Commit
·
880151b
1
Parent(s):
60a0194
Upload indolem_nerui.py with huggingface_hub
Browse files- indolem_nerui.py +218 -0
indolem_nerui.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
from nusacrowd.utils import schemas
|
6 |
+
from nusacrowd.utils.common_parser import load_conll_data
|
7 |
+
|
8 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
9 |
+
from nusacrowd.utils.constants import Tasks
|
10 |
+
|
11 |
+
_CITATION = """\
|
12 |
+
@INPROCEEDINGS{8275098,
|
13 |
+
author={Gultom, Yohanes and Wibowo, Wahyu Catur},
|
14 |
+
booktitle={2017 International Workshop on Big Data and Information Security (IWBIS)},
|
15 |
+
title={Automatic open domain information extraction from Indonesian text},
|
16 |
+
year={2017},
|
17 |
+
volume={},
|
18 |
+
number={},
|
19 |
+
pages={23-30},
|
20 |
+
doi={10.1109/IWBIS.2017.8275098}}
|
21 |
+
|
22 |
+
@article{DBLP:journals/corr/abs-2011-00677,
|
23 |
+
author = {Fajri Koto and
|
24 |
+
Afshin Rahimi and
|
25 |
+
Jey Han Lau and
|
26 |
+
Timothy Baldwin},
|
27 |
+
title = {IndoLEM and IndoBERT: {A} Benchmark Dataset and Pre-trained Language
|
28 |
+
Model for Indonesian {NLP}},
|
29 |
+
journal = {CoRR},
|
30 |
+
volume = {abs/2011.00677},
|
31 |
+
year = {2020},
|
32 |
+
url = {https://arxiv.org/abs/2011.00677},
|
33 |
+
eprinttype = {arXiv},
|
34 |
+
eprint = {2011.00677},
|
35 |
+
timestamp = {Fri, 06 Nov 2020 15:32:47 +0100},
|
36 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2011-00677.bib},
|
37 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
38 |
+
}
|
39 |
+
"""
|
40 |
+
|
41 |
+
_LOCAL = False
|
42 |
+
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
43 |
+
_DATASETNAME = "indolem_nerui"
|
44 |
+
|
45 |
+
_DESCRIPTION = """\
|
46 |
+
NER UI is a Named Entity Recognition dataset that contains 2,125 sentences obtained via an annotation assignment in an NLP course at the University of Indonesia in 2016.
|
47 |
+
The corpus has three named entity classes: location, organisation, and person with training/dev/test distribution: 1,530/170/42 and based on 5-fold cross validation.
|
48 |
+
"""
|
49 |
+
|
50 |
+
_HOMEPAGE = "https://indolem.github.io/"
|
51 |
+
|
52 |
+
_LICENSE = "Creative Commons Attribution 4.0"
|
53 |
+
|
54 |
+
_URLS = {
|
55 |
+
_DATASETNAME: [
|
56 |
+
{
|
57 |
+
"train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/train.01.tsv",
|
58 |
+
"validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/dev.01.tsv",
|
59 |
+
"test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/test.01.tsv",
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/train.02.tsv",
|
63 |
+
"validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/dev.02.tsv",
|
64 |
+
"test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/test.02.tsv",
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/train.03.tsv",
|
68 |
+
"validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/dev.03.tsv",
|
69 |
+
"test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/test.03.tsv",
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/train.04.tsv",
|
73 |
+
"validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/dev.04.tsv",
|
74 |
+
"test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/test.04.tsv",
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/train.05.tsv",
|
78 |
+
"validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/dev.05.tsv",
|
79 |
+
"test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/test.05.tsv",
|
80 |
+
},
|
81 |
+
]
|
82 |
+
}
|
83 |
+
|
84 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
|
85 |
+
|
86 |
+
_SOURCE_VERSION = "1.0.0"
|
87 |
+
_NUSANTARA_VERSION = "1.0.0"
|
88 |
+
|
89 |
+
|
90 |
+
class IndolemNERUIDataset(datasets.GeneratorBasedBuilder):
|
91 |
+
"""NER UI contains 2,125 sentences obtained via an annotation assignment in an NLP course at the University of Indonesia. The corpus has three named entity classes: location, organisation, and person; and based on 5-fold cross validation."""
