smoothing(y_hot, A=0.5, mu=5.5)
|
40 |
+
plt.plot(y_gst_a, 'y.-')
|
41 |
+
|
42 |
+
y_gst_b, std = gaussian_smoothing(y_hot, A=0.5, mu=5.8)
|
43 |
+
plt.plot(y_gst_b, 'c.-')
|
44 |
+
|
45 |
+
plt.legend([
|
46 |
+
'y_hot', 'label smoothing' + '\n' + '(alpha=0.3)',
|
47 |
+
'gaussian smoothing' + '\n' + 'for interval of interest' + '\n' + 'mu=5',
|
48 |
+
'gaussian smoothing' + '\n' + 'mu=5.5', 'gaussian smoothing' + '\n' + 'mu=5.8'
|
49 |
+
])
|
50 |
+
|
51 |
+
plt.grid()
|
52 |
+
plt.xticks(np.arange(11), np.arange(0, 110, 10))
|
53 |
+
plt.xlabel('''Time (ms)
|
54 |
+
original (quantized) one hot label:
|
55 |
+
[0,0,0,0,0,1,0,0,0,0,0]
|
56 |
+
\n
|
57 |
+
label smooting is defined as:
|
58 |
+
y_ls = (1 - α) * y_hot + α / K,
|
59 |
+
where K is the number of classes, α is the smoothing parameter
|
60 |
+
\n
|
61 |
+
gaussian smoothing for the interval (± 10ms) of interest:
|
62 |
+
y_gs = A * exp(-(i - mu)**2 / (2 * sigma**2))
|
63 |
+
with sigma = 0.865 an mu = 5
|
64 |
+
\n
|
65 |
+
gaussian smoothing with unqunatized target timing:
|
66 |
+
mu = 5.5 for 55ms target timing
|
67 |
+
''')
|
extras/npy_speed_benchmark.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from tasks.utils.event_codec import Event, EventRange
|
3 |
+
from tasks.utils import event_codec
|
4 |
+
|
5 |
+
ec = event_codec.Codec(
|
6 |
+
max_shift_steps=1000, # this means 0,1,...,1000
|
7 |
+
steps_per_second=100,
|
8 |
+
event_ranges=[
|
9 |
+
EventRange('pitch', min_value=0, max_value=127),
|
10 |
+
EventRange('velocity', min_value=0, max_value=1),
|
11 |
+
EventRange('tie', min_value=0, max_value=0),
|
12 |
+
EventRange('program', min_value=0, max_value=127),
|
13 |
+
EventRange('drum', min_value=0, max_value=127),
|
14 |
+
],
|
15 |
+
)
|
16 |
+
|
17 |
+
events = [
|
18 |
+
Event(type='shift', value=0), # actually not needed
|
19 |
+
Event(type='shift', value=1), # 10 ms shift
|
20 |
+
Event(type='shift', value=1000), # 10 s shift
|
21 |
+
Event(type='pitch', value=0), # lowest pitch 8.18 Hz
|
22 |
+
Event(type='pitch', value=60), # C4 or 261.63 Hz
|
23 |
+
Event(type='pitch', value=127), # highest pitch G9 or 12543.85 Hz
|
24 |
+
Event(type='velocity', value=0), # lowest velocity)
|
25 |
+
Event(type='velocity', value=1), # lowest velocity)
|
26 |
+
Event(type='tie', value=0), # tie
|
27 |
+
Event(type='program', value=0), # program
|
28 |
+
Event(type='program', value=127), # program
|
29 |
+
Event(type='drum', value=0), # drum
|
30 |
+
Event(type='drum', value=127), # drum
|
31 |
+
]
|
32 |
+
|
33 |
+
events = events * 100
|
34 |
+
tokens = [ec.encode_event(e) for e in events]
|
35 |
+
tokens = np.array(tokens, dtype=np.int16)
|
36 |
+
|
37 |
+
import csv
|
38 |
+
# Save events to a CSV file
|
39 |
+
with open('events.csv', 'w', newline='') as file:
|
40 |
+
writer = csv.writer(file)
|
41 |
+
for event in events:
|
42 |
+
writer.writerow([event.type, event.value])
|
43 |
+
|
44 |
+
# Load events from a CSV file
|
45 |
+
with open('events.csv', 'r') as file:
|
46 |
+
reader = csv.reader(file)
|
47 |
+
events2 = [Event(row[0], int(row[1])) for row in reader]
|
48 |
+
|
49 |
+
|
50 |
+
import json
|
51 |
+
# Save events to a JSON file
|
52 |
+
with open('events.json', 'w') as file:
|
53 |
+
json.dump([event.__dict__ for event in events], file)
|
54 |
+
|
55 |
+
# Load events from a JSON file
|
56 |
+
with open('events.json', 'r') as file:
|
57 |
+
events = [Event(**event_dict) for event_dict in json.load(file)]
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
"""----------------------------"""
|
63 |
+
# Write the tokens to a npy file
|
64 |
+
import numpy as np
|
65 |
+
np.save('tokens.npy', tokens)
|
66 |
+
|
67 |
+
def t_npy():
|
68 |
+
t = np.load('tokens.npy', allow_pickle=True) # allow pickle doesn't affect speed
|
69 |
+
|
70 |
+
os.makedirs('temp', exist_ok=True)
|
71 |
+
for i in range(2400):
|
72 |
+
np.save(f'temp/tokens{i}.npy', tokens)
|
73 |
+
|
74 |
+
def t_npy2400():
|
75 |
+
for i in range(2400):
|
76 |
+
t = np.load(f'temp/tokens{i}.npy')
|
77 |
+
def t_npy2400_take200():
|
78 |
+
for i in range(200):
|
79 |
+
t = np.load(f'temp/tokens{i}.npy')
|
80 |
+
|
81 |
+
import shutil
|
82 |
+
shutil.rmtree('temp', ignore_errors=True)
|
83 |
+
|
84 |
+
# Write the 2400 tokens to a single npy file
|
85 |
+
data = dict()
|
86 |
+
for i in range(2400):
|
87 |
+
data[f'arr{i}'] = tokens.copy()
|
88 |
+
np.save(f'tokens_2400x.npy', data)
|
89 |
+
def t_npy2400single():
|
90 |
+
t = np.load('tokens_2400x.npy', allow_pickle=True).item()
|
91 |
+
|
92 |
+
def t_mmap2400single():
|
93 |
+
t = np.load('tokens_2400x.npy', mmap_mode='r')
|
94 |
+
|
95 |
+
# Write the tokens to a npz file
|
96 |
+
np.savez('tokens.npz', arr0=tokens)
|
97 |
+
def t_npz():
|
98 |
+
npz_file = np.load('tokens.npz')
|
99 |
+
tt = npz_file['arr0']
|
100 |
+
|
101 |
+
data = dict()
|
102 |
+
for i in range(2400):
|
103 |
+
data[f'arr{i}'] = tokens
|
104 |
+
np.savez('tokens.npz', **data )
|
105 |
+
def t_npz2400():
|
106 |
+
npz_file = np.load('tokens.npz')
|
107 |
+
for i in range(2400):
|
108 |
+
tt = npz_file[f'arr{i}']
|
109 |
+
|
110 |
+
def t_npz2400_take200():
|
111 |
+
npz_file = np.load('tokens.npz')
|
112 |
+
# npz_file.files
|
113 |
+
for i in range(200):
|
114 |
+
tt = npz_file[f'arr{i}']
|
115 |
+
|
116 |
+
|
117 |
+
# Write the tokens to a txt file
|
118 |
+
with open('tokens.txt', 'w') as file:
|
119 |
+
file.write(' '.join(map(str, tokens)))
|
120 |
+
|
121 |
+
def t_txt():
|
122 |
+
# Read the tokens from the file
|
123 |
+
with open('tokens.txt', 'r') as file:
|
124 |
+
t = list(map(int, file.read().split()))
|
125 |
+
t = np.array(t)
|
126 |
+
|
127 |
+
|
128 |
+
# Write the tokens to a CSV file
|
129 |
+
with open('tokens.csv', 'w', newline='') as file:
|
130 |
+
writer = csv.writer(file)
|
131 |
+
writer.writerow(tokens)
|
132 |
+
|
133 |
+
def t_csv():
|
134 |
+
# Read the tokens from the CSV file
|
135 |
+
with open('tokens.csv', 'r') as file:
|
136 |
+
reader = csv.reader(file)
|
137 |
+
t = list(map(int, next(reader)))
|
138 |
+
t = np.array(t)
|
139 |
+
|
140 |
+
|
141 |
+
# Write the tokens to a JSON file
|
142 |
+
with open('tokens.json', 'w') as file:
|
143 |
+
json.dump(tokens, file)
|
144 |
+
|
145 |
+
def t_json():
|
146 |
+
# Read the tokens from the JSON file
|
147 |
+
with open('tokens.json', 'r') as file:
|
148 |
+
t = json.load(file)
|
149 |
+
t = np.array(t)
|
150 |
+
|
151 |
+
with open('tokens_2400x.json', 'w') as file:
|
152 |
+
json.dump(data, file)
|
153 |
+
|
154 |
+
def t_json2400single():
|
155 |
+
# Read the tokens from the JSON file
|
156 |
+
with open('tokens_2400x.json', 'r') as file:
|
157 |
+
t = json.load(file)
|
158 |
+
|
159 |
+
def t_mmap():
|
160 |
+
t = np.load('tokens.npy', mmap_mode='r')
|
161 |
+
|
162 |
+
# Write the tokens to bytes file
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
np.savetxt('tokens.ntxt', tokens)
|
168 |
+
def t_ntxt():
|
169 |
+
t = np.loadtxt('tokens.ntxt').astype(np.int32)
|
170 |
+
|
171 |
+
%timeit t_npz() # 139 us
|
172 |
+
%timeit t_mmap() # 3.12 ms
|
173 |
+
%timeit t_npy() # 87.8 us
|
174 |
+
%timeit t_txt() # 109 152 us
|
175 |
+
%timeit t_csv() # 145 190 us
|
176 |
+
%timeit t_json() # 72.8 119 us
|
177 |
+
%timeit t_ntxt() # 878 us
|
178 |
+
|
179 |
+
%timeit t_npy2400() # 212 ms; 2400 files in a folder
|
180 |
+
%timeit t_npz2400() # 296 ms; uncompreesed 1000 arrays in a single file
|
181 |
+
|
182 |
+
%timeit t_npy2400_take200() # 17.4 ms; 25 Mb
|
183 |
+
%timeit t_npz2400_take200() # 28.8 ms; 3.72 ms for 10 arrays; 25 Mb
|
184 |
+
%timeit t_npy2400single() # 4 ms; frozen dictionary containing 2400 arrays; 6.4 Mb; int16
|
185 |
+
%timeit t_mmap2400single() # dictionary is not supported
|
186 |
+
%timeit t_json2400single() # 175 ms; 17 Mb
|
187 |
+
# 2400 files from 100ms hop for 4 minutes
|
extras/perceivertf_inspect.py
ADDED
@@ -0,0 +1,640 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
def l2_normalize(matrix):
|
7 |
+
"""
|
8 |
+
L2 Normalize the matrix along its rows.
|
9 |
+
|
10 |
+
Parameters:
|
11 |
+
matrix (numpy.ndarray): The input matrix.
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
numpy.ndarray: The L2 normalized matrix.
|
15 |
+
"""
|
16 |
+
l2_norms = np.linalg.norm(matrix, axis=1, keepdims=True)
|
17 |
+
normalized_matrix = matrix / l2_norms
|
18 |
+
return normalized_matrix
|
19 |
+
|
20 |
+
|
21 |
+
def z_normalize(matrix):
|
22 |
+
"""
|
23 |
+
Z-normalize the matrix along its rows (mean=0 and std=1).
|
24 |
+
Z-normalization is also known as "standardization", and derives from z-score.
|
25 |
+
Z = (X - mean) / std
|
26 |
+
Z-nomarlized, each row has mean=0 and std=1.
|
27 |
+
|
28 |
+
Parameters:
|
29 |
+
matrix (numpy.ndarray): The input matrix.
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
numpy.ndarray: The Z normalized matrix.
|
33 |
+
"""
|
34 |
+
mean = np.mean(matrix, axis=1, keepdims=True)
|
35 |
+
std = np.std(matrix, axis=1, keepdims=True)
|
36 |
+
normalized_matrix = (matrix - mean) / std
|
37 |
+
return normalized_matrix
|
38 |
+
|
39 |
+
|
40 |
+
def l2_normalize_tensors(tensor_tuple):
|
41 |
+
"""
|
42 |
+
Applies L2 normalization on the last two dimensions for each tensor in a tuple.
|
43 |
+
|
44 |
+
Parameters:
|
45 |
+
tensor_tuple (tuple of torch.Tensor): A tuple containing N tensors, each of shape (1, k, 30, 30).
