holylovenia
commited on
Upload lio_and_central_flores.py with huggingface_hub
Browse files- lio_and_central_flores.py +193 -0
lio_and_central_flores.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import List, Tuple
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
from seacrowd.sea_datasets.lio_and_central_flores import processing
|
7 |
+
from seacrowd.sea_datasets.lio_and_central_flores.path_url import _URLS_DICT
|
8 |
+
from seacrowd.utils import schemas
|
9 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
10 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
11 |
+
|
12 |
+
_CITATION = """\
|
13 |
+
@misc{alexthesis2018,
|
14 |
+
author = {Alexander Elias},
|
15 |
+
title = {Lio and the Central Flores languages},
|
16 |
+
year = {2018},
|
17 |
+
month = {November},
|
18 |
+
address = {Rapenburg 70, 2311 EZ Leiden},
|
19 |
+
school = {Universiteit Leiden},
|
20 |
+
url = {https://studenttheses.universiteitleiden.nl/handle/1887/69452},
|
21 |
+
note = {Research Master's thesis},
|
22 |
+
}
|
23 |
+
"""
|
24 |
+
|
25 |
+
_DATASETNAME = "lio_and_central_flores"
|
26 |
+
_DESCRIPTION = """This dataset is a collection of language resources of Li'o, Ende, Nage, and
|
27 |
+
So'a which are collected in Ende, Flores, Eastern Nusa Tenggara. This dataset
|
28 |
+
is the dataset from the research MA thesis by Alexander Elias. Title: Lio and the Central Flores languages
|
29 |
+
"""
|
30 |
+
_HOMEPAGE = "https://archive.mpi.nl/tla/islandora/search/alexander%20elias?type=dismax&islandora_solr_search_navigation=0&f%5B0%5D=cmd.Contributor%3A%22Alexander%5C%20Elias%22"
|
31 |
+
_LICENSE = Licenses.UNKNOWN.value
|
32 |
+
_LANGUAGES = ["end", "ljl", "nxe", "eng"]
|
33 |
+
LANGUAGES_TO_FILENAME_MAP = {
|
34 |
+
"end": "ENDE",
|
35 |
+
"nxe": "NAGE",
|
36 |
+
"ljl": "LIO",
|
37 |
+
}
|
38 |
+
_LOCAL = False
|
39 |
+
|
40 |
+
_URLS = _URLS_DICT
|
41 |
+
|
42 |
+
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
|
43 |
+
|
44 |
+
_SOURCE_VERSION = "1.0.0"
|
45 |
+
_SEACROWD_VERSION = "2024.06.20"
|
46 |
+
|
47 |
+
|
48 |
+
class LioAndCentralFloresDataset(datasets.GeneratorBasedBuilder):
|
49 |
+
"""This dataset is a collection of language resources of Li'o, Ende, Nage, and So'a"""
|
50 |
+
|
51 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
52 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
53 |
+
SEACROWD_SCHEMA_NAME = "t2t"
|
54 |
+
|
55 |
+
BUILDER_CONFIGS = [
|
56 |
+
# We only use source schema here for nage ("nxe") and eng because nage dataset only contain wordlist
|
57 |
+
# For "nxe" , include a separate configuration to handle word lists. It will be return nage only word list
|
58 |
+
SEACrowdConfig(name=f"{_DATASETNAME}_nxe_wordlist_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}_nxe"),
|
59 |
+
# Additionally, include a configuration for English word lists in "nxe" datasets. It will be return eng only word corresponding to nage wordlist
|
60 |
+
SEACrowdConfig(name=f"{_DATASETNAME}_eng_wordlist_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}_eng"),
|
61 |
+
]
|
62 |
+
|
63 |
+
# For other languages, except "nxe", use a standard source & seacrowd schema configuration
|
64 |
+
subset_names = sorted([f"{_DATASETNAME}_{lang}_eng" for lang in _LANGUAGES[:-2]]) + sorted([f"{_DATASETNAME}_eng_{lang}" for lang in _LANGUAGES[:-2]])
|
65 |
+
|
66 |
+
for name in subset_names:
|
67 |
+
# source schema
|
68 |
+
source_config = SEACrowdConfig(name=f"{name}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=name)
|
69 |
+
BUILDER_CONFIGS.append(source_config)
|
70 |
+
|
71 |
+
# seacrowd_t2t schema
|
72 |
+
seacrowd_config = SEACrowdConfig(name=f"{name}_seacrowd_{SEACROWD_SCHEMA_NAME}", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", subset_id=name)
|
73 |
+
BUILDER_CONFIGS.append(seacrowd_config)
|
74 |
+
|
75 |
+
|
76 |
+
def _info(self) -> datasets.DatasetInfo:
|
77 |
+
if self.config.schema == "source":
|
78 |
+
if "wordlist" in self.config.name:
|
79 |
+
features = datasets.Features({"id": datasets.Value("string"), "word": datasets.Value("string")})
|
80 |
+
else:
|
81 |
+
features = datasets.Features({"source_sentence": datasets.Value("string"), "target_sentence": datasets.Value("string"), "source_lang": datasets.Value("string"), "target_lang": datasets.Value("string")})
|
82 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
83 |
+
if "nxe" not in self.config.name:
|
84 |
+
features = schemas.text2text_features
|
85 |
+
else:
|
86 |
+
raise ValueError("Invalid config schema")
|
87 |
+
|
88 |
+
return datasets.DatasetInfo(
|
89 |
+
description=_DESCRIPTION,
|
90 |
+
features=features,
|
91 |
+
homepage=_HOMEPAGE,
|
92 |
+
license=_LICENSE,
|
93 |
+
citation=_CITATION,
|
94 |
+
)
|
95 |
+
|
96 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
97 |
+
"""Returns SplitGenerators."""