|
92 |
+
|
93 |
+
label_classes = [
|
94 |
+
"O",
|
95 |
+
"B-LOCATION",
|
96 |
+
"B-ORGANIZATION",
|
97 |
+
"B-PERSON",
|
98 |
+
"I-LOCATION",
|
99 |
+
"I-ORGANIZATION",
|
100 |
+
"I-PERSON",
|
101 |
+
]
|
102 |
+
|
103 |
+
BUILDER_CONFIGS = [
|
104 |
+
NusantaraConfig(
|
105 |
+
name=f"indolem_nerui_source",
|
106 |
+
version=datasets.Version(_SOURCE_VERSION),
|
107 |
+
description="Indolem NER UI source schema",
|
108 |
+
schema="source",
|
109 |
+
subset_id=f"indolem_nerui",
|
110 |
+
),
|
111 |
+
NusantaraConfig(
|
112 |
+
name=f"indolem_nerui_nusantara_seq_label",
|
113 |
+
version=datasets.Version(_NUSANTARA_VERSION),
|
114 |
+
description="Indolem NER UI Nusantara schema",
|
115 |
+
schema="nusantara_seq_label",
|
116 |
+
subset_id=f"indolem_nerui",
|
117 |
+
)
|
118 |
+
] + [
|
119 |
+
NusantaraConfig(
|
120 |
+
name=f"indolem_nerui_fold{i}_source",
|
121 |
+
version=datasets.Version(_SOURCE_VERSION),
|
122 |
+
description="Indolem NER UI source schema",
|
123 |
+
schema="source",
|
124 |
+
subset_id=f"indolem_nerui_fold{i}",
|
125 |
+
)
|
126 |
+
for i in range(5)
|
127 |
+
] + [
|
128 |
+
NusantaraConfig(
|
129 |
+
name=f"indolem_nerui_fold{i}_nusantara_seq_label",
|
130 |
+
version=datasets.Version(_NUSANTARA_VERSION),
|
131 |
+
description="Indolem NER UI Nusantara schema",
|
132 |
+
schema="nusantara_seq_label",
|
133 |
+
subset_id=f"indolem_nerui_fold{i}",
|
134 |
+
)
|
135 |
+
for i in range(5)
|
136 |
+
]
|
137 |
+
|
138 |
+
DEFAULT_CONFIG_NAME = "indolem_nerui_source"
|
139 |
+
|
140 |
+
def _info(self) -> datasets.DatasetInfo:
|
141 |
+
if self.config.schema == "source":
|
142 |
+
features = datasets.Features(
|
143 |
+
{
|
144 |
+
"index": datasets.Value("string"),
|
145 |
+
"tokens": [datasets.Value("string")],
|
146 |
+
"tags": [datasets.Value("string")],
|
147 |
+
}
|
148 |
+
)
|
149 |
+
elif self.config.schema == "nusantara_seq_label":
|
150 |
+
features = schemas.seq_label_features(self.label_classes)
|
151 |
+
|
152 |
+
return datasets.DatasetInfo(
|
153 |
+
description=_DESCRIPTION,
|
154 |
+
features=features,
|
155 |
+
homepage=_HOMEPAGE,
|
156 |
+
license=_LICENSE,
|
157 |
+
citation=_CITATION,
|
158 |
+
)
|
159 |
+
|
160 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
161 |
+
idx = self._get_fold_index()
|
162 |
+
urls = _URLS[_DATASETNAME][idx]
|
163 |
+
data_dir = dl_manager.download_and_extract(urls)
|
164 |
+
|
165 |
+
return [
|
166 |
+
datasets.SplitGenerator(
|
167 |
+
name=datasets.Split.TRAIN,
|
168 |
+
gen_kwargs={
|
169 |
+
"filepath": data_dir["train"],
|
170 |
+
"split": "train",
|
171 |
+
},
|
172 |
+
),
|
173 |
+
datasets.SplitGenerator(
|
174 |
+
name=datasets.Split.TEST,
|
175 |
+
gen_kwargs={
|
176 |
+
"filepath": data_dir["test"],
|
177 |
+
"split": "test",
|
178 |
+
},
|
179 |
+
),
|
180 |
+
datasets.SplitGenerator(
|
181 |
+
name=datasets.Split.VALIDATION,
|
182 |
+
gen_kwargs={
|
183 |
+
"filepath": data_dir["validation"],
|
184 |
+
"split": "dev",
|
185 |
+
},
|
186 |
+
),
|
187 |
+
]
|
188 |
+
|
189 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
190 |
+
conll_dataset = load_conll_data(filepath)
|
191 |
+
|
192 |
+
if self.config.schema == "source":
|
193 |
+
for i, row in enumerate(conll_dataset):
|
194 |
+
ex = {
|
195 |
+
"index": str(i),
|
196 |
+
"tokens": row["sentence"],
|
197 |
+
"tags": row["label"],
|
198 |
+
}
|
199 |
+
yield i, ex
|
200 |
+
|
201 |
+
elif self.config.schema == "nusantara_seq_label":
|
202 |
+
for i, row in enumerate(conll_dataset):
|
203 |
+
ex = {
|
204 |
+
"id": str(i),
|
205 |
+
"tokens": row["sentence"],
|
206 |
+
"labels": row["label"],
|
207 |
+
}
|
208 |
+
yield i, ex
|
209 |
+
|
210 |
+
def _get_fold_index(self):
|
211 |
+
try:
|
212 |
+
subset_id = self.config.subset_id
|
213 |
+
idx_fold = subset_id.index("_fold")
|
214 |
+
file_id = subset_id[(idx_fold + 5):]
|
215 |
+
return int(file_id)
|
216 |
+
except:
|
217 |
+
# get default: fold0 (index 0)
|
218 |
+
return 0
|