holylovenia
commited on
Commit
·
bd27a09
1
Parent(s):
55a4d91
Upload indspeech_teldialog_svcsr.py with huggingface_hub
Browse files- indspeech_teldialog_svcsr.py +216 -0
indspeech_teldialog_svcsr.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from pathlib import Path
|
18 |
+
from typing import Dict, List, Tuple
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
from nusacrowd.utils import schemas
|
23 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
24 |
+
from nusacrowd.utils.constants import Tasks
|
25 |
+
|
26 |
+
|
27 |
+
_CITATION = """\
|
28 |
+
@inproceedings{sakti-icslp-2004,
|
29 |
+
title = "Indonesian Speech Recognition for Hearing and Speaking Impaired People",
|
30 |
+
author = "Sakti, Sakriani and Hutagaol, Paulus and Arman, Arry Akhmad and Nakamura, Satoshi",
|
31 |
+
booktitle = "Proc. International Conference on Spoken Language Processing (INTERSPEECH - ICSLP)",
|
32 |
+
year = "2004",
|
33 |
+
pages = "1037--1040"
|
34 |
+
address = "Jeju Island, Korea"
|
35 |
+
}
|
36 |
+
"""
|
37 |
+
|
38 |
+
_DATASETNAME = "indspeech_teldialog_svcsr"
|
39 |
+
|
40 |
+
_DESCRIPTION = """\
|
41 |
+
This is the first Indonesian speech dataset for small vocabulary continuous speech recognition (SVCSR).
|
42 |
+
The data was developed by TELKOMRisTI (R&D Division, PT Telekomunikasi Indonesia) in collaboration with Advanced
|
43 |
+
Telecommunication Research Institute International (ATR) Japan and Bandung Institute of Technology (ITB) under the
|
44 |
+
Asia-Pacific Telecommunity (APT) project in 2004 [Sakti et al., 2004]. Although it was originally developed for
|
45 |
+
a telecommunication system for hearing and speaking impaired people, it can be used for other applications,
|
46 |
+
i.e., automatic call centers. Furthermore, as all speakers utter the same sentences,
|
47 |
+
it can also be used for voice conversion tasks.
|
48 |
+
|
49 |
+
The text is based on a word vocabulary which is derived from some necessary dialog calls,
|
50 |
+
such as dialog calls with the 119 emergency department, 108 telephone information department,
|
51 |
+
and ticket reservation department. In total, it consists of 20,000 utterances (about 18 hours of speech) from the
|
52 |
+
70-word dialog vocabulary of 100 sentences (including single word sentences) each uttered by 200 speakers
|
53 |
+
(100 Females, 100 Males). The age is limited to middle age (20-40 years), but they present a wide range of spoken
|
54 |
+
dialects from different ethnic groups. The recording is conducted in parallel for both clean and telephone speech,
|
55 |
+
but we open only the clean speech due to quality issues on telephone speech.
|
56 |
+
Each audio file is a single-channel 16-bit PCM WAV with a sample rate of 16000 Hz.
|
57 |
+
These utterances are equally split into training and test sets with 100 speakers (50 Females, 50 Males) in each set.
|
58 |
+
"""
|
59 |
+
|
60 |
+
_HOMEPAGE = "https://github.com/s-sakti/data_indsp_teldialog_svcsr/"
|
61 |
+
|
62 |
+
_LICENSE = "CC-BY-NC-SA-4.0"
|
63 |
+
|
64 |
+
_LANGUAGES = ["ind"]
|
65 |
+
_LOCAL = False
|
66 |
+
|
67 |
+
URL_TEMPLATE = "https://raw.githubusercontent.com/s-sakti/data_indsp_teldialog_svcsr/main/"
|
68 |
+
_URLS = {
|
69 |
+
_DATASETNAME: {"lst": URL_TEMPLATE + "lst/", "speech": URL_TEMPLATE + "speech/", "text": URL_TEMPLATE + "text/"},
|
70 |
+
}
|
71 |
+
|
72 |
+
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
|
73 |
+
|
74 |
+
_SOURCE_VERSION = "1.0.0"
|
75 |
+
|
76 |
+
_NUSANTARA_VERSION = "1.0.0"
|
77 |
+
|
78 |
+
|
79 |
+
class INDspeechTELDIALOGSVCSR(datasets.GeneratorBasedBuilder):
|
80 |
+
"""
|
81 |
+
This is an Indonesian speech dataset on small vocabulary continuous speech recognition (SVCSR) from necessary
|
82 |
+
dialog calls. The dataset loader is designed for speech recognition task.