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
tuple of torch.Tensor: A tuple containing N L2-normalized tensors.
|
49 |
+
"""
|
50 |
+
normalized_tensors = []
|
51 |
+
for tensor in tensor_tuple:
|
52 |
+
# Ensure the tensor is a floating-point type
|
53 |
+
tensor = tensor.float()
|
54 |
+
|
55 |
+
# Calculate L2 norm on the last two dimensions, keeping the dimensions using keepdim=True
|
56 |
+
l2_norm = torch.linalg.norm(tensor, dim=(-2, -1), keepdim=True)
|
57 |
+
|
58 |
+
# Apply L2 normalization
|
59 |
+
normalized_tensor = tensor / (
|
60 |
+
l2_norm + 1e-7) # Small value to avoid division by zero
|
61 |
+
|
62 |
+
normalized_tensors.append(normalized_tensor)
|
63 |
+
|
64 |
+
return tuple(normalized_tensors)
|
65 |
+
|
66 |
+
|
67 |
+
def z_normalize_tensors(tensor_tuple):
|
68 |
+
"""
|
69 |
+
Applies Z-normalization on the last two dimensions for each tensor in a tuple.
|
70 |
+
|
71 |
+
Parameters:
|
72 |
+
tensor_tuple (tuple of torch.Tensor): A tuple containing N tensors, each of shape (1, k, 30, 30).
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
tuple of torch.Tensor: A tuple containing N Z-normalized tensors.
|
76 |
+
"""
|
77 |
+
normalized_tensors = []
|
78 |
+
for tensor in tensor_tuple:
|
79 |
+
# Ensure the tensor is a floating-point type
|
80 |
+
tensor = tensor.float()
|
81 |
+
|
82 |
+
# Calculate mean and std on the last two dimensions
|
83 |
+
mean = tensor.mean(dim=(-2, -1), keepdim=True)
|
84 |
+
std = tensor.std(dim=(-2, -1), keepdim=True)
|
85 |
+
|
86 |
+
# Apply Z-normalization
|
87 |
+
normalized_tensor = (tensor - mean) / (
|
88 |
+
std + 1e-7) # Small value to avoid division by zero
|
89 |
+
|
90 |
+
normalized_tensors.append(normalized_tensor)
|
91 |
+
|
92 |
+
return tuple(normalized_tensors)
|
93 |
+
|
94 |
+
|
95 |
+
def apply_temperature_to_attention_tensors(tensor_tuple, temperature=1.0):
|
96 |
+
"""
|
97 |
+
Applies temperature scaling to the attention weights in each tensor in a tuple.
|
98 |
+
|
99 |
+
Parameters:
|
100 |
+
tensor_tuple (tuple of torch.Tensor): A tuple containing N tensors,
|
101 |
+
each of shape (1, k, 30, 30).
|
102 |
+
temperature (float): Temperature parameter to control the sharpness
|
103 |
+
of the attention weights. Default is 1.0.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
tuple of torch.Tensor: A tuple containing N tensors with scaled attention weights.
|
107 |
+
"""
|
108 |
+
scaled_attention_tensors = []
|
109 |
+
|
110 |
+
for tensor in tensor_tuple:
|
111 |
+
# Ensure the tensor is a floating-point type
|
112 |
+
tensor = tensor.float()
|
113 |
+
|
114 |
+
# Flatten the last two dimensions
|
115 |
+
flattened_tensor = tensor.reshape(1, tensor.shape[1],
|
116 |
+
-1) # Modified line here
|
117 |
+
|
118 |
+
# Apply temperature scaling and softmax along the last dimension
|
119 |
+
scaled_attention = flattened_tensor / temperature
|
120 |
+
scaled_attention = F.softmax(scaled_attention, dim=-1)
|
121 |
+
|
122 |
+
# Reshape to original shape
|
123 |
+
scaled_attention = scaled_attention.view_as(tensor)
|
124 |
+
|
125 |
+
scaled_attention_tensors.append(scaled_attention)
|
126 |
+
|
127 |
+
return tuple(scaled_attention_tensors)
|
128 |
+
|
129 |
+
|
130 |
+
def shorten_att(tensor_tuple, length=30):
|
131 |
+
shortend_tensors = []
|
132 |
+
for tensor in tensor_tuple:
|
133 |
+
shortend_tensors.append(tensor[:, :, :length, :length])
|
134 |
+
return tuple(shortend_tensors)
|
135 |
+
|
136 |
+
|
137 |
+
def keep_top_k(matrix, k=6):
|
138 |
+
"""
|
139 |
+
Keep only the top k values in each row, set the rest to 0.
|
140 |
+
|
141 |
+
Parameters:
|
142 |
+
matrix (numpy.ndarray): The input matrix.
|
143 |
+
k (int): The number of top values to keep in each row.
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
numpy.ndarray: The transformed matrix.
|
147 |
+
"""
|
148 |
+
topk_indices_per_row = np.argpartition(matrix, -k, axis=1)[:, -k:]
|
149 |
+
result_matrix = np.zeros_like(matrix)
|
150 |
+
|
151 |
+
for i in range(matrix.shape[0]):
|
152 |
+
result_matrix[i, topk_indices_per_row[i]] = matrix[
|
153 |
+
i, topk_indices_per_row[i]]
|
154 |
+
return result_matrix
|
155 |
+
|
156 |
+
|
157 |
+
def test_case_forward_enc_perceiver_tf_dec_t5():
|
158 |
+
import torch
|
159 |
+
from model.ymt3 import YourMT3
|
160 |
+
from config.config import audio_cfg, model_cfg, shared_cfg
|
161 |
+
model_cfg["encoder_type"] = "perceiver-tf"
|
162 |
+
model_cfg["encoder"]["perceiver-tf"]["attention_to_channel"] = True
|
163 |
+
model_cfg["encoder"]["perceiver-tf"]["num_latents"] = 24
|
164 |
+
model_cfg["decoder_type"] = "t5"
|
165 |
+
model_cfg["pre_decoder_type"] = "default"
|
166 |
+
|
167 |
+
audio_cfg["codec"] = "spec"
|
168 |
+
audio_cfg["hop_length"] = 300
|
169 |
+
model = YourMT3(audio_cfg=audio_cfg, model_cfg=model_cfg)
|
170 |
+
model.eval()
|
171 |
+
|
172 |
+
# x = torch.randn(2, 1, 32767)
|
173 |
+
# labels = torch.randint(0, 400, (2, 1024), requires_grad=False)
|
174 |
+
|
175 |
+
# # forward
|
176 |
+
# output = model.forward(x, labels)
|
177 |
+
|
178 |
+
# # inference
|
179 |
+
# result = model.inference(x, None)
|
180 |
+
|
181 |
+
# display latents
|
182 |
+
checkpoint = torch.load(
|
183 |
+
"../logs/ymt3/ptf_all_cross_rebal5_spec300_xk2_amp0811_edr_005_attend_c_full_plus_b52/checkpoints/model.ckpt",
|
184 |
+
map_location="cpu")
|
185 |
+
state_dict = checkpoint['state_dict']
|
186 |
+
new_state_dict = {
|
187 |
+
k: v
|
188 |
+
for k, v in state_dict.items() if 'pitchshift' not in k
|
189 |
+
}
|
190 |
+
model.load_state_dict(new_state_dict, strict=False)
|
191 |
+
|
192 |
+
latents = model.encoder.latent_array.latents.detach().numpy()
|
193 |
+
import matplotlib.pyplot as plt
|
194 |
+
import numpy as np
|
195 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
196 |
+
cos = cosine_similarity(latents)
|
197 |
+
|
198 |
+
from utils.data_modules import AMTDataModule
|
199 |
+
from einops import rearrange
|
200 |
+
dm = AMTDataModule(data_preset_multi={"presets": ["slakh"]})
|
201 |
+
dm.setup("test")
|
202 |
+
dl = dm.test_dataloader()
|
203 |
+
ds = list(dl.values())[0].dataset
|
204 |
+
audio, notes, tokens, _ = ds.__getitem__(7)
|
205 |
+
x = audio[[16], ::]
|
206 |
+
label = tokens[[16], :]
|
207 |
+
# spectrogram
|
208 |
+
x_spec = model.spectrogram(x)
|
209 |
+
plt.imshow(x_spec[0].detach().numpy().T, aspect='auto', origin='lower')
|
210 |
+
plt.title("spectrogram")
|
211 |
+
plt.xlabel('time step')
|
212 |
+
plt.ylabel('frequency bin')
|
213 |
+
plt.show()
|
214 |
+
x_conv = model.pre_encoder(x_spec)
|
215 |
+
# Create a larger figure
|
216 |
+
plt.figure(
|
217 |
+
figsize=(15,
|
218 |
+
10)) # Adjust these numbers as needed for width and height
|
219 |
+
plt.subplot(2, 4, 1)
|
220 |
+
plt.imshow(x_spec[0].detach().numpy().T, aspect='auto', origin='lower')
|
221 |
+
plt.title("spectrogram")
|
222 |
+
plt.xlabel('time step')
|
223 |
+
plt.ylabel('frequency bin')
|
224 |
+
plt.subplot(2, 4, 2)
|
225 |
+
plt.imshow(x_conv[0][:, :, 0].detach().numpy().T,
|
226 |
+
aspect='auto',
|
227 |
+
origin='lower')
|
228 |
+
plt.title("conv(spec), ch=0")
|
229 |
+
plt.xlabel('time step')
|
230 |
+
plt.ylabel('F')
|
231 |
+
plt.subplot(2, 4, 3)
|
232 |
+
plt.imshow(x_conv[0][:, :, 42].detach().numpy().T,
|
233 |
+
aspect='auto',
|
234 |
+
origin='lower')
|
235 |
+
plt.title("ch=42")
|
236 |
+
plt.xlabel('time step')
|
237 |
+
plt.ylabel('F')
|
238 |
+
plt.subplot(2, 4, 4)
|
239 |
+
plt.imshow(x_conv[0][:, :, 80].detach().numpy().T,
|
240 |
+
aspect='auto',
|
241 |
+
origin='lower')
|
242 |
+
plt.title("ch=80")
|
243 |
+
plt.xlabel('time step')
|
244 |
+
plt.ylabel('F')
|
245 |
+
plt.subplot(2, 4, 5)
|
246 |
+
plt.imshow(x_conv[0][:, :, 11].detach().numpy().T,
|
247 |
+
aspect='auto',
|
248 |
+
origin='lower')
|
249 |
+
plt.title("ch=11")
|
250 |
+
plt.xlabel('time step')
|
251 |
+
plt.ylabel('F')
|
252 |
+
plt.subplot(2, 4, 6)
|
253 |
+
plt.imshow(x_conv[0][:, :, 20].detach().numpy().T,
|
254 |
+
aspect='auto',
|
255 |
+
origin='lower')
|
256 |
+
plt.title("ch=20")
|
257 |
+
plt.xlabel('time step')
|
258 |
+
plt.ylabel('F')
|
259 |
+
plt.subplot(2, 4, 7)
|
260 |
+
plt.imshow(x_conv[0][:, :, 77].detach().numpy().T,
|
261 |
+
aspect='auto',
|
262 |
+
origin='lower')
|
263 |
+
plt.title("ch=77")
|
264 |
+
plt.xlabel('time step')
|
265 |
+
plt.ylabel('F')
|
266 |
+
plt.subplot(2, 4, 8)
|
267 |
+
plt.imshow(x_conv[0][:, :, 90].detach().numpy().T,
|
268 |
+
aspect='auto',
|
269 |
+
origin='lower')
|
270 |
+
plt.title("ch=90")
|
271 |
+
plt.xlabel('time step')
|
272 |
+
plt.ylabel('F')
|
273 |
+
plt.tight_layout()
|
274 |
+
plt.show()
|
275 |
+
|
276 |
+
# encoding
|
277 |
+
output = model.encoder(inputs_embeds=x_conv,
|
278 |
+
output_hidden_states=True,
|
279 |
+
output_attentions=True)
|
280 |
+
enc_hs_all, att, catt = output["hidden_states"], output[
|
281 |
+
"attentions"], output["cross_attentions"]
|
282 |
+
enc_hs_last = enc_hs_all[2]
|
283 |
+
|
284 |
+
# enc_hs: time-varying encoder hidden state
|
285 |
+
plt.subplot(2, 3, 1)
|
286 |
+