|
98 |
+
|
99 |
+
dset_lang = None
|
100 |
+
for lang in _LANGUAGES[:-1]: # except eng because it exists in all subset names
|
101 |
+
if lang in self.config.name:
|
102 |
+
dset_lang = lang
|
103 |
+
break
|
104 |
+
if dset_lang is None:
|
105 |
+
raise ValueError("Invalid language name")
|
106 |
+
|
107 |
+
filepath = {k: v["text_path"] for k, v in _URLS[LANGUAGES_TO_FILENAME_MAP[dset_lang]].items()}
|
108 |
+
paths = dl_manager.download(filepath)
|
109 |
+
|
110 |
+
return [
|
111 |
+
datasets.SplitGenerator(
|
112 |
+
name=datasets.Split.TRAIN,
|
113 |
+
gen_kwargs={
|
114 |
+
"filepath": paths,
|
115 |
+
"lang_1": self.config.name.split("_")[4],
|
116 |
+
"lang_2": self.config.name.split("_")[5]}
|
117 |
+
)
|
118 |
+
]
|
119 |
+
|
120 |
+
def _generate_examples(self, filepath: Path, lang_1: str, lang_2: str):
|
121 |
+
"""Yields examples as (key, example) tuples."""
|
122 |
+
|
123 |
+
if "wordlist" in self.config.name:
|
124 |
+
if "nxe" in self.config.name: # only nxe
|
125 |
+
_, words = self._get_word_(filepath)
|
126 |
+
else: # only eng
|
127 |
+
words, _ = self._get_word_(filepath)
|
128 |
+
|
129 |
+
for item in words:
|
130 |
+
for idx, word in enumerate(item):
|
131 |
+
row = {"id": str(idx), "word": word}
|
132 |
+
yield idx, row
|
133 |
+
else:
|
134 |
+
source_data, target_data = self._get_sentence_(filepath)
|
135 |
+
for idx, (eng_text, other_text) in enumerate(zip(source_data, target_data)):
|
136 |
+
if self.config.schema == "source":
|
137 |
+
if lang_1 == "eng":
|
138 |
+
example = {
|
139 |
+
"source_sentence": eng_text,
|
140 |
+
"target_sentence": other_text,
|
141 |
+
"source_lang": lang_1,
|
142 |
+
"target_lang": lang_2,
|
143 |
+
}
|
144 |
+
else:
|
145 |
+
example = {
|
146 |
+
"source_sentence": other_text,
|
147 |
+
"target_sentence": eng_text,
|
148 |
+
"source_lang": lang_1,
|
149 |
+
"target_lang": lang_2,
|
150 |
+
}
|
151 |
+
|
152 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
153 |
+
if lang_1 == "eng":
|
154 |
+
example = {
|
155 |
+
"id": str(idx),
|
156 |
+
"text_1": eng_text,
|
157 |
+
"text_2": other_text,
|
158 |
+
"text_1_name": lang_1,
|
159 |
+
"text_2_name": lang_2,
|
160 |
+
}
|
161 |
+
else:
|
162 |
+
example = {
|
163 |
+
"id": str(idx),
|
164 |
+
"text_1": other_text,
|
165 |
+
"text_2": eng_text,
|
166 |
+
"text_1_name": lang_1,
|
167 |
+
"text_2_name": lang_2,
|
168 |
+
}
|
169 |
+
yield idx, example
|
170 |
+
|
171 |
+
def _get_sentence_(self, path_dict) -> Tuple[List, List]:
|
172 |
+
source_data = []
|
173 |
+
target_data = []
|
174 |
+
for _, v in path_dict.items():
|
175 |
+
with open(v, "r", encoding="utf-8") as f:
|
176 |
+
data = f.readlines()
|
177 |
+
src, trg = processing.parse_text(data)
|
178 |
+
source_data.extend(src)
|
179 |
+
target_data.extend(trg)
|
180 |
+
|
181 |
+
return source_data, target_data
|
182 |
+
|
183 |
+
def _get_word_(self, path_dict) -> Tuple[List, List]:
|
184 |
+
eng_data, ind_data, nage_data = [], [], []
|
185 |
+
for _, v in path_dict.items():
|
186 |
+
with open(v, "r", encoding="utf-8") as f:
|
187 |
+
data = f.readlines()
|
188 |
+
eng_word, ind_word, nage_word = processing.parse_wordlist(data)
|
189 |
+
eng_data.append(eng_word)
|
190 |
+
ind_data.append(ind_word)
|
191 |
+
nage_data.append(nage_word)
|
192 |
+
|
193 |
+
return eng_data, nage_data
|