|
83 |
+
There are 20000 utterances (train: 10000, test:10000) uttered by 200 speakers (50 male 50 female each in train and
|
84 |
+
test).
|
85 |
+
"""
|
86 |
+
|
87 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
88 |
+
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
|
89 |
+
|
90 |
+
BUILDER_CONFIGS = [
|
91 |
+
NusantaraConfig(
|
92 |
+
name="indspeech_teldialog_svcsr_source",
|
93 |
+
version=SOURCE_VERSION,
|
94 |
+
description="indspeech_teldialog_svcsr source schema",
|
95 |
+
schema="source",
|
96 |
+
subset_id="indspeech_teldialog_svcsr",
|
97 |
+
),
|
98 |
+
NusantaraConfig(
|
99 |
+
name="indspeech_teldialog_svcsr_nusantara_sptext",
|
100 |
+
version=NUSANTARA_VERSION,
|
101 |
+
description="indspeech_teldialog_svcsr Nusantara schema",
|
102 |
+
schema="nusantara_sptext",
|
103 |
+
subset_id="indspeech_teldialog_svcsr",
|
104 |
+
),
|
105 |
+
]
|
106 |
+
|
107 |
+
DEFAULT_CONFIG_NAME = "indspeech_teldialog_svcsr_source"
|
108 |
+
|
109 |
+
def _info(self) -> datasets.DatasetInfo:
|
110 |
+
|
111 |
+
# Create the source schema; this schema will keep all keys/information/labels as close to the original dataset as possible.
|
112 |
+
|
113 |
+
# You can arbitrarily nest lists and dictionaries.
|
114 |
+
# For iterables, use lists over tuples or `datasets.Sequence`
|
115 |
+
|
116 |
+
if self.config.schema == "source":
|
117 |
+
features = datasets.Features(
|
118 |
+
{
|
119 |
+
"speaker_id": datasets.Value("string"),
|
120 |
+
"gender_id": datasets.Value("string"),
|
121 |
+
"utterance_id": datasets.Value("string"),
|
122 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
123 |
+
"text": datasets.Value("string"),
|
124 |
+
}
|
125 |
+
)
|
126 |
+
elif self.config.schema == "nusantara_sptext":
|
127 |
+
features = schemas.speech_text_features
|
128 |
+
|
129 |
+
return datasets.DatasetInfo(
|
130 |
+
description=_DESCRIPTION,
|
131 |
+
features=features,
|
132 |
+
homepage=_HOMEPAGE,
|
133 |
+
license=_LICENSE,
|
134 |
+
citation=_CITATION,
|
135 |
+
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="sentences")],
|
136 |
+
)
|
137 |
+
|
138 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
139 |
+
urls = _URLS[_DATASETNAME]
|
140 |
+
data_dir = {
|
141 |
+
"spk_data": {"train": dl_manager.download_and_extract(os.path.join(urls["lst"], "train_spk.lst")), "test": dl_manager.download_and_extract(os.path.join(urls["lst"], "test_spk.lst"))},
|
142 |
+
"wav_data": {"train": dl_manager.download_and_extract(os.path.join(urls["lst"], "train_wav.lst")), "test": dl_manager.download_and_extract(os.path.join(urls["lst"], "test_wav.lst"))},
|
143 |
+
"txt_data": dl_manager.download_and_extract(os.path.join(urls["text"], "text.zip")),
|
144 |
+
}
|
145 |
+
speakers = {}
|
146 |
+