plt.imshow(enc_hs_all[0][0][:, :, 21].detach().numpy().T)
|
287 |
+
plt.title('ENC_HS B0, d21')
|
288 |
+
plt.colorbar(orientation='horizontal')
|
289 |
+
plt.ylabel('latent k')
|
290 |
+
plt.xlabel('t')
|
291 |
+
plt.subplot(2, 3, 4)
|
292 |
+
plt.imshow(enc_hs_all[0][0][:, :, 127].detach().numpy().T)
|
293 |
+
plt.colorbar(orientation='horizontal')
|
294 |
+
plt.title('B0, d127')
|
295 |
+
plt.ylabel('latent k')
|
296 |
+
plt.xlabel('t')
|
297 |
+
plt.subplot(2, 3, 2)
|
298 |
+
plt.imshow(enc_hs_all[1][0][:, :, 21].detach().numpy().T)
|
299 |
+
plt.colorbar(orientation='horizontal')
|
300 |
+
plt.title('B1, d21')
|
301 |
+
plt.ylabel('latent k')
|
302 |
+
plt.xlabel('t')
|
303 |
+
plt.subplot(2, 3, 5)
|
304 |
+
plt.imshow(enc_hs_all[1][0][:, :, 127].detach().numpy().T)
|
305 |
+
plt.colorbar(orientation='horizontal')
|
306 |
+
plt.title('B1, d127')
|
307 |
+
plt.ylabel('latent k')
|
308 |
+
plt.xlabel('t')
|
309 |
+
plt.subplot(2, 3, 3)
|
310 |
+
plt.imshow(enc_hs_all[2][0][:, :, 21].detach().numpy().T)
|
311 |
+
plt.colorbar(orientation='horizontal')
|
312 |
+
plt.title('B2, d21')
|
313 |
+
plt.ylabel('latent k')
|
314 |
+
plt.xlabel('t')
|
315 |
+
plt.subplot(2, 3, 6)
|
316 |
+
plt.imshow(enc_hs_all[2][0][:, :, 127].detach().numpy().T)
|
317 |
+
plt.colorbar(orientation='horizontal')
|
318 |
+
plt.title('B2, d127')
|
319 |
+
plt.ylabel('latent k')
|
320 |
+
plt.xlabel('t')
|
321 |
+
plt.tight_layout()
|
322 |
+
plt.show()
|
323 |
+
|
324 |
+
enc_hs_proj = model.pre_decoder(enc_hs_last)
|
325 |
+
plt.imshow(enc_hs_proj[0].detach().numpy())
|
326 |
+
plt.title(
|
327 |
+
'ENC_HS_PROJ: linear projection of encoder output, which is used for enc-dec cross attention'
|
328 |
+
)
|
329 |
+
plt.colorbar(orientation='horizontal')
|
330 |
+
plt.ylabel('latent k')
|
331 |
+
plt.xlabel('d')
|
332 |
+
plt.show()
|
333 |
+
|
334 |
+
plt.subplot(221)
|
335 |
+
plt.imshow(enc_hs_all[2][0][0, :, :].detach().numpy(), aspect='auto')
|
336 |
+
plt.title('enc_hs, t=0')
|
337 |
+
plt.ylabel('latent k')
|
338 |
+
plt.xlabel('d')
|
339 |
+
plt.subplot(222)
|
340 |
+
plt.imshow(enc_hs_all[2][0][10, :, :].detach().numpy(), aspect='auto')
|
341 |
+
plt.title('enc_hs, t=10')
|
342 |
+
plt.ylabel('latent k')
|
343 |
+
plt.xlabel('d')
|
344 |
+
plt.subplot(223)
|
345 |
+
plt.imshow(enc_hs_all[2][0][20, :, :].detach().numpy(), aspect='auto')
|
346 |
+
plt.title('enc_hs, t=20')
|
347 |
+
plt.ylabel('latent k')
|
348 |
+
plt.xlabel('d')
|
349 |
+
plt.subplot(224)
|
350 |
+
plt.imshow(enc_hs_all[2][0][30, :, :].detach().numpy(), aspect='auto')
|
351 |
+
plt.title('enc_hs, t=30')
|
352 |
+
plt.ylabel('latent k')
|
353 |
+
plt.xlabel('d')
|
354 |
+
plt.tight_layout()
|
355 |
+
plt.show()
|
356 |
+
|
357 |
+
# enc_hs correlation: which dim has most unique info?
|
358 |
+
plt.subplot(1, 3, 1)
|
359 |
+
a = rearrange(enc_hs_last, '1 t k d -> t (k d)').detach().numpy()
|
360 |
+
plt.imshow(cosine_similarity(a))
|
361 |
+
plt.title("enc hs, t x t cos_sim")
|
362 |
+
plt.subplot(1, 3, 2)
|
363 |
+
b = rearrange(enc_hs_last, '1 t k d -> k (t d)').detach().numpy()
|
364 |
+
plt.imshow(cosine_similarity(b))
|
365 |
+
plt.title("enc hs, k x k cos_sim")
|
366 |
+
plt.subplot(1, 3, 3)
|
367 |
+
c = rearrange(enc_hs_last, '1 t k d -> d (k t)').detach().numpy()
|
368 |
+
plt.imshow(cosine_similarity(c))
|
369 |
+
plt.title("cross att, d x d cos_sim")
|
370 |
+
plt.tight_layout()
|
371 |
+
plt.show()
|
372 |
+
|
373 |
+
# enc latent
|
374 |
+
plt.imshow(model.encoder.latent_array.latents.detach().numpy())
|
375 |
+
plt.title('latent array')
|
376 |
+
plt.xlabel('d')
|
377 |
+
plt.ylabel('latent k')
|
378 |
+
plt.show()
|
379 |
+
|
380 |
+
# enc Spectral Cross Attention: (T x head x K x D). How latent K attends to conv channel C?
|
381 |
+
plt.subplot(311)
|
382 |
+
plt.imshow(
|
383 |
+
torch.sum(torch.sum(catt[0][0], axis=0), axis=0).detach().numpy())
|
384 |
+
plt.title('block=0')
|
385 |
+
plt.ylabel('latent k')
|
386 |
+
plt.xlabel('conv channel')
|
387 |
+
plt.subplot(312)
|
388 |
+
plt.imshow(
|
389 |
+
torch.sum(torch.sum(catt[1][0], axis=0), axis=0).detach().numpy())
|
390 |
+
plt.title('block=1')
|
391 |
+
plt.ylabel('latent k')
|
392 |
+
plt.xlabel('conv channel')
|
393 |
+
plt.subplot(313)
|
394 |
+
plt.imshow(
|
395 |
+
torch.sum(torch.sum(catt[2][0], axis=0), axis=0).detach().numpy())
|
396 |
+
plt.title('block=2')
|
397 |
+
plt.ylabel('latent k')
|
398 |
+
plt.xlabel('conv channel')
|
399 |
+
plt.tight_layout()
|
400 |
+
plt.show()
|
401 |
+
# enc Latent Self-attention: How latent K attends to K?
|
402 |
+
plt.subplot(231)
|
403 |
+
plt.imshow(torch.sum(torch.sum(att[0][0], axis=1),
|
404 |
+
axis=0).detach().numpy(),
|
405 |
+
origin='upper')
|
406 |
+
plt.title('B0L0')
|
407 |
+
plt.xlabel('latent k')
|
408 |
+
plt.ylabel('latent k')
|
409 |
+
plt.subplot(234)
|
410 |
+
plt.imshow(torch.sum(torch.sum(att[0][1], axis=1),
|
411 |
+
axis=0).detach().numpy(),
|
412 |
+
origin='upper')
|
413 |
+
plt.title('B0L1')
|
414 |
+
plt.xlabel('latent k')
|
415 |
+
plt.ylabel('latent k')
|
416 |
+
plt.subplot(232)
|
417 |
+
plt.imshow(torch.sum(torch.sum(att[1][0], axis=1),
|
418 |
+
axis=0).detach().numpy(),
|
419 |
+
origin='upper')
|
420 |
+
plt.title('B1L0')
|
421 |
+
plt.xlabel('latent k')
|
422 |
+
plt.ylabel('latent k')
|
423 |
+
plt.subplot(235)
|
424 |
+
plt.imshow(torch.sum(torch.sum(att[1][1], axis=1),
|
425 |
+
axis=0).detach().numpy(),
|
426 |
+
origin='upper')
|
427 |
+
plt.title('B1L1')
|
428 |
+
plt.xlabel('latent k')
|
429 |
+
plt.ylabel('latent k')
|
430 |
+
plt.subplot(233)
|
431 |
+
plt.imshow(torch.sum(torch.sum(att[2][0], axis=1),
|
432 |
+
axis=0).detach().numpy(),
|
433 |
+
origin='upper')
|
434 |
+
plt.title('B2L0')
|
435 |
+
plt.xlabel('latent k')
|
436 |
+
plt.ylabel('latent k')
|
437 |
+
plt.subplot(236)
|
438 |
+
plt.imshow(torch.sum(torch.sum(att[2][1], axis=1),
|
439 |
+
axis=0).detach().numpy(),
|
440 |
+
origin='upper')
|
441 |
+
plt.title('B2L1')
|
442 |
+
plt.xlabel('latent k')
|
443 |
+
plt.ylabel('latent k')
|
444 |
+
plt.tight_layout()
|
445 |
+
plt.show()
|
446 |
+
# Time varying, different head for latent self-attention
|
447 |
+
plt.subplot(231)
|
448 |
+
plt.imshow(att[0][0][30, 3, :, :].detach().numpy())
|
449 |
+
plt.title('B0L0, t=30, Head=3')
|
450 |
+
plt.colorbar(orientation='horizontal')
|
451 |
+
plt.xlabel('k')
|
452 |
+
plt.ylabel('k')
|
453 |
+
plt.subplot(234)
|
454 |
+
plt.imshow(att[0][1][30, 3, :, :].detach().numpy())
|
455 |
+
plt.title('B0L1, t=30, Head=3')
|
456 |
+
plt.colorbar(orientation='horizontal')
|
457 |
+
plt.xlabel('k')
|
458 |
+
plt.ylabel('k')
|
459 |
+
plt.subplot(232)
|
460 |
+
plt.imshow(att[1][0][30, 3, :, :].detach().numpy())
|
461 |
+
plt.title('B1L0, t=30, Head=3')
|
462 |
+
plt.colorbar(orientation='horizontal')
|
463 |
+
plt.xlabel('k')
|
464 |
+
plt.ylabel('k')
|
465 |
+
plt.subplot(235)
|
466 |
+
plt.imshow(att[1][1][30, 3, :, :].detach().numpy())
|
467 |
+
plt.title('B1L1, t=30, Head=3')
|
468 |
+
plt.colorbar(orientation='horizontal')
|
469 |
+
plt.xlabel('k')
|
470 |
+
plt.ylabel('k')
|
471 |
+
plt.subplot(233)
|
472 |
+
plt.imshow(att[2][0][30, 3, :, :].detach().numpy())
|
473 |
+
plt.title('B2L0, t=30, Head=3')
|
474 |
+
plt.colorbar(orientation='horizontal')
|
475 |
+
plt.xlabel('k')
|
476 |
+
plt.ylabel('k')
|
477 |
+
plt.subplot(236)
|
478 |
+
plt.imshow(att[2][1][30, 3, :, :].detach().numpy())
|
479 |
+
plt.title('B2L1, t=30, Head=3')
|
480 |
+
plt.colorbar(orientation='horizontal')
|
481 |
+
plt.xlabel('k')
|
482 |
+
plt.ylabel('k')
|
483 |
+
plt.tight_layout()
|
484 |
+
plt.show()
|
485 |
+
plt.subplot(231)
|
486 |
+
plt.imshow(att[0][0][30, 5, :, :].detach().numpy())
|
487 |
+
plt.title('B0L0, t=30, Head=5')
|
488 |
+
plt.colorbar(orientation='horizontal')
|
489 |
+
plt.xlabel('k')
|
490 |
+
plt.ylabel('k')
|
491 |
+
plt.subplot(234)
|
492 |
+
plt.imshow(att[0][1][30, 5, :, :].detach().numpy())
|
493 |
+
plt.title('B0L1, t=30, Head=5')
|
494 |
+
plt.colorbar(orientation='horizontal')
|
495 |
+
plt.xlabel('k')
|
496 |
+
plt.ylabel('k')
|
497 |
+
plt.subplot(232)
|
498 |
+
plt.imshow(att[1][0][30, 5, :, :].detach().numpy())
|
499 |
+
plt.title('B1L0, t=30, Head=5')
|
500 |
+
plt.colorbar(orientation='horizontal')
|
501 |
+
plt.xlabel('k')
|
502 |
+
plt.ylabel('k')
|
503 |
+
plt.subplot(235)
|
504 |
+
plt.imshow(att[1][1][30, 5, :, :].detach().numpy())
|
505 |
+
plt.title('B1L1, t=30, Head=5')
|
506 |
+
plt.colorbar(orientation='horizontal')
|
507 |
+
plt.xlabel('k')
|
508 |
+
plt.ylabel('k')
|
509 |
+
plt.subplot(233)
|
510 |
+
plt.imshow(att[2][0][30, 5, :, :].detach().numpy())
|
511 |
+
plt.title('B2L0, t=30, Head=5')
|
512 |
+
plt.colorbar(orientation='horizontal')
|
513 |
+
plt.xlabel('k')
|
514 |
+
plt.ylabel('k')
|
515 |
+
plt.subplot(236)
|
516 |
+
plt.imshow(att[2][1][30, 5, :, :].detach().numpy())
|
517 |
+
plt.title('B2L1, t=30, Head=5')
|
518 |
+
plt.colorbar(orientation='horizontal')
|
519 |
+
plt.xlabel('k')
|
520 |
+
plt.ylabel('k')
|
521 |
+
plt.tight_layout()
|
522 |
+
plt.show()
