File size: 10,054 Bytes
892b009 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
KoPI-CC corpus
[nusantara_schema_name] = ssp
"""
import gzip
import json
from typing import List
import datasets
import zstandard as zstd
from nusacrowd.utils import schemas
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import (DEFAULT_NUSANTARA_VIEW_NAME,
DEFAULT_SOURCE_VIEW_NAME, Tasks)
_DATASETNAME = "kopi_cc"
_LANGUAGES = ["ind"]
_LOCAL = False
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_NUSANTARA_VIEW_NAME
_URL = "https://commoncrawl.org/"
_CITATION = """\
@ARTICLE{2022arXiv220106642A,
author = {{Abadji}, Julien and {Ortiz Suarez}, Pedro and {Romary}, Laurent and {Sagot}, Benoit},
title = "{Towards a Cleaner Document-Oriented Multilingual Crawled Corpus}",
journal = {arXiv e-prints},
keywords = {Computer Science - Computation and Language},
year = 2022,
month = jan,
eid = {arXiv:2201.06642},
pages = {arXiv:2201.06642},
archivePrefix = {arXiv},
eprint = {2201.06642},
primaryClass = {cs.CL},
adsurl = {https://ui.adsabs.harvard.edu/abs/2022arXiv220106642A},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@inproceedings{AbadjiOrtizSuarezRomaryetal.2021,
author = {Julien Abadji and Pedro Javier Ortiz Su{\'a}rez and Laurent Romary and Benoit Sagot},
title = {Ungoliant: An optimized pipeline for the generation of a very large-scale multilingual web corpus},
series = {Proceedings of the Workshop on Challenges in the Management of Large Corpora (CMLC-9) 2021. Limerick, 12 July 2021 (Online-Event)},
editor = {Harald L{\"u}ngen and Marc Kupietz and Piotr Bański and Adrien Barbaresi and Simon Clematide and Ines Pisetta},
publisher = {Leibniz-Institut f{\"u}r Deutsche Sprache},
address = {Mannheim},
doi = {10.14618/ids-pub-10468},
url = {https://nbn-resolving.org/urn:nbn:de:bsz:mh39-104688},
pages = {1 -- 9},
year = {2021},
abstract = {Since the introduction of large language models in Natural Language Processing, large raw corpora have played a crucial role in Computational Linguistics.},
language = {en}
}
"""
_DESCRIPTION = """\
KoPI-CC (Korpus Perayapan Indonesia)-CC is Indonesian Only Extract from Common Crawl snapshots ,each snapshots get extracted using ungoliant and get extra "filtering" using deduplication technique
"""
_HOMEPAGE = "https://huggingface.co/datasets/munggok/KoPI-CC"
_LICENSE = "CC0"
_URLS = {
"raw": "https://huggingface.co/datasets/munggok/KoPI-CC/resolve/main/{snapshot}/raw/id_meta_{index}.jsonl.zst",
"dedup": "https://huggingface.co/datasets/munggok/KoPI-CC/resolve/main/{snapshot}/dedup/oscar-{index:012d}.json.gz",
"neardup": "https://huggingface.co/datasets/munggok/KoPI-CC/resolve/main/{snapshot}/neardup/oscar-neardup-{index:012d}.json.gz",
"neardup_clean": "https://huggingface.co/datasets/munggok/KoPI-CC/resolve/main/{snapshot}/neardup_clean/cleaned_oscar-neardup-{index:012d}.json.gz",
}
_N_SHARDS_PER_SNAPSHOT = {
"2021_10": {"dedup": 132, "neardup": 120, "neardup_clean": 120},
"2021_17": {"raw": 31, "dedup": 47, "neardup": 41, "neardup_clean": 41},
"2021_21": {"raw": 63, "dedup": 37, "neardup": 33, "neardup_clean": 33},
"2021_25": {"raw": 31, "dedup": 32, "neardup": 28, "neardup_clean": 28},
"2021_31": {"raw": 35, "dedup": 47, "neardup": 42, "neardup_clean": 42},
"2021_39": {"raw": 35, "dedup": 44, "neardup": 38, "neardup_clean": 38},
"2021_43": {"raw": 35, "dedup": 44, "neardup": 39, "neardup_clean": 39},
"2021_49": {"dedup": 31, "neardup": 28, "neardup_clean": 28},
"2022_05": {"raw": 40, "dedup": 18, "neardup": 18, "neardup_clean": 35},
"2022_21": {"raw": 40, "dedup": 42, "neardup": 37, "neardup_clean": 37},
"2022_27": {"raw": 79, "dedup": 38, "neardup": 33, "neardup_clean": 33},
}
_SNAP_CONFIG = []
for m in list(_N_SHARDS_PER_SNAPSHOT.keys()):
ka = list(_N_SHARDS_PER_SNAPSHOT[m].keys())
conf = [m + "-" + a for a in ka]
_SNAP_CONFIG.extend(conf)
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
_ALL_CONFIG = ["all-raw", "all-dedup", "all-neardup", "all-neardup_clean"] + _SNAP_CONFIG
_SOURCE_VERSION = "2018.12.01"
_NUSANTARA_VERSION = "1.0.0"
def nusantara_config_constructor(snapshot, schema, version):
"""Construct NusantaraConfig"""
if schema != "source" and schema != "nusantara_ssp":
raise ValueError(f"Invalid schema: {schema}")
if snapshot == "":
raise ValueError(f"Snapshot is required. Choose one of these Snapshot: {_ALL_CONFIG}.")