with open(data_dir["spk_data"]["train"], "r") as f:
|
147 |
+
speakers["train"] = [sp.replace("\n", "") for sp in f.readlines()]
|
148 |
+
f.close()
|
149 |
+
with open(data_dir["spk_data"]["test"], "r") as f:
|
150 |
+
speakers["test"] = [sp.replace("\n", "") for sp in f.readlines()]
|
151 |
+
f.close()
|
152 |
+
data_dir["speech_path"] = {
|
153 |
+
"train": {sp: dl_manager.download_and_extract(os.path.join(urls["speech"], "train", sp + ".zip")) for sp in speakers["train"]},
|
154 |
+
"test": {sp: dl_manager.download_and_extract(os.path.join(urls["speech"], "test", sp + ".zip")) for sp in speakers["test"]},
|
155 |
+
}
|
156 |
+
|
157 |
+
return [
|
158 |
+
datasets.SplitGenerator(
|
159 |
+
name=datasets.Split.TRAIN,
|
160 |
+
# Whatever you put in gen_kwargs will be passed to _generate_examples
|
161 |
+
gen_kwargs={
|
162 |
+
"filepath": data_dir["wav_data"]["train"],
|
163 |
+
"audio_path": data_dir["speech_path"]["train"],
|
164 |
+
"text_path": data_dir["txt_data"],
|
165 |
+
"split": "train",
|
166 |
+
},
|
167 |
+
),
|
168 |
+
datasets.SplitGenerator(
|
169 |
+
name=datasets.Split.TEST,
|
170 |
+
gen_kwargs={
|
171 |
+
"filepath": data_dir["wav_data"]["test"],
|
172 |
+
"audio_path": data_dir["speech_path"]["test"],
|
173 |
+
"text_path": data_dir["txt_data"],
|
174 |
+
"split": "test",
|
175 |
+
},
|
176 |
+
),
|
177 |
+
]
|
178 |
+
|
179 |
+
@staticmethod
|
180 |
+
def text_process(utterance_txt_dir):
|
181 |
+
with open(utterance_txt_dir + ".ANS", "r") as f:
|
182 |
+
lines = [x.replace("\n", "") for x in f.readlines()]
|
183 |
+
f.close()
|
184 |
+
return " ".join(lines)
|
185 |
+
|
186 |
+
def _generate_examples(self, filepath: Path, audio_path, text_path: Path, split: str) -> Tuple[int, Dict]:
|
187 |
+
with open(filepath, "r") as f:
|
188 |
+
filelist = [x.replace("\n", "") for x in f.readlines()]
|
189 |
+
f.close()
|
190 |
+
for fn in filelist:
|
191 |
+
speaker_id = fn[:3]
|
192 |
+
gender_id = fn[:1]
|
193 |
+
utterance_id = fn[4:8]
|
194 |
+
_id = fn.replace(".wav", "")
|
195 |
+
text = self.text_process(os.path.join(text_path, utterance_id))
|
196 |
+
if self.config.schema == "source":
|
197 |
+
yield _id, {
|
198 |
+
"speaker_id": speaker_id,
|
199 |
+
"gender_id": gender_id,
|
200 |
+
"utterance_id": utterance_id,
|
201 |
+
"audio": os.path.join(audio_path[speaker_id], fn),
|
202 |
+
"text": text,
|
203 |
+
}
|
204 |
+
|
205 |
+
elif self.config.schema == "nusantara_sptext":
|
206 |
+
yield _id, {
|
207 |
+
"id": _id,
|
208 |
+
"speaker_id": speaker_id,
|
209 |
+
"text": text,
|
210 |
+
"path": os.path.join(audio_path[speaker_id], fn),
|
211 |
+
"audio": os.path.join(audio_path[speaker_id], fn),
|
212 |
+
"metadata": {
|
213 |
+
"speaker_age": None,
|
214 |
+
"speaker_gender": gender_id,
|
215 |
+
},
|
216 |
+
}
|