|
523 |
+
|
524 |
+
# Temporal Self-attention: (K x H x T x T) How time t attends to time t?
|
525 |
+
plt.subplot(231)
|
526 |
+
plt.imshow(torch.sum(torch.sum(att[0][2], axis=1),
|
527 |
+
axis=0).detach().numpy(),
|
528 |
+
origin='upper')
|
529 |
+
plt.title('B0L2')
|
530 |
+
plt.xlabel('t')
|
531 |
+
plt.ylabel('t')
|
532 |
+
plt.subplot(234)
|
533 |
+
plt.imshow(torch.sum(torch.sum(att[0][3], axis=1),
|
534 |
+
axis=0).detach().numpy(),
|
535 |
+
origin='upper')
|
536 |
+
plt.title('B0L3')
|
537 |
+
plt.xlabel('t')
|
538 |
+
plt.ylabel('t')
|
539 |
+
plt.subplot(232)
|
540 |
+
plt.imshow(torch.sum(torch.sum(att[1][2], axis=1),
|
541 |
+
axis=0).detach().numpy(),
|
542 |
+
origin='upper')
|
543 |
+
plt.title('B1L2')
|
544 |
+
plt.xlabel('t')
|
545 |
+
plt.ylabel('t')
|
546 |
+
plt.subplot(235)
|
547 |
+
plt.imshow(torch.sum(torch.sum(att[1][3], axis=1),
|
548 |
+
axis=0).detach().numpy(),
|
549 |
+
origin='upper')
|
550 |
+
plt.title('B1L3')
|
551 |
+
plt.xlabel('t')
|
552 |
+
plt.ylabel('t')
|
553 |
+
plt.subplot(233)
|
554 |
+
plt.imshow(torch.sum(torch.sum(att[2][2], axis=1),
|
555 |
+
axis=0).detach().numpy(),
|
556 |
+
origin='upper')
|
557 |
+
plt.title('B2L2')
|
558 |
+
plt.xlabel('t')
|
559 |
+
plt.ylabel('t')
|
560 |
+
plt.subplot(236)
|
561 |
+
plt.imshow(torch.sum(torch.sum(att[2][3], axis=1),
|
562 |
+
axis=0).detach().numpy(),
|
563 |
+
origin='upper')
|
564 |
+
plt.title('B2L3')
|
565 |
+
plt.xlabel('t')
|
566 |
+
plt.ylabel('t')
|
567 |
+
plt.tight_layout()
|
568 |
+
plt.show()
|
569 |
+
|
570 |
+
# decoding
|
571 |
+
dec_input_ids = model.shift_right_fn(label)
|
572 |
+
dec_inputs_embeds = model.embed_tokens(dec_input_ids)
|
573 |
+
dec_output = model.decoder(inputs_embeds=dec_inputs_embeds,
|
574 |
+
encoder_hidden_states=enc_hs_proj,
|
575 |
+
output_attentions=True,
|
576 |
+
output_hidden_states=True,
|
577 |
+
return_dict=True)
|
578 |
+
dec_att, dec_catt = dec_output.attentions, dec_output.cross_attentions
|
579 |
+
dec_hs_all = dec_output.hidden_states
|
580 |
+
|
581 |
+
# dec att
|
582 |
+
plt.subplot(1, 2, 1)
|
583 |
+
plt.imshow(torch.sum(dec_att[0][0], axis=0).detach().numpy())
|
584 |
+
plt.title('decoder attention, layer0')
|
585 |
+
plt.xlabel('decoder time step')
|
586 |
+
plt.ylabel('decoder time step')
|
587 |
+
plt.subplot(1, 2, 2)
|
588 |
+
plt.imshow(torch.sum(dec_att[7][0], axis=0).detach().numpy())
|
589 |
+
plt.title('decoder attention, layer8')
|
590 |
+
plt.xlabel('decoder time step')
|
591 |
+
plt.show()
|
592 |
+
# dec catt
|
593 |
+
plt.imshow(np.rot90((torch.sum(dec_catt[7][0],
|
594 |
+
axis=0))[:1000, :].detach().numpy()),
|
595 |
+
origin='upper',
|
596 |
+
aspect='auto')
|
597 |
+
plt.colorbar()
|
598 |
+
plt.title('decoder cross att, layer8')
|
599 |
+
plt.xlabel('decoder time step')
|
600 |
+
plt.ylabel('encoder frame')
|
601 |
+
plt.show()
|
602 |
+
# dec catt by head with xxx
|
603 |
+
dec_att_z = z_normalize_tensors(shorten_att(dec_att))
|
604 |
+
plt.imshow(dec_att_z[0][0, 0, :, :].detach().numpy())
|
605 |
+
from bertviz import head_view
|
606 |
+
token = []
|
607 |
+
for i in label[0, :30]:
|
608 |
+
token.append(str(i))
|
609 |
+
head_view(dec_att_z, tokens)
|
610 |
+
|
611 |
+
# dec_hs
|
612 |
+
plt.subplot(1, 2, 1)
|
613 |
+
plt.imshow(dec_hs_all[0][0].detach().numpy(), origin='upper')
|
614 |
+
plt.colorbar(orientation='horizontal')
|
615 |
+
plt.title('decoder hidden state, layer1')
|
616 |
+
plt.xlabel('hidden dim')
|
617 |
+
plt.ylabel('time step')
|
618 |
+
plt.subplot(1, 2, 2)
|
619 |
+
plt.imshow(dec_hs_all[7][0].detach().numpy(), origin='upper')
|
620 |
+
plt.colorbar(orientation='horizontal')
|
621 |
+
plt.title('decoder hidden state, layer8')
|
622 |
+
plt.xlabel('hidden dim')
|
623 |
+
plt.show()
|
624 |
+
|
625 |
+
# lm head
|
626 |
+
logits = model.lm_head(dec_hs_all[0])
|
627 |
+
plt.imshow(logits[0][0:200, :].detach().numpy(), origin='upper')
|
628 |
+
plt.title('lm head softmax')
|
629 |
+
plt.xlabel('vocab dim')
|
630 |
+
plt.ylabel('time step')
|
631 |
+
plt.xlim([1000, 1350])
|
632 |
+
plt.show()
|
633 |
+
softmax = torch.nn.Softmax(dim=2)
|
634 |
+
logits_sm = softmax(logits)
|
635 |
+
plt.imshow(logits_sm[0][0:200, :].detach().numpy(), origin='upper')
|
636 |
+
plt.title('lm head softmax')
|
637 |
+
plt.xlabel('vocab dim')
|
638 |
+
plt.ylabel('time step')
|
639 |
+
plt.xlim([1000, 1350])
|
640 |
+
plt.show()
|
extras/perceivertf_multi_inspect.py
ADDED
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torchaudio
|
5 |
+
from matplotlib.animation import FuncAnimation
|
6 |
+
|
7 |
+
def l2_normalize(matrix):
|
8 |
+
"""
|
9 |
+
L2 Normalize the matrix along its rows.
|
10 |
+
|
11 |
+
Parameters:
|
12 |
+
matrix (numpy.ndarray): The input matrix.
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
numpy.ndarray: The L2 normalized matrix.
|
16 |
+
"""
|
17 |
+
l2_norms = np.linalg.norm(matrix, axis=1, keepdims=True)
|
18 |
+
normalized_matrix = matrix / l2_norms
|
19 |
+
return normalized_matrix
|
20 |
+
|
21 |
+
|
22 |
+
def z_normalize(matrix):
|
23 |
+
"""
|
24 |
+
Z-normalize the matrix along its rows (mean=0 and std=1).
|
25 |
+
Z-normalization is also known as "standardization", and derives from z-score.
|
26 |
+
Z = (X - mean) / std
|
27 |
+
Z-nomarlized, each row has mean=0 and std=1.
|
28 |
+
|
29 |
+
Parameters:
|
30 |
+
matrix (numpy.ndarray): The input matrix.
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
numpy.ndarray: The Z normalized matrix.
|
34 |
+
"""
|
35 |
+
mean = np.mean(matrix, axis=1, keepdims=True)
|
36 |
+
std = np.std(matrix, axis=1, keepdims=True)
|
37 |
+
normalized_matrix = (matrix - mean) / std
|
38 |
+
return normalized_matrix
|
39 |
+
|
40 |
+
|
41 |
+
def l2_normalize_tensors(tensor_tuple):
|
42 |
+
"""
|
43 |
+
Applies L2 normalization on the last two dimensions for each tensor in a tuple.
|
44 |
+
|
45 |
+
Parameters:
|
46 |
+
tensor_tuple (tuple of torch.Tensor): A tuple containing N tensors, each of shape (1, k, 30, 30).
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
tuple of torch.Tensor: A tuple containing N L2-normalized tensors.
|
50 |
+
"""
|
51 |
+
normalized_tensors = []
|
52 |
+
for tensor in tensor_tuple:
|
53 |
+
# Ensure the tensor is a floating-point type
|
54 |
+
tensor = tensor.float()
|
55 |
+
|
56 |
+
# Calculate L2 norm on the last two dimensions, keeping the dimensions using keepdim=True
|
57 |
+
l2_norm = torch.linalg.norm(tensor, dim=(-2, -1), keepdim=True)
|
58 |
+
|
59 |
+
# Apply L2 normalization
|
60 |
+
normalized_tensor = tensor / (
|
61 |
+
l2_norm + 1e-7) # Small value to avoid division by zero
|
62 |
+
|
63 |
+
normalized_tensors.append(normalized_tensor)
|
64 |
+
|
65 |
+
return tuple(normalized_tensors)
|
66 |
+
|
67 |
+
|
68 |
+
def z_normalize_tensors(tensor_tuple):
|
69 |
+
"""
|
70 |
+
Applies Z-normalization on the last two dimensions for each tensor in a tuple.
|
71 |
+
|
72 |
+
Parameters:
|
73 |
+
tensor_tuple (tuple of torch.Tensor): A tuple containing N tensors, each of shape (1, k, 30, 30).
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
tuple of torch.Tensor: A tuple containing N Z-normalized tensors.
|
77 |
+
"""
|
78 |
+
normalized_tensors = []
|
79 |
+
for tensor in tensor_tuple:
|
80 |
+
# Ensure the tensor is a floating-point type
|
81 |
+
tensor = tensor.float()
|
82 |
+
|
83 |
+
# Calculate mean and std on the last two dimensions
|
84 |
+
mean = tensor.mean(dim=(-2, -1), keepdim=True)
|
85 |
+
std = tensor.std(dim=(-2, -1), keepdim=True)
|
86 |
+
|
87 |
+
# Apply Z-normalization
|
88 |
+
normalized_tensor = (tensor - mean) / (
|
89 |
+
std + 1e-7) # Small value to avoid division by zero
|
90 |
+
|
91 |
+
normalized_tensors.append(normalized_tensor)
|
92 |
+
|
93 |
+
return tuple(normalized_tensors)
|
94 |
+
|
95 |
+
|
96 |
+
def apply_temperature_to_attention_tensors(tensor_tuple, temperature=1.0):
|
97 |
+
"""
|
98 |
+
Applies temperature scaling to the attention weights in each tensor in a tuple.
|
99 |
+
|
100 |
+
Parameters:
|
101 |
+
tensor_tuple (tuple of torch.Tensor): A tuple containing N tensors,
|
102 |
+
each of shape (1, k, 30, 30).
|
103 |
+
temperature (float): Temperature parameter to control the sharpness
|
104 |
+
of the attention weights. Default is 1.0.
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
tuple of torch.Tensor: A tuple containing N tensors with scaled attention weights.
|
108 |
+
"""
|
109 |
+
scaled_attention_tensors = []
|
110 |
+
|
111 |
+
for tensor in tensor_tuple:
|
112 |
+
# Ensure the tensor is a floating-point type
|
113 |
+
tensor = tensor.float()
|
114 |
+
|
115 |
+
# Flatten the last two dimensions
|
116 |
+
flattened_tensor = tensor.reshape(1, tensor.shape[1],
|
117 |
+
-1) # Modified line here
|
118 |
+
|
119 |
+
# Apply temperature scaling and softmax along the last dimension
|
120 |
+
scaled_attention = flattened_tensor / temperature
|
121 |
+
scaled_attention = F.softmax(scaled_attention, dim=-1)
|
122 |
+
|
123 |
+
# Reshape to original shape
|
124 |
+
scaled_attention = scaled_attention.view_as(tensor)
|
125 |
+
|
126 |
+
scaled_attention_tensors.append(scaled_attention)
|
127 |
+
|
128 |
+
return tuple(scaled_attention_tensors)
|
129 |
+
|
130 |
+
|
131 |
+
def shorten_att(tensor_tuple, length=30):
|
132 |
+
shortend_tensors = []
|
133 |
+
for tensor in tensor_tuple:
|
134 |
+
shortend_tensors.append(tensor[:, :, :length, :length])
|
135 |
+
return tuple(shortend_tensors)
|
136 |
+
|
137 |
+
|
138 |
+
def keep_top_k(matrix, k=6):
|
139 |
+
"""
|
140 |
+
Keep only the top k values in each row, set the rest to 0.
|
141 |
+
|
142 |
+
Parameters:
|
143 |
+
matrix (numpy.ndarray): The input matrix.
|
144 |
+
k (int): The number of top values to keep in each row.
|
145 |
+
|
146 |
+
Returns:
|
147 |
+
numpy.ndarray: The transformed matrix.
|
148 |
+
"""
|
149 |
+
topk_indices_per_row = np.argpartition(matrix, -k, axis=1)[:, -k:]
|
150 |
+
result_matrix = np.zeros_like(matrix)
|
151 |
+
|
152 |
+
for i in range(matrix.shape[0]):
|
153 |
+
result_matrix[i, topk_indices_per_row[i]] = matrix[
|
154 |
+
i, topk_indices_per_row[i]]
|
155 |
+
return result_matrix
|
156 |
+
|
157 |
+
|
158 |
+
def test_case_forward_enc_perceiver_tf_dec_multi_t5():
|
159 |
+
import torch
|
160 |
+
from model.ymt3 import YourMT3
|
161 |
+
from config.config import audio_cfg, model_cfg, shared_cfg
|
162 |
+
model_cfg["encoder_type"] = "perceiver-tf"
|
163 |
+
|
164 |
+
model_cfg["encoder"]["perceiver-tf"]["attention_to_channel"] = True
|
165 |
+
model_cfg["encoder"]["perceiver-tf"]["num_latents"] = 26
|
166 |
+
|
167 |
+
model_cfg["decoder_type"] = "multi-t5"
|
168 |
+
|
169 |
+
audio_cfg["codec"] = "spec"
|
170 |
+
audio_cfg["hop_length"] = 300
|
171 |
+
model = YourMT3(audio_cfg=audio_cfg, model_cfg=model_cfg)
|
172 |
+
model.eval()
|
173 |
+
|
174 |
+
# x = torch.randn(2, 1, 32767)
|
175 |
+
# labels = torch.randint(0, 400, (2, 1024), requires_grad=False)
|
176 |
+
|
177 |
+
# # forward
|
178 |
+
# output = model.forward(x, labels)
|
179 |
+
|
180 |
+
# # inference
|
181 |
+
# result = model.inference(x, None)
|
182 |
+
|
183 |
+
# display latents
|
184 |
+
checkpoint = torch.load(
|
185 |
+
"../logs/ymt3/ptf_mc13_256_all_cross_v6_xk5_amp0811_edr005_attend_c_full_plus_2psn_nl26_sb_b26r_800k/checkpoints/model.ckpt",
|
186 |
+
map_location="cpu")
|
187 |
+
state_dict = checkpoint['state_dict']
|
188 |
+
new_state_dict = {
|
189 |
+
k: v
|
190 |
+
for k, v in state_dict.items() if 'pitchshift' not in k
|
191 |
+
}
|
192 |
+
model.load_state_dict(new_state_dict, strict=False)
|
193 |
+
|
194 |
+
latents = model.encoder.latent_array.latents.detach().numpy()
|
195 |
+
import matplotlib.pyplot as plt
|
196 |
+
import numpy as np
|
197 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
198 |
+
cos = cosine_similarity(latents)
|
199 |
+
|
200 |
+
from utils.data_modules import AMTDataModule
|
201 |
+
from einops import rearrange
|
202 |
+
# dm = AMTDataModule(data_preset_multi={"presets": ["slakh"]})
|
203 |
+
#dm.setup("test")
|
204 |
+
# dl = dm.test_dataloader()
|
205 |
+
# ds = list(dl.values())[0].dataset
|
206 |
+
# audio, notes, tokens, _ = ds.__getitem__(7)
|
207 |
+
# x = audio[[16], ::]
|
208 |
+
# label = tokens[[16], :]
|
209 |
+
|
210 |
+
# from utils.task_manager import TaskManager
|
211 |
+
# tm = TaskManager(task_name='mc13_256')
|
212 |
+
# dm = AMTDataModule(data_preset_multi={"presets": ["slakh"]},
|
213 |
+
# task_manager=tm,
|
214 |
+
# train_stem_iaug_prob=None,
|
215 |
+
# train_stem_xaug_policy=None)
|
216 |
+
# dm.setup('fit')
|
217 |
+
# dl = dm.train_dataloader()
|
218 |
+
# ds = dl.flattened[0].dataset
|
219 |
+
# audio,tokens, _, _ = ds.__getitem__(67)
|
220 |
+
# x = audio[[5], ::]
|
221 |
+
# label = tokens[[5], :]
|
222 |
+
# save audio
|
223 |
+
# torchaudio.save("singing.wav", x[0, :, :], 16000)
|
224 |
+
|
225 |
+
x, _ = torchaudio.load('piano.wav')#'test.wav')
|
226 |
+
x = x.unsqueeze(0)
|
227 |
+
|
228 |
+
# spectrogram
|
229 |
+
x_spec = model.spectrogram(x)
|
230 |
+
x_conv = model.pre_encoder(x_spec)
|
231 |
+
# Create a larger figure
|
232 |
+
plt.figure(
|
233 |
+
figsize=(15,
|
234 |
+
10)) # Adjust these numbers as needed for width and height
|
235 |
+
plt.subplot(2, 4, 1)
|
236 |
+
plt.imshow(x_spec[0].detach().numpy().T, aspect='auto', origin='lower')
|
237 |
+
plt.title("spectrogram")
|
238 |
+
plt.xlabel('time step')
|
239 |
+
plt.ylabel('frequency bin')
|
240 |
+
plt.subplot(2, 4, 2)
|
241 |
+
plt.imshow(x_conv[0][:, :, 0].detach().numpy().T,
|
242 |
+
aspect='auto',
|
243 |
+
origin='lower')
|
244 |
+
plt.title("conv(spec), ch=0")
|
245 |
+
plt.xlabel('time step')
|
246 |
+
plt.ylabel('F')
|
247 |
+
plt.subplot(2, 4, 3)
|
248 |
+
plt.imshow(x_conv[0][:, :, 42].detach().numpy().T,
|
249 |
+
aspect='auto',
|
250 |
+
origin='lower')
|
251 |
+
plt.title("ch=42")
|
252 |
+
plt.xlabel('time step')
|
253 |
+
plt.ylabel('F')
|
254 |
+
plt.subplot(2, 4, 4)
|
255 |
+
plt.imshow(x_conv[0][:, :, 80].detach().numpy().T,
|
256 |
+
aspect='auto',
|
257 |
+
origin='lower')
|
258 |
+
plt.title("ch=80")
|
259 |
+
plt.xlabel('time step')
|
260 |
+
plt.ylabel('F')
|
261 |
+
plt.subplot(2, 4, 5)
|
262 |
+
plt.imshow(x_conv[0][:, :, 11].detach().numpy().T,
|
263 |
+
aspect='auto',
|
264 |
+
origin='lower')
|
265 |
+
plt.title("ch=11")
|
266 |
+
plt.xlabel('time step')
|
267 |
+
plt.ylabel('F')
|
268 |
+
plt.subplot(2, 4, 6)
|
269 |
+
plt.imshow(x_conv[0][:, :, 20].detach().numpy().T,
|
270 |
+
aspect='auto',
|
271 |
+
origin='lower')
|
272 |
+
plt.title("ch=20")
|
273 |
+
plt.xlabel('time step')
|
274 |
+
plt.ylabel('F')
|
275 |
+
plt.subplot(2, 4, 7)
|
276 |
+
plt.imshow(x_conv[0][:, :, 77].detach().numpy().T,
|
277 |
+
aspect='auto',
|
278 |
+
origin='lower')
|
279 |
+
plt.title("ch=77")
|
280 |
+
plt.xlabel('time step')
|
281 |
+
plt.ylabel('F')
|
282 |
+
plt.subplot(2, 4, 8)
|
283 |
+
plt.imshow(x_conv[0][:, :, 90].detach().numpy().T,
|
284 |
+
aspect='auto',
|
285 |
+
origin='lower')
|
286 |
+
plt.title("ch=90")
|
287 |
+
plt.xlabel('time step')
|
288 |
+
plt.ylabel('F')
|
289 |
+
plt.tight_layout()
|
290 |
+
plt.show()
|
291 |
+
|
292 |
+
# encoding
|
293 |
+
output = model.encoder(inputs_embeds=x_conv,
|
294 |
+
output_hidden_states=True,
|
295 |
+
output_attentions=True)
|
296 |
+
enc_hs_all, att, catt = output["hidden_states"], output[
|
297 |
+
"attentions"], output["cross_attentions"]
|
298 |
+
enc_hs_last = enc_hs_all[2]
|
299 |
+
|
300 |
+
# enc_hs: time-varying encoder hidden state
|
301 |
+
plt.subplot(2, 3, 1)
|
302 |
+
plt.imshow(enc_hs_all[0][0][:, :, 21].detach().numpy().T)
|
303 |
+
plt.title('ENC_HS B0, d21')
|
304 |
+
plt.colorbar(orientation='horizontal')
|
305 |
+
plt.ylabel('latent k')
|
306 |
+
plt.xlabel('t')
|
307 |
+
plt.subplot(2, 3, 4)
|
308 |
+
plt.imshow(enc_hs_all[0][0][:, :, 127].detach().numpy().T)
|
309 |
+
plt.colorbar(orientation='horizontal')
|
310 |
+
plt.title('B0, d127')
|
311 |
+
plt.ylabel('latent k')
|
312 |
+
plt.xlabel('t')
|
313 |
+
plt.subplot(2, 3, 2)
|
314 |
+
plt.imshow(enc_hs_all[1][0][:, :, 21].detach().numpy().T)
|
315 |
+
plt.colorbar(orientation='horizontal')
|
316 |
+
plt.title('B1, d21')
|
317 |
+
plt.ylabel('latent k')
|
318 |
+
plt.xlabel('t')
|
319 |
+
plt.subplot(2, 3, 5)
|
320 |
+
plt.imshow(enc_hs_all[1][0][:, :, 127].detach().numpy().T)
|
321 |
+
plt.colorbar(orientation='horizontal')
|
322 |
+
plt.title('B1, d127')
|
323 |
+
plt.ylabel('latent k')
|
324 |
+
plt.xlabel('t')
|
325 |
+
plt.subplot(2, 3, 3)
|
326 |
+
plt.imshow(enc_hs_all[2][0][:, :, 21].detach().numpy().T)
|
327 |
+
plt.colorbar(orientation='horizontal')
|
328 |
+
plt.title('B2, d21')
|
329 |
+
plt.ylabel('latent k')
|
330 |
+
plt.xlabel('t')
|
331 |
+
plt.subplot(2, 3, 6)
|
332 |
+
plt.imshow(enc_hs_all[2][0][:, :, 127].detach().numpy().T)
|
333 |
+
plt.colorbar(orientation='horizontal')
|
334 |
+
plt.title('B2, d127')
|
335 |
+
plt.ylabel('latent k')
|
336 |
+
plt.xlabel('t')
|
337 |
+
plt.tight_layout()
|
338 |
+
plt.show()
|
339 |
+
|
340 |
+
# enc_hs: time-varying encoder hidden state by k (block, 1, t, k, d)
|
341 |
+
# --> (t, d) for each k in last block
|
342 |
+
data = enc_hs_all[2][0].detach().numpy() # (T, K, D)
|
343 |
+
fig, axs = plt.subplots(
|
344 |
+
5, 5, figsize=(10, 9)) # 25 subplots arranged in 5 rows and 5 columns
|
345 |
+
axs = axs.flatten(
|
346 |
+
) # Flatten the 2D array of axes to 1D for easy iteration
|
347 |
+
|
348 |
+
for k in range(25): # Iterating through K indices from 0 to 24
|
349 |
+
axs[k].imshow(data[:, k, :].T,
|
350 |
+
cmap='viridis') # Transposing the matrix to swap T and D
|
351 |
+
axs[k].set_title(f'k={k}')
|
352 |
+
axs[k].set_xlabel('Time step')
|
353 |
+
axs[k].set_ylabel('Dim')
|
354 |
+
|
355 |
+
# Adjusting layout for better visibility
|
356 |
+
plt.tight_layout()
|
357 |
+
plt.show()
|
358 |
+
|
359 |
+
#!! Projected encoder hidden state for 13 channels, that is conditioning for decoder
|
360 |
+
enc_hs_proj = model.pre_decoder(enc_hs_last)
|
361 |
+
fig, axs = plt.subplots(1, 13, figsize=(26, 8)) # 13 subplots in a row
|
362 |
+
data = enc_hs_proj[0].detach().numpy()
|
363 |
+
for ch in range(13):
|
364 |
+
axs[ch].imshow(np.rot90(data[ch]), cmap='viridis') # Rotate 90 degrees
|
365 |
+
axs[ch].set_title(f'ch: {ch}')
|
366 |
+
axs[ch].set_xlabel('Time step')
|
367 |
+
axs[ch].set_ylabel('Dim')
|
368 |
+
plt.suptitle(
|
369 |
+
'linear projection of encoder outputs by channel, which is conditioning for enc-dec cross attention',
|
370 |
+
y=0.1,
|
371 |
+
fontsize=12)
|
372 |
+
plt.tight_layout(rect=[0, 0.1, 1, 1])
|
373 |
+
plt.show()
|
374 |
+
|
375 |
+
plt.subplot(221)
|
376 |
+
plt.imshow(enc_hs_all[2][0][0, :, :].detach().numpy(), aspect='auto')
|
377 |
+
plt.title('enc_hs, t=0')
|
378 |
+
plt.ylabel('latent k')
|
379 |
+
plt.xlabel('d')
|
380 |
+
plt.subplot(222)
|
381 |
+
plt.imshow(enc_hs_all[2][0][10, :, :].detach().numpy(), aspect='auto')
|
382 |
+
plt.title('enc_hs, t=10')
|
383 |
+
plt.ylabel('latent k')
|
384 |
+
plt.xlabel('d')
|
385 |
+
plt.subplot(223)
|
386 |
+
plt.imshow(enc_hs_all[2][0][20, :, :].detach().numpy(), aspect='auto')
|
387 |
+
plt.title('enc_hs, t=20')
|
388 |
+
plt.ylabel('latent k')
|
389 |
+
plt.xlabel('d')
|
390 |
+
plt.subplot(224)
|
391 |
+
plt.imshow(enc_hs_all[2][0][30, :, :].detach().numpy(), aspect='auto')
|
392 |
+
plt.title('enc_hs, t=30')
|
393 |
+
plt.ylabel('latent k')
|
394 |
+
plt.xlabel('d')
|
395 |
+
plt.tight_layout()
|
396 |
+
plt.show()
|
397 |
+
|
398 |
+
# enc_hs correlation: which dim has most unique info?
|
399 |
+
plt.subplot(1, 3, 1)
|
400 |
+
a = rearrange(enc_hs_last, '1 t k d -> t (k d)').detach().numpy()
|
401 |
+
plt.imshow(cosine_similarity(a))
|
402 |
+
plt.title("enc hs, t x t cos_sim")
|
403 |
+
plt.subplot(1, 3, 2)
|
404 |
+
b = rearrange(enc_hs_last, '1 t k d -> k (t d)').detach().numpy()
|
405 |
+
plt.imshow(cosine_similarity(b))
|
406 |
+
plt.title("enc hs, k x k cos_sim")
|
407 |
+
plt.subplot(1, 3, 3)
|
408 |
+
c = rearrange(enc_hs_last, '1 t k d -> d (k t)').detach().numpy()
|
409 |
+
plt.imshow(cosine_similarity(c))
|
410 |
+
plt.title("cross att, d x d cos_sim")
|
411 |
+
plt.tight_layout()
|
412 |
+
plt.show()
|
413 |
+
|
414 |
+
#!! enc latent
|
415 |
+
plt.imshow(model.encoder.latent_array.latents.detach().numpy())
|
416 |
+
plt.title('latent array')
|
417 |
+
plt.xlabel('d')
|
418 |
+
plt.ylabel('latent k')
|
419 |
+
plt.show()
|
420 |
+
|
421 |
+
#!! enc Spectral Cross Attention: (T x head x K x D). How latent K attends to conv channel C?
|
422 |
+
plt.subplot(311)
|
423 |
+
plt.imshow(
|
424 |
+
torch.sum(torch.sum(catt[0][0], axis=0), axis=0).detach().numpy())
|
425 |
+
plt.title('block=0')
|
426 |
+
plt.ylabel('latent k')
|
427 |
+
plt.xlabel('conv channel')
|
428 |
+
plt.subplot(312)
|
429 |
+
plt.imshow(
|
430 |
+
torch.sum(torch.sum(catt[1][0], axis=0), axis=0).detach().numpy())
|
431 |
+
plt.title('block=1')
|
432 |
+
plt.ylabel('latent k')
|
433 |
+
plt.xlabel('conv channel')
|
434 |
+
plt.subplot(313)
|
435 |
+
plt.imshow(
|
436 |
+
torch.sum(torch.sum(catt[2][0], axis=0), axis=0).detach().numpy())
|
437 |
+
plt.title('block=2')
|
438 |
+
plt.ylabel('latent k')
|
439 |
+
plt.xlabel('conv channel')
|
440 |
+
# f'spectral cross attention. T-C-F Model',
|
441 |
+
# y=0,
|
442 |
+
# fontsize=12)
|
443 |
+
plt.tight_layout()
|
444 |
+
plt.show()
|
445 |
+
|
446 |
+
#!! Animation of SCA for varying time, head in last block
|
447 |
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 6)) # Adjusted figsize for better layout
|
448 |
+
|
449 |
+
# Function to update the plots for each frame in the animation
|
450 |
+
def update(t):
|
451 |
+
# Clear previous images
|
452 |
+
ax1.clear()
|
453 |
+
ax2.clear()
|
454 |
+
|
455 |
+
# Update subplot for h=3
|
456 |
+
ax1.imshow(catt[2][0][t, 3, :, :].detach().numpy())
|
457 |
+
ax1.set_title(f'block=2, t={t}, head=3')
|
458 |
+
ax1.set_ylabel('latent k'); ax1.set_xlabel('conv channel')
|
459 |
+
|
460 |
+
# Update subplot for h=5
|
461 |
+
ax2.imshow(catt[2][0][t, 5, :, :].detach().numpy())
|
462 |
+
ax2.set_title(f'block=2, t={t}, head=5')
|
463 |
+
ax2.set_ylabel('latent k'); ax2.set_xlabel('conv channel')
|
464 |
+
|
465 |
+
# Adjust layout
|
466 |
+
fig.tight_layout()
|
467 |
+
|
468 |
+
# Create the animation
|
469 |
+
anim = FuncAnimation(fig, update, frames=range(0, 110), interval=200)
|
470 |
+
anim.save('animation.gif', writer='pillow', fps=5)
|
471 |
+
|
472 |
+
|
473 |
+
|
474 |
+
fig, axs = plt.subplots(3, 1, figsize=(12, 18), gridspec_kw={'height_ratios': [1, 1, 0.5]}) # Adjusted for different subplot sizes
|
475 |
+
|
476 |
+
# Subplots for catt visualization (h=3 and h=5)
|
477 |
+
ax_catt3, ax_catt5, ax_att_row = axs
|
478 |
+
|
479 |
+
# Creating 8 subplots for att visualization within the third row
|
480 |
+
for i in range(8):
|
481 |
+
ax_att_row = fig.add_subplot(3, 8, 17 + i) # Adding subplots in the third row
|
482 |
+
|
483 |
+
# Update function for the combined animation
|
484 |
+
def combined_update_smaller_att(t):
|
485 |
+
# Update subplot for catt with h=3
|
486 |
+
ax_catt3.clear()
|
487 |
+
ax_catt3.imshow(catt[2][0][t, 3, :, :].detach().numpy())
|
488 |
+
ax_catt3.set_title(f'block=2, t={t}, head=3')
|
489 |
+
ax_catt3.set_ylabel('latent k'); ax_catt3.set_xlabel('conv channel')
|
490 |
+
|
491 |
+
# Update subplot for catt with h=5
|
492 |
+
ax_catt5.clear()
|
493 |
+
ax_catt5.imshow(catt[2][0][t, 5, :, :].detach().numpy())
|
494 |
+
ax_catt5.set_title(f'block=2, t={t}, head=5')
|
495 |
+
ax_catt5.set_ylabel('latent k'); ax_catt5.set_xlabel('conv channel')
|
496 |
+
|
497 |
+
# Update subplots for att (8 heads in one row)
|
498 |
+
for i in range(8):
|
499 |
+
ax = fig.add_subplot(3, 8, 17 + i)
|
500 |
+
ax.clear()
|
501 |
+
ax.imshow(att[0][1][t, i, :, :].detach().numpy(), cmap='viridis')
|
502 |
+
ax.set_title(f't={t}, head={i}')
|
503 |
+
ax.set_xlabel('k')
|
504 |
+
ax.set_ylabel('k')
|
505 |
+
ax.axis('square') # Make each subplot square-shaped
|
506 |
+
|
507 |
+
# Adjust layout
|
508 |
+
fig.tight_layout()
|
509 |
+
combined_anim_smaller_att = FuncAnimation(fig, combined_update_smaller_att, frames=range(0, 110), interval=200)
|
510 |
+
combined_anim_smaller_att.save('combined_animation_smaller_att.gif', writer='pillow', fps=5)
