holylovenia
commited on
Commit
·
93a5b6e
1
Parent(s):
a3bb5c6
Upload id_wsd.py with huggingface_hub
Browse files
id_wsd.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Dict, List, Tuple
|
4 |
+
from nusacrowd.utils.constants import Tasks
|
5 |
+
from nusacrowd.utils import schemas
|
6 |
+
|
7 |
+
import datasets
|
8 |
+
import json
|
9 |
+
|
10 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
11 |
+
|
12 |
+
_CITATION = """\
|
13 |
+
@inproceedings{mahendra-etal-2018-cross,
|
14 |
+
title = "Cross-Lingual and Supervised Learning Approach for {I}ndonesian Word Sense Disambiguation Task",
|
15 |
+
author = "Mahendra, Rahmad and
|
16 |
+
Septiantri, Heninggar and
|
17 |
+
Wibowo, Haryo Akbarianto and
|
18 |
+
Manurung, Ruli and
|
19 |
+
Adriani, Mirna",
|
20 |
+
booktitle = "Proceedings of the 9th Global Wordnet Conference",
|
21 |
+
month = jan,
|
22 |
+
year = "2018",
|
23 |
+
address = "Nanyang Technological University (NTU), Singapore",
|
24 |
+
publisher = "Global Wordnet Association",
|
25 |
+
url = "https://aclanthology.org/2018.gwc-1.28",
|
26 |
+
pages = "245--250",
|
27 |
+
abstract = "Ambiguity is a problem we frequently face in Natural Language Processing. Word Sense Disambiguation (WSD) is a task to determine the correct sense of an ambiguous word. However, research in WSD for Indonesian is still rare to find. The availability of English-Indonesian parallel corpora and WordNet for both languages can be used as training data for WSD by applying Cross-Lingual WSD method. This training data is used as an input to build a model using supervised machine learning algorithms. Our research also examines the use of Word Embedding features to build the WSD model.",
|
28 |
+
}
|
29 |
+
"""
|
30 |
+
|
31 |
+
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
32 |
+
_LOCAL = False
|
33 |
+
|
34 |
+
_DATASETNAME = "indonesian_wsd"
|
35 |
+
|
36 |
+
_DESCRIPTION = """\
|
37 |
+
Word Sense Disambiguation (WSD) is a task to determine the correct sense of an ambiguous word.
|
38 |
+
The training data was collected from news websites and manually annotated. The words in training data were processed using the morphological analysis to obtain lemma.
|
39 |
+
The features being used were some words around the target word (including the words before and after the target word), the nearest verb from the
|
40 |
+
target word, the transitive verb around the target word, and the document context.
|
41 |
+
"""
|
42 |
+
|
43 |
+
_HOMEPAGE = "https://github.com/rmahendra/Indonesian-WSD"
|
44 |
+
|
45 |
+
_LICENSE = "Unknown"
|
46 |
+
|
47 |
+
_URLS = {
|
48 |
+
_DATASETNAME: "https://github.com/rmahendra/Indonesian-WSD/raw/master/dataset-clwsd-ina.zip",
|
49 |
+
}
|
50 |
+
|
51 |
+
_SUPPORTED_TASKS = [Tasks.WORD_SENSE_DISAMBIGUATION]
|
52 |
+
|
53 |
+
_SOURCE_VERSION = "1.0.0"
|
54 |
+
|
55 |
+
_NUSANTARA_VERSION = "1.0.0"
|
56 |
+
|
57 |
+
_LABELS = [
|
58 |
+
{
|
59 |
+
"name": "atas",
|
60 |
+
"file_ext": ""
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"name": "perdana",
|
64 |
+
"file_ext": ".tab"
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"name": "alam",
|
68 |
+
"file_ext": ".tab"
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"name": "dasar",
|
72 |
+
"file_ext": ".tab"
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"name": "anggur",
|
76 |
+
"file_ext": ".tab"
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"name": "kayu",
|
80 |
+
"file_ext": ""
|
81 |
+
}
|
82 |
+
]
|
83 |
+
|
84 |
+