elif snapshot in _SNAP_CONFIG + _ALL_CONFIG:
return NusantaraConfig(
name=f"{_DATASETNAME}_{snapshot}_{schema}",
version=datasets.Version(version),
description=f"KoPI-CC with {schema} schema for {snapshot}",
schema=schema,
subset_id="kopi_cc",
)
else:
raise ValueError(f"Invalid language: {snapshot}. Choose one of these snapshots: {_ALL_CONFIG}.")
class KoPICC(datasets.GeneratorBasedBuilder):
DEFAULT_CONFIG_NAME = "2021_17_dedup"
BUILDER_CONFIGS = [nusantara_config_constructor(sn, "source", _SOURCE_VERSION) for sn in _ALL_CONFIG] + [nusantara_config_constructor(sn, "nusantara_ssp", _NUSANTARA_VERSION) for sn in _ALL_CONFIG]
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"text": datasets.Value("string"),
"timestamp": datasets.Value("string"),
"url": datasets.Value("string"),
"meta": datasets.Value("string"),
}
)
elif self.config.schema == "nusantara_ssp":
features = schemas.self_supervised_pretraining.features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
name = self.config.name.replace("_" + self.config.schema, "")
name = name.replace(_DATASETNAME + "_", "")
split_name = name.split("-")
if split_name[0] == "all":
urls = []
keys = list(_N_SHARDS_PER_SNAPSHOT.keys())
idx = 0
if split_name[1] == "raw":
idx = 1
keys = [ur for ur in list(_N_SHARDS_PER_SNAPSHOT.keys()) if _N_SHARDS_PER_SNAPSHOT[ur].get("raw") is not None]
for m in keys:
urls.extend([_URLS[split_name[1]].format(snapshot=m, index=k + idx) for k in range(_N_SHARDS_PER_SNAPSHOT[m].get(split_name[1]))])
else:
urls = [_URLS[split_name[1]].format(snapshot=split_name[0], index=k + 1) for k in range(_N_SHARDS_PER_SNAPSHOT[split_name[0]][split_name[1]])]
path = dl_manager.download(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepaths": path, "split": "train", "type": split_name[1]},
),
]
def _generate_examples(self, filepaths, split, type):
"""This function returns the examples in the raw (text) form by iterating on all the files."""
id_ = 0
for filepath in filepaths:
if type == "raw":
with zstd.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
for line in f:
if line:
example = json.loads(line)
meta = dict()
meta["warc_headers"] = example["warc_headers"]
meta["warc_headers"]["warc-identified-content-language"] = example["warc_headers"].get("warc-identified-content-language")
meta["identification"] = example["metadata"]["identification"]
meta["annotations"] = example["metadata"]["annotation"]
meta["line_identifications"] = example["metadata"]["sentence_identifications"]
if self.config.schema == "nusantara_ssp":
yield id_, {"id": str(id_), "text": example["content"]}
id_ += 1
else:
yield id_, {"text": example["content"], "url": example["warc_headers"]["warc-target-uri"], "timestamp": example["warc_headers"]["warc-date"], "meta": json.dumps(meta)}
id_ += 1
else:
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
for line in f:
if line:
example = json.loads(line)
if self.config.schema == "nusantara_ssp":
yield id_, {"id": str(id_), "text": example["text"]}
id_ += 1
else:
yield id_, {"text": example["text"], "url": example["url"], "timestamp": example["timestamp"], "meta": example["meta"]}
id_ += 1
|