|
511 |
+
|
512 |
+
|
513 |
+
|
514 |
+
|
515 |
+
|
516 |
+
# enc Latent Self-attention: How latent K attends to K?
|
517 |
+
plt.subplot(231)
|
518 |
+
plt.imshow(torch.sum(torch.sum(att[0][0], axis=1),
|
519 |
+
axis=0).detach().numpy(),
|
520 |
+
origin='upper')
|
521 |
+
plt.title('B0L0')
|
522 |
+
plt.xlabel('latent k')
|
523 |
+
plt.ylabel('latent k')
|
524 |
+
plt.subplot(234)
|
525 |
+
plt.imshow(torch.sum(torch.sum(att[0][1], axis=1),
|
526 |
+
axis=0).detach().numpy(),
|
527 |
+
origin='upper')
|
528 |
+
plt.title('B0L1')
|
529 |
+
plt.xlabel('latent k')
|
530 |
+
plt.ylabel('latent k')
|
531 |
+
plt.subplot(232)
|
532 |
+
plt.imshow(torch.sum(torch.sum(att[1][0], axis=1),
|
533 |
+
axis=0).detach().numpy(),
|
534 |
+
origin='upper')
|
535 |
+
plt.title('B1L0')
|
536 |
+
plt.xlabel('latent k')
|
537 |
+
plt.ylabel('latent k')
|
538 |
+
plt.subplot(235)
|
539 |
+
plt.imshow(torch.sum(torch.sum(att[1][1], axis=1),
|
540 |
+
axis=0).detach().numpy(),
|
541 |
+
origin='upper')
|
542 |
+
plt.title('B1L1')
|
543 |
+
plt.xlabel('latent k')
|
544 |
+
plt.ylabel('latent k')
|
545 |
+
plt.subplot(233)
|
546 |
+
plt.imshow(torch.sum(torch.sum(att[2][0], axis=1),
|
547 |
+
axis=0).detach().numpy(),
|
548 |
+
origin='upper')
|
549 |
+
plt.title('B2L0')
|
550 |
+
plt.xlabel('latent k')
|
551 |
+
plt.ylabel('latent k')
|
552 |
+
plt.subplot(236)
|
553 |
+
plt.imshow(torch.sum(torch.sum(att[2][1], axis=1),
|
554 |
+
axis=0).detach().numpy(),
|
555 |
+
origin='upper')
|
556 |
+
plt.title('B2L1')
|
557 |
+
plt.xlabel('latent k')
|
558 |
+
plt.ylabel('latent k')
|
559 |
+
plt.tight_layout()
|
560 |
+
plt.show()
|
561 |
+
# Time varying, different head for latent self-attention
|
562 |
+
#!!! Display latent self-attention for each head
|
563 |
+
bl = 0 # first latent transformer block, last layer att
|
564 |
+
data = att[bl][1].detach().numpy()
|
565 |
+
time_steps = [30, 50, 100]
|
566 |
+
fig, axs = plt.subplots(
|
567 |
+
len(time_steps), 8,
|
568 |
+
figsize=(16, 6)) # Subplots for each time step and head
|
569 |
+
for i, t in enumerate(time_steps):
|
570 |
+
for head in range(8):
|
571 |
+
axs[i, head].imshow(data[t, head, :, :], cmap='viridis')
|
572 |
+
axs[i, head].set_title(f't={t}, head={head}')
|
573 |
+
axs[i, head].set_xlabel('k')
|
574 |
+
axs[i, head].set_ylabel('k')
|
575 |
+
plt.suptitle(
|
576 |
+
f'latent transformer block={bl}, last layer self-attention over time',
|
577 |
+
y=0,
|
578 |
+
fontsize=12)
|
579 |
+
plt.tight_layout()
|
580 |
+
plt.show()
|
581 |
+
|
582 |
+
bl = 1 # second latent transformer block, last layer att
|
583 |
+
data = att[bl][1].detach().numpy()
|
584 |
+
time_steps = [30, 50, 100]
|
585 |
+
fig, axs = plt.subplots(
|
586 |
+
len(time_steps), 8,
|
587 |
+
figsize=(16, 6)) # Subplots for each time step and head
|
588 |
+
for i, t in enumerate(time_steps):
|
589 |
+
for head in range(8):
|
590 |
+
axs[i, head].imshow(data[t, head, :, :], cmap='viridis')
|
591 |
+
axs[i, head].set_title(f't={t}, head={head}')
|
592 |
+
axs[i, head].set_xlabel('k')
|
593 |
+
axs[i, head].set_ylabel('k')
|
594 |
+
plt.suptitle(
|
595 |
+
f'latent transformer block={bl}, last layer self-attention over time',
|
596 |
+
y=0,
|
597 |
+
fontsize=12)
|
598 |
+
plt.tight_layout()
|
599 |
+
plt.show()
|
600 |
+
|
601 |
+
bl = 2 # last latent transformer block, last layer att
|
602 |
+
data = att[bl][1].detach().numpy()
|
603 |
+
time_steps = [30, 50, 100]
|
604 |
+
fig, axs = plt.subplots(
|
605 |
+
len(time_steps), 8,
|
606 |
+
figsize=(16, 6)) # Subplots for each time step and head
|
607 |
+
for i, t in enumerate(time_steps):
|
608 |
+
for head in range(8):
|
609 |
+
axs[i, head].imshow(data[t, head, :, :], cmap='viridis')
|
610 |
+
axs[i, head].set_title(f't={t}, head={head}')
|
611 |
+
axs[i, head].set_xlabel('k')
|
612 |
+
axs[i, head].set_ylabel('k')
|
613 |
+
plt.suptitle(
|
614 |
+
f'latent transformer block={bl}, last layer self-attention over time',
|
615 |
+
y=0,
|
616 |
+
fontsize=12)
|
617 |
+
plt.tight_layout()
|
618 |
+
plt.show()
|
619 |
+
|
620 |
+
# Temporal Self-attention: (K x H x T x T) How time t attends to time t?
|
621 |
+
plt.subplot(231)
|
622 |
+
plt.imshow(torch.sum(torch.sum(att[0][2], axis=1),
|
623 |
+
axis=0).detach().numpy(),
|
624 |
+
origin='upper')
|
625 |
+
plt.title('B0L2')
|
626 |
+
plt.xlabel('t')
|
627 |
+
plt.ylabel('t')
|
628 |
+
plt.subplot(234)
|
629 |
+
plt.imshow(torch.sum(torch.sum(att[0][3], axis=1),
|
630 |
+
axis=0).detach().numpy(),
|
631 |
+
origin='upper')
|
632 |
+
plt.title('B0L3')
|
633 |
+
plt.xlabel('t')
|
634 |
+
plt.ylabel('t')
|
635 |
+
plt.subplot(232)
|
636 |
+
plt.imshow(torch.sum(torch.sum(att[1][2], axis=1),
|
637 |
+
axis=0).detach().numpy(),
|
638 |
+
origin='upper')
|
639 |
+
plt.title('B1L2')
|
640 |
+
plt.xlabel('t')
|
641 |
+
plt.ylabel('t')
|
642 |
+
plt.subplot(235)
|
643 |
+
plt.imshow(torch.sum(torch.sum(att[1][3], axis=1),
|
644 |
+
axis=0).detach().numpy(),
|
645 |
+
origin='upper')
|
646 |
+
plt.title('B1L3')
|
647 |
+
plt.xlabel('t')
|
648 |
+
plt.ylabel('t')
|
649 |
+
plt.subplot(233)
|
650 |
+
plt.imshow(torch.sum(torch.sum(att[2][2], axis=1),
|
651 |
+
axis=0).detach().numpy(),
|
652 |
+
origin='upper')
|
653 |
+
plt.title('B2L2')
|
654 |
+
plt.xlabel('t')
|
655 |
+
plt.ylabel('t')
|
656 |
+
plt.subplot(236)
|
657 |
+
plt.imshow(torch.sum(torch.sum(att[2][3], axis=1),
|
658 |
+
axis=0).detach().numpy(),
|
659 |
+
origin='upper')
|
660 |
+
plt.title('B2L3')
|
661 |
+
plt.xlabel('t')
|
662 |
+
plt.ylabel('t')
|
663 |
+
plt.tight_layout()
|
664 |
+
plt.show()
|
665 |
+
|
666 |
+
# decoding
|
667 |
+
dec_input_ids = model.shift_right_fn(label)
|
668 |
+
dec_inputs_embeds = model.embed_tokens(dec_input_ids)
|
669 |
+
dec_output = model.decoder(inputs_embeds=dec_inputs_embeds,
|
670 |
+
encoder_hidden_states=enc_hs_proj,
|
671 |
+
output_attentions=True,
|
672 |
+
output_hidden_states=True,
|
673 |
+
return_dict=True)
|
674 |
+
dec_att, dec_catt = dec_output.attentions, dec_output.cross_attentions
|
675 |
+
dec_hs_all = dec_output.hidden_states
|
676 |
+
dec_last_hs = dec_output.last_hidden_state
|
677 |
+
|
678 |
+
# lm head
|
679 |
+
logits = model.lm_head(dec_last_hs)
|
680 |
+
|
681 |
+
# pred ids
|
682 |
+
pred_ids = torch.argmax(logits, dim=3)
|
683 |
+
|
684 |
+
# dec att
|
685 |
+
plt.subplot(1, 2, 1)
|
686 |
+
plt.imshow(torch.sum(dec_att[5][0], axis=0).detach().numpy())
|
687 |
+
plt.title('decoder attention, layer0')
|
688 |
+
plt.xlabel('decoder time step')
|
689 |
+
plt.ylabel('decoder time step')
|
690 |
+
plt.subplot(1, 2, 2)
|
691 |
+
plt.imshow(torch.sum(dec_att[7][0], axis=0).detach().numpy())
|
692 |
+
plt.title('decoder attention, final layer')
|
693 |
+
plt.xlabel('decoder step')
|
694 |
+
plt.show()
|
695 |
+
|
696 |
+
|
697 |
+
# dec catt
|
698 |
+
def remove_values_after_eos(catt_np, pred_ids, max_k):
|
699 |
+
# catt_np: (k, head, t, t)
|
700 |
+
# pred_ids: (1, k, t))
|
701 |
+
max_length = pred_ids.shape[-1]
|
702 |
+
seq_lengths = np.zeros((max_k), dtype=np.int32)
|
703 |
+
for k in range(max_k):
|
704 |
+
for t in range(max_length):
|
705 |
+
if pred_ids[0, k, t] == 1:
|
706 |
+
break
|
707 |
+
catt_np[k, :, t+1:, :] = 0
|
708 |
+
# catt_np[k, :, :, t+1:] = 0
|
709 |
+
seq_lengths[k] = t+1
|
710 |
+
return catt_np, seq_lengths
|
711 |
+
|
712 |
+
# data = dec_catt[1].detach().numpy() # last layer's cross attention
|
713 |
+
l = 4
|
714 |
+
data = dec_catt[l].detach().numpy()
|
715 |
+
data, seq_lengths = remove_values_after_eos(data, pred_ids, max_k=13)
|
716 |
+
seq_lengths[:]= 256
|
717 |
+
|
718 |
+
fig, axs = plt.subplots(13, 6, figsize=(21, 39)) # 13 rows (for k=0:12) and 7 columns (for head=0:6)
|
719 |
+
for k in range(13):
|
720 |
+
s = seq_lengths[k]
|
721 |
+
for head in range(6):
|
722 |
+
axs[k, head].imshow(data[k, head, :s, :].T, aspect='auto', cmap='viridis')
|
723 |
+
axs[k, head].set_title(f'Layer {l}, k={k}, head={head}')
|
724 |
+
axs[k, head].set_xlabel('Decoder step')
|
725 |
+
axs[k, head].set_ylabel('Encoder frame')
|
726 |
+
plt.tight_layout()
|
727 |
+
plt.show()
|
728 |
+
|
729 |
+
|
730 |
+
# # dec catt by head with xxx
|
731 |
+
# dec_att_z = z_normalize_tensors(shorten_att(dec_att))
|
732 |
+
# plt.imshow(dec_att_z[0][0, 0, :, :].detach().numpy())
|
733 |
+
# from bertviz import head_view
|
734 |
+
# token = []
|
735 |
+
# for i in label[0, :30]:
|
736 |
+
# token.append(str(i))
|
737 |
+
# head_view(dec_att_z, tokens)
|
738 |
+
|
739 |
+
# dec_hs
|
740 |
+
plt.subplot(1, 2, 1)
|
741 |
+
k=2
|
742 |
+
plt.imshow(dec_last_hs[0][k].detach().numpy(), origin='upper')
|
743 |
+
plt.colorbar(orientation='horizontal')
|
744 |
+
plt.title('decoder last hidden state, k=0')
|
745 |
+
plt.xlabel('hidden dim')
|
746 |
+
plt.ylabel('time step')
|
747 |
+
plt.subplot(1, 2, 2)
|
748 |
+
k=12
|
749 |
+
plt.imshow(dec_last_hs[0][k].detach().numpy(), origin='upper')
|
750 |
+
plt.colorbar(orientation='horizontal')
|
751 |
+
plt.title('decoder last hidden state, k=12')
|
752 |
+
plt.xlabel('hidden dim')
|
753 |
+
plt.show()
|
754 |
+
|
755 |
+
# lm head
|
756 |
+
logits = model.lm_head(dec_last_hs)
|
757 |
+
k=6
|
758 |
+
plt.imshow(logits[0][k][0:200, :].detach().numpy().T, origin='upper')
|
759 |
+
plt.title('lm head output')
|
760 |
+
plt.xlabel('vocab dim')
|
761 |
+
plt.ylabel('time step')
|
762 |
+
plt.show()
|
763 |
