|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.common_parser import load_conll_data |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, |
|
DEFAULT_SOURCE_VIEW_NAME, Tasks) |
|
|
|
_DATASETNAME = "keps" |
|
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME |
|
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{mahfuzh2019improving, |
|
title={Improving Joint Layer RNN based Keyphrase Extraction by Using Syntactical Features}, |
|
author={Miftahul Mahfuzh, Sidik Soleman, and Ayu Purwarianti}, |
|
booktitle={Proceedings of the 2019 International Conference of Advanced Informatics: Concepts, Theory and Applications (ICAICTA)}, |
|
pages={1--6}, |
|
year={2019}, |
|
organization={IEEE} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The KEPS dataset (Mahfuzh, Soleman and Purwarianti, 2019) consists of text from Twitter |
|
discussing banking products and services and is written in the Indonesian language. A phrase |
|
containing important information is considered a keyphrase. Text may contain one or more |
|
keyphrases since important phrases can be located at different positions. |
|
- tokens: a list of string features. |
|
- seq_label: a list of classification labels, with possible values including O, B, I. |
|
The labels use Inside-Outside-Beginning (IOB) tagging. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/IndoNLP/indonlu" |
|
|
|
_LICENSE = "Creative Common Attribution Share-Alike 4.0 International" |
|
|
|
_URLs = { |
|
"train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/keps_keyword-extraction-prosa/train_preprocess.txt", |
|
"validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/keps_keyword-extraction-prosa/valid_preprocess.txt", |
|
"test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/keps_keyword-extraction-prosa/test_preprocess.txt", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.KEYWORD_EXTRACTION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class KepsDataset(datasets.GeneratorBasedBuilder): |
|
"""KEPS is an keyphrase extraction dataset contains about (train=800,valid=200,test=247) sentences, with 3 classes.""" |
|
|
|
label_classes = ["B", "I", "O"] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="keps_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="KEPS source schema", |
|
schema="source", |
|
subset_id="keps", |
|
), |
|
SEACrowdConfig( |
|
name="keps_seacrowd_seq_label", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description="KEPS Nusantara schema", |
|
schema="seacrowd_seq_label", |
|
subset_id="keps", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "keps_source" |
|
|
|
def _info(self): |
|
print(datasets) |
|
if self.config.schema == "source": |
|
features = datasets.Features({"index": datasets.Value("string"), "tokens": [datasets.Value("string")], "ke_tag": [datasets.Value("string")]}) |
|
elif self.config.schema == "seacrowd_seq_label": |
|
features = schemas.seq_label_features(self.label_classes) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
train_tsv_path = Path(dl_manager.download_and_extract(_URLs["train"])) |
|
validation_tsv_path = Path(dl_manager.download_and_extract(_URLs["validation"])) |
|
test_tsv_path = Path(dl_manager.download_and_extract(_URLs["test"])) |
|
data_files = { |
|
"train": train_tsv_path, |
|
"validation": validation_tsv_path, |
|
"test": test_tsv_path, |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_files["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": data_files["validation"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_files["test"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path): |
|
conll_dataset = load_conll_data(filepath) |
|
|
|
if self.config.schema == "source": |
|
for i, row in enumerate(conll_dataset): |
|
ex = {"index": str(i), "tokens": row["sentence"], "ke_tag": row["label"]} |
|
yield i, ex |
|
elif self.config.schema == "seacrowd_seq_label": |
|
for i, row in enumerate(conll_dataset): |
|
ex = {"id": str(i), "tokens": row["sentence"], "labels": row["label"]} |
|
yield i, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |