Datasets:
Modalities:
Text
Size:
10K - 100K
File size: 2,001 Bytes
56f638d cb30f5f 70b44b2 cb30f5f 43890df cb30f5f 43890df a520b94 43890df cb30f5f 43890df cb30f5f a520b94 cb30f5f a520b94 cb30f5f 43890df cb30f5f 43890df 457eef2 bfd96af 457eef2 1671500 f28e08e 1671500 a520b94 457eef2 43890df 56f638d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
task_categories:
- translation
- text-generation
language:
- bm
- fr
size_categories:
- 10K<n<100K
---
# BAYƐLƐMABAGA: Parallel French - Bambara Dataset for Machine Learning
## Overview
The Bayelemabaga dataset is a collection of 46976 aligned machine translation ready Bambara-French lines, originating from [Corpus Bambara de Reference](http://cormande.huma-num.fr/corbama/run.cgi/first_form). The dataset is constitued of text extracted from **264** text files, varing from periodicals, books, short stories, blog posts, part of the Bible and the Quran.
## Snapshot: 46976
| | |
|:---|---:|
| **Lines** | **46976** |
| French Tokens (spacy) | 691312 |
| Bambara Tokens (daba) | 660732 |
| French Types | 32018 |
| Bambara Types | 29382 |
| Avg. Fr line length | 77.6 |
| Avg. Bam line length | 61.69 |
| Number of text sources | 264 |
## Data Splits
| | | |
|:-----:|:---:|------:|
| Train | 80% | 37580 |
| Valid | 10% | 4698 |
| Test | 10% | 4698 |
||
## Remarks
* We are working on resolving some last minute misalignment issues.
### Maintenance
* This dataset is supposed to be actively maintained.
### Benchmarks:
- `Coming soon`
### Sources
- [`sources`](./bayelemabaga/sources.txt)
### To note:
- ʃ => (sh/shy) sound: Symbol left in the dataset, although not a part of bambara orthography nor French orthography.
## License
- `CC-BY-SA-4.0`
## Version
- `1.0.1`
## Citation
```
@misc{bayelemabagamldataset2022
title={Machine Learning Dataset Development for Manding Languages},
author={
Valentin Vydrin and
Jean-Jacques Meric and
Kirill Maslinsky and
Andrij Rovenchak and
Allahsera Auguste Tapo and
Sebastien Diarra and
Christopher Homan and
Marco Zampieri and
Michael Leventhal
},
howpublished = {url{https://github.com/robotsmali-ai/datasets}},
year={2022}
}
```
## Contacts
- `sdiarra <at> robotsmali <dot> org`
- `aat3261 <at> rit <dot> edu` |