class IndonesianWSD(datasets.GeneratorBasedBuilder):
|
85 |
+
|
86 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
87 |
+
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
|
88 |
+
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
NusantaraConfig(
|
91 |
+
name="indonesian_wsd_source",
|
92 |
+
version=SOURCE_VERSION,
|
93 |
+
description="Indonesian WSD source schema",
|
94 |
+
schema="source",
|
95 |
+
subset_id="indonesian_wsd",
|
96 |
+
),
|
97 |
+
NusantaraConfig(
|
98 |
+
name="indonesian_wsd_nusantara_t2t",
|
99 |
+
version=NUSANTARA_VERSION,
|
100 |
+
description="Indonesian WSD Nusantara schema",
|
101 |
+
schema="nusantara_t2t",
|
102 |
+
subset_id="indonesian_wsd",
|
103 |
+
),
|
104 |
+
]
|
105 |
+
|
106 |
+
DEFAULT_CONFIG_NAME = "indonesian_wsd_source"
|
107 |
+
|
108 |
+
def _info(self) -> datasets.DatasetInfo:
|
109 |
+
|
110 |
+
if self.config.schema == "source":
|
111 |
+
features = datasets.Features(
|
112 |
+
{
|
113 |
+
"text": datasets.Value("string"),
|
114 |
+
"label": datasets.Value("string"),
|
115 |
+
}
|
116 |
+
)
|
117 |
+
|
118 |
+
elif self.config.schema == "nusantara_t2t":
|
119 |
+
features = schemas.text2text_features
|
120 |
+
|
121 |
+
return datasets.DatasetInfo(
|
122 |
+
description=_DESCRIPTION,
|
123 |
+
features=features,
|
124 |
+
homepage=_HOMEPAGE,
|
125 |
+
license=_LICENSE,
|
126 |
+
citation=_CITATION,
|
127 |
+
)
|
128 |
+
|
129 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
130 |
+
urls = _URLS[_DATASETNAME]
|
131 |
+
data_dir = dl_manager.download_and_extract(urls)
|
132 |
+
|
133 |
+
data_dir = os.path.join(data_dir, "dataset")
|
134 |
+
|
135 |
+
datas = []
|
136 |
+
|
137 |
+
for label in _LABELS:
|
138 |
+
file_name = f"{label['name']}_t01"
|
139 |
+
if label["file_ext"] != "":
|
140 |
+
file_name = f"{file_name}{label['file_ext']}"
|
141 |
+
|
142 |
+
parsed_data = self._parse_file(os.path.join(data_dir, file_name))
|
143 |
+
datas = datas + parsed_data
|
144 |
+
|
145 |
+
path_dumped_file = os.path.join(data_dir, "data.json")
|
146 |
+
|
147 |
+
with open(path_dumped_file, 'w') as f:
|
148 |
+
f.write(json.dumps(datas))
|
149 |
+
|
150 |
+
return [
|
151 |
+
datasets.SplitGenerator(
|
152 |
+
name=datasets.Split.TRAIN,
|
153 |
+
gen_kwargs={
|
154 |
+
"filepath": path_dumped_file,
|
155 |
+
"split": "train",
|
156 |
+
},
|
157 |
+
),
|
158 |
+
]
|
159 |
+
|
160 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
161 |
+
data = json.load(open(filepath, "r"))
|
162 |
+
|
163 |
+
if self.config.schema == "source":
|
164 |
+
key = 0
|
165 |
+
for each_data in data:
|
166 |
+
example = {
|
167 |
+
"label": each_data["sense_id"],
|
168 |
+
"text": each_data["text"]
|
169 |
+
}
|
170 |
+
yield key, example
|
171 |
+
key+=1
|
172 |
+
|
173 |
+
elif self.config.schema == "nusantara_t2t":
|
174 |
+
key = 0
|
175 |
+
for each_data in data:
|
176 |
+
example = {
|
177 |
+
"id": str(key+1),
|
178 |
+
"text_1": each_data["sense_id"],
|
179 |
+
"text_1_name": "label",
|
180 |
+
"text_2": each_data["text"],
|
181 |
+
"text_2_name": "text"
|
182 |
+
}
|
183 |
+
yield key, example
|
184 |
+
key+=1
|
185 |
+
|
186 |
+
def _parse_file(self, file_path):
|
187 |
+
parsed_lines = open(file_path, "r").readlines()
|
188 |
+
data = []
|
189 |
+
for line in parsed_lines:
|
190 |
+
if len(line.strip()) > 0:
|
191 |
+
_, sense_id, text = line[:-1].split("\t")
|
192 |
+
data.append({
|
193 |
+
"sense_id": sense_id,
|
194 |
+
"text": text
|
195 |
+
})
|
196 |
+
return data
|
197 |
+
|
198 |
+
|