+
softmax = torch.nn.Softmax(dim=3)
|
764 |
+
logits_sm = softmax(logits) # B, K, T, V
|
765 |
+
k=6
|
766 |
+
plt.imshow(logits_sm[0][k][:255, :].detach().numpy().T, origin='upper')
|
767 |
+
plt.title('lm head softmax')
|
768 |
+
plt.xlabel('vocab dim')
|
769 |
+
plt.ylabel('time step')
|
770 |
+
# plt.xlim([1000, 1350])
|
771 |
+
plt.show()
|
772 |
+
|
773 |
+
k = 10
|
774 |
+
print(torch.argmax(logits, dim=3)[0,k,:])
|
775 |
+
|
776 |
+
|
777 |
+
|
778 |
+
|
extras/pitch_shift_benchmark.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Test the speed of the augmentation """
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
|
5 |
+
# Device
|
6 |
+
device = torch.device("cuda")
|
7 |
+
# device = torch.device("cpu")
|
8 |
+
|
9 |
+
# Music
|
10 |
+
# x, _ = torchaudio.load("music.wav")
|
11 |
+
# slice_length = 32767
|
12 |
+
# n_slices = 80
|
13 |
+
# slices = [x[0, i * slice_length:(i + 1) * slice_length] for i in range(n_slices)]
|
14 |
+
# x = torch.stack(slices) # (80, 32767)
|
15 |
+
# Sine wave
|
16 |
+
t = torch.arange(0, 2.0479, 1 / 16000) # 2.05 seconds at 16kHz
|
17 |
+
x = torch.sin(2 * torch.pi * 440 * t) * 0.5
|
18 |
+
x = x.reshape(1, 1, 32767).tile(80, 1, 1)
|
19 |
+
x = x.to(device)
|
20 |
+
|
21 |
+
############################################################################################
|
22 |
+
# torch-audiomentation: https://github.com/asteroid-team/torch-audiomentation
|
23 |
+
#
|
24 |
+
# process time <CPU>: 1.18 s ± 5.35 ms
|
25 |
+
# process time <GPU>: 58 ms
|
26 |
+
# GPU memory usage: 3.8 GB per 1 semitone
|
27 |
+
############################################################################################
|
28 |
+
import torch
|
29 |
+
from torch_audiomentations import Compose, PitchShift, Gain, PolarityInversion
|
30 |
+
|
31 |
+
apply_augmentation = Compose(transforms=[
|
32 |
+
# Gain(
|
33 |
+
# min_gain_in_db=-15.0,
|
34 |
+
# max_gain_in_db=5.0,
|
35 |
+
# p=0.5,
|
36 |
+
# ),
|
37 |
+
# PolarityInversion(p=0.5)
|
38 |
+
PitchShift(
|
39 |
+
min_transpose_semitones=0,
|
40 |
+
max_transpose_semitones=2.2,
|
41 |
+
mode="per_batch", #"per_example",
|
42 |
+
p=1.0,
|
43 |
+
p_mode="per_batch",
|
44 |
+
sample_rate=16000,
|
45 |
+
target_rate=16000)
|
46 |
+
])
|
47 |
+
x_am = apply_augmentation(x, sample_rate=16000)
|
48 |
+
|
49 |
+
############################################################################################
|
50 |
+
# torchaudio:
|
51 |
+
#
|
52 |
+
# process time <CPU>: 4.01 s ± 19.6 ms per loop
|
53 |
+
# process time <GPU>: 25.1 ms ± 161 µs per loop
|
54 |
+
# memory usage <GPU>: 1.2 (growth to 5.49) GB per 1 semitone
|
55 |
+
############################################################################################
|
56 |
+
from torchaudio import transforms
|
57 |
+
|
58 |
+
ta_transform = transforms.PitchShift(16000, n_steps=2).to(device)
|
59 |
+
x_ta = ta_transform(x)
|
60 |
+
|
61 |
+
############################################################################################
|
62 |
+
# YourMT3 pitch_shift_layer:
|
63 |
+
#
|
64 |
+
# process time <CPU>: 389ms ± 22ms, (stretch=143 ms, resampler=245 ms)
|
65 |
+
# process time <GPU>: 7.18 ms ± 17.3 µs (stretch=6.47 ms, resampler=0.71 ms)
|
66 |
+
# memory usage: 16 MB per 1 semitone (average)
|
67 |
+
############################################################################################
|
68 |
+
from model.pitchshift_layer import PitchShiftLayer
|
69 |
+
|
70 |
+
ps_ymt3 = PitchShiftLayer(pshift_range=[2, 2], fs=16000, min_gcd=16, n_fft=2048).to(device)
|
71 |
+
x_ymt3 = ps_ymt3(x, 2)
|
72 |
+
|
73 |
+
############################################################################################
|
74 |
+
# Plot 1: Comparison of Process Time and GPU Memory Usage for 3 Pitch Shifting Methods
|
75 |
+
############################################################################################
|
76 |
+
import matplotlib.pyplot as plt
|
77 |
+
|
78 |
+
# Model names
|
79 |
+
models = ['torch-audiomentation', 'torchaudio', 'YourMT3:PitchShiftLayer']
|
80 |
+
|
81 |
+
# Process time (CPU) in seconds
|
82 |
+
cpu_time = [1.18, 4.01, 0.389]
|
83 |
+
|
84 |
+
# Process time (GPU) in milliseconds
|
85 |
+
gpu_time = [58, 25.1, 7.18]
|
86 |
+
|
87 |
+
# GPU memory usage in GB
|
88 |
+
gpu_memory = [3.8, 5.49, 0.016]
|
89 |
+
|
90 |
+
# Creating subplots
|
91 |
+
fig, axs = plt.subplots(1, 3, figsize=(15, 5))
|
92 |
+
|
93 |
+
# Creating bar charts
|
94 |
+
bar1 = axs[0].bar(models, cpu_time, color=['#FFB6C1', '#ADD8E6', '#98FB98'])
|
95 |
+
bar2 = axs[1].bar(models, gpu_time, color=['#FFB6C1', '#ADD8E6', '#98FB98'])
|
96 |
+
bar3 = axs[2].bar(models, gpu_memory, color=['#FFB6C1', '#ADD8E6', '#98FB98'])
|
97 |
+
|
98 |
+
# Adding labels and titles
|
99 |
+
axs[0].set_ylabel('Time (s)')
|
100 |
+
axs[0].set_title('Process Time (CPU) bsz=80')
|
101 |
+
axs[1].set_ylabel('Time (ms)')
|
102 |
+
axs[1].set_title('Process Time (GPU) bsz=80')
|
103 |
+
axs[2].set_ylabel('Memory (GB)')
|
104 |
+
axs[2].set_title('GPU Memory Usage per semitone')
|
105 |
+
|
106 |
+
# Adding grid for better readability of the plots
|
107 |
+
for ax in axs:
|
108 |
+
ax.grid(axis='y')
|
109 |
+
ax.set_yscale('log')
|
110 |
+
ax.set_xticklabels(models, rotation=45, ha="right")
|
111 |
+
|
112 |
+
# Adding text labels above the bars
|
113 |
+
for i, rect in enumerate(bar1):
|
114 |
+
axs[0].text(
|
115 |
+
rect.get_x() + rect.get_width() / 2,
|
116 |
+
rect.get_height(),
|
117 |
+
f'{cpu_time[i]:.2f} s',
|
118 |
+
ha='center',
|
119 |
+
va='bottom')
|
120 |
+
for i, rect in enumerate(bar2):
|
121 |
+
axs[1].text(
|
122 |
+
rect.get_x() + rect.get_width() / 2,
|
123 |
+
rect.get_height(),
|
124 |
+
f'{gpu_time[i]:.2f} ms',
|
125 |
+
ha='center',
|
126 |
+
va='bottom')
|
127 |
+
for i, rect in enumerate(bar3):
|
128 |
+
axs[2].text(
|
129 |
+
rect.get_x() + rect.get_width() / 2,
|
130 |
+
rect.get_height(),
|
131 |
+
f'{gpu_memory[i]:.3f} GB',
|
132 |
+
ha='center',
|
133 |
+
va='bottom')
|
134 |
+
plt.tight_layout()
|
135 |
+
plt.show()
|
136 |
+
|
137 |
+
############################################################################################
|
138 |
+
# Plot 2: Stretch and Resampler Processing Time Contribution
|
139 |
+
############################################################################################
|
140 |
+
# Data
|
141 |
+
processing_type = ['Stretch (Phase Vocoder)', 'Resampler (Conv1D)']
|
142 |
+
cpu_times = [143, 245] # [Stretch, Resampler] times for CPU in milliseconds
|
143 |
+
gpu_times = [6.47, 0.71] # [Stretch, Resampler] times for GPU in milliseconds
|
144 |
+
|
145 |
+
# Creating subplots
|
146 |
+
fig, axs = plt.subplots(1, 2, figsize=(12, 6))
|
147 |
+
|
148 |
+
# Plotting bar charts
|
149 |
+
axs[0].bar(processing_type, cpu_times, color=['#ADD8E6', '#98FB98'])
|
150 |
+
axs[1].bar(processing_type, gpu_times, color=['#ADD8E6', '#98FB98'])
|
151 |
+
|
152 |
+
# Adding labels and titles
|
153 |
+
axs[0].set_ylabel('Time (ms)')
|
154 |
+
axs[0].set_title('Contribution of CPU Processing Time: YMT3-PS (BSZ=80)')
|
155 |
+
axs[1].set_title('Contribution of GPU Processing Time: YMT3-PS (BSZ=80)')
|
156 |
+
|
157 |
+
# Adding grid for better readability of the plots
|
158 |
+
for ax in axs:
|
159 |
+
ax.grid(axis='y')
|
160 |
+
ax.set_yscale('log') # Log scale to better visualize the smaller values
|
161 |
+
|
162 |
+
# Adding values on top of the bars
|
163 |
+
for ax, times in zip(axs, [cpu_times, gpu_times]):
|
164 |
+
for idx, time in enumerate(times):
|
165 |
+
ax.text(idx, time, f"{time:.2f} ms", ha='center', va='bottom', fontsize=8)
|
166 |
+
plt.tight_layout()
|
167 |
+
plt.show()
|
extras/run_spleeter_mir1k.sh
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
shopt -s globstar
|
3 |
+
for file in "$1"/**/*.wav; do
|
4 |
+
echo $file
|
5 |
+
output_dir="tmp"
|
6 |
+
spleeter separate -b 256k -B tensorflow -p spleeter:2stems -o $output_dir $file -f {instrument}.{codec}
|
7 |
+
sox --ignore-length tmp/accompaniment.wav -r 16000 -c 1 -b 16 tmp/accompaniment_16k.wav
|
8 |
+
sox --ignore-length tmp/vocals.wav -r 16000 -c 1 -b 16 tmp/vocals_16k.wav
|
9 |
+
acc_file="${file//.wav/_accompaniment.wav}"
|
10 |
+
voc_file="${file//.wav/_vocals.wav}"
|
11 |
+
mv -f "tmp/accompaniment_16k.wav" $acc_file
|
12 |
+
mv -f "tmp/vocals_16k.wav" $voc_file
|
13 |
+
echo $acc_file
|
14 |
+
echo $voc_file
|
15 |
+
rm -rf tmp
|
16 |
+
done
|
17 |
+
rm -rf pretrained_models
|
extras/run_spleeter_mirst500.sh
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
shopt -s globstar
|
3 |
+
for file in "$1"/**/*.wav; do
|
4 |
+
output_dir="${file%/*}"
|
5 |
+
input_file="$output_dir/converted_Mixture.wav"
|
6 |
+
spleeter separate -p spleeter:2stems -o $output_dir $input_file -f {instrument}.{codec}
|
7 |
+
ffmpeg -i "$output_dir/vocals.wav" -acodec pcm_s16le -ac 1 -ar 16000 -y "$output_dir/vocals_16k.wav"
|
8 |
+
ffmpeg -i "$output_dir/accompaniment.wav" -acodec pcm_s16le -ac 1 -ar 16000 -y "$output_dir/accompaniment_16k.wav"
|
9 |
+
rm "$output_dir/vocals.wav"
|
10 |
+
rm "$output_dir/accompaniment.wav"
|
11 |
+
mv "$output_dir/vocals_16k.wav" "$output_dir/vocals.wav"
|
12 |
+
mv "$output_dir/accompaniment_16k.wav" "$output_dir/accompaniment.wav"
|
13 |
+
done
|
model/__pycache__/conformer_mod.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|