File size: 8,850 Bytes
deb3fb0
 
 
 
 
 
8606638
 
 
deb3fb0
 
 
 
 
 
8606638
deb3fb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8606638
deb3fb0
 
 
 
 
 
 
 
 
 
 
8606638
 
 
deb3fb0
 
 
8606638
deb3fb0
 
 
 
 
 
 
 
 
8606638
deb3fb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8606638
deb3fb0
 
8606638
 
deb3fb0
 
8606638
 
deb3fb0
 
 
 
 
 
 
 
 
 
 
8606638
deb3fb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8606638
deb3fb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8606638
deb3fb0
 
8606638
deb3fb0
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
                                       DEFAULT_SOURCE_VIEW_NAME, Tasks)

_LOCAL = False

_DATASETNAME = "nusaparagraph_topic"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME

_LANGUAGES = [
    "btk", "bew", "bug", "jav", "mad", "mak", "min", "mui", "rej", "sun"
]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)

_CITATION = """\
@unpublished{anonymous2023nusawrites:,        
    title={NusaWrites: Constructing High-Quality Corpora for Underrepresented and Extremely Low-Resource Languages},        
    author={Anonymous},        
    journal={OpenReview Preprint},        
    year={2023},        
    note={anonymous preprint under review}    
}
"""

_DESCRIPTION = """\
Democratizing access to natural language processing (NLP) technology is crucial, especially for underrepresented and extremely low-resource languages. Previous research has focused on developing labeled and unlabeled corpora for these languages through online scraping and document translation. While these methods have proven effective and cost-efficient, we have identified limitations in the resulting corpora, including a lack of lexical diversity and cultural relevance to local communities. To address this gap, we conduct a case study on Indonesian local languages. We compare the effectiveness of online scraping, human translation, and paragraph writing by native speakers in constructing datasets. Our findings demonstrate that datasets generated through paragraph writing by native speakers exhibit superior quality in terms of lexical diversity and cultural content. In addition, we present the NusaWrites benchmark, encompassing 12 underrepresented and extremely low-resource languages spoken by millions of individuals in Indonesia. Our empirical experiment results using existing multilingual large language models conclude the need to extend these models to more underrepresented languages.
We introduce a novel high quality human curated corpora, i.e., NusaMenulis, which covers 12 languages spoken in Indonesia. The resource extend the coverage of languages to 5 new languages, i.e., Ambon (abs), Bima (bhp), Makassarese (mak), Palembang / Musi (mui), and Rejang (rej).
For the topic modeling task, we cover 8 topics, i.e., food \& beverages, sports, leisure, religion, culture \& heritage, a slice of life, technology, and business.
"""

_HOMEPAGE = "https://github.com/IndoNLP/nusa-writes"

_LICENSE = "Creative Commons Attribution Share-Alike 4.0 International"

_SUPPORTED_TASKS = [Tasks.TOPIC_MODELING]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"

_URLS = {
    "train":
    "https://raw.githubusercontent.com/IndoNLP/nusa-writes/main/data/nusa_alinea-topic-{lang}-train.csv",
    "validation":
    "https://raw.githubusercontent.com/IndoNLP/nusa-writes/main/data/nusa_alinea-topic-{lang}-valid.csv",
    "test":
    "https://raw.githubusercontent.com/IndoNLP/nusa-writes/main/data/nusa_alinea-topic-{lang}-test.csv",
}


def seacrowd_config_constructor(lang, schema, version):
    """Construct SEACrowdConfig with nusaparagraph_topic_{lang}_{schema} as the name format"""
    if schema != "source" and schema != "seacrowd_text":
        raise ValueError(f"Invalid schema: {schema}")

    if lang == "":
        return SEACrowdConfig(
            name="nusaparagraph_topic_{schema}".format(schema=schema),
            version=datasets.Version(version),
            description=
            "nusaparagraph_topic with {schema} schema for all 10 languages".
            format(schema=schema),
            schema=schema,
            subset_id="nusaparagraph_topic",
        )
    else:
        return SEACrowdConfig(
            name="nusaparagraph_topic_{lang}_{schema}".format(lang=lang,
                                                              schema=schema),
            version=datasets.Version(version),
            description=
            "nusaparagraph_topic with {schema} schema for {lang} language".
            format(lang=lang, schema=schema),
            schema=schema,
            subset_id="nusaparagraph_topic",
        )


LANGUAGES_MAP = {
    "btk": "batak",
    "bew": "betawi",
    "bug": "buginese",
    "jav": "javanese",
    "mad": "madurese",
    "mak": "makassarese",
    "min": "minangkabau",
    "mui": "musi",
    "rej": "rejang",
    "sun": "sundanese"
}


class NusaParagraphTopic(datasets.GeneratorBasedBuilder):
    """NusaParagraph-Topic is a 8-labels (food & beverages, sports, leisure, religion, culture & heritage, a slice of life, technology, and business) topic modeling dataset for 10 Indonesian local languages."""

    BUILDER_CONFIGS = ([
        seacrowd_config_constructor(lang, "source", _SOURCE_VERSION)
        for lang in LANGUAGES_MAP
    ] + [
        seacrowd_config_constructor(lang, "seacrowd_text",
                                     _SEACROWD_VERSION)
        for lang in LANGUAGES_MAP
    ] + [
        seacrowd_config_constructor("", "source", _SOURCE_VERSION),
        seacrowd_config_constructor("", "seacrowd_text", _SEACROWD_VERSION)
    ])

    DEFAULT_CONFIG_NAME = "nusaparagraph_topic_ind_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features({
                "id": datasets.Value("string"),
                "text": datasets.Value("string"),
                "label": datasets.Value("string"),
            })
        elif self.config.schema == "seacrowd_text":
            features = schemas.text_features([
                "food & beverages", "sports", "leisures", "religion", "culture & heritage", "slice of life", "technology", "business"
            ])

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(
            self, dl_manager: datasets.DownloadManager
    ) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        if self.config.name == "nusaparagraph_topic_source" or self.config.name == "nusaparagraph_topic_seacrowd_text":
            # Load all 12 languages
            train_csv_path = dl_manager.download_and_extract([
                _URLS["train"].format(lang=lang)
                for lang in LANGUAGES_MAP
            ])
            validation_csv_path = dl_manager.download_and_extract([
                _URLS["validation"].format(lang=lang)
                for lang in LANGUAGES_MAP
            ])
            test_csv_path = dl_manager.download_and_extract([
                _URLS["test"].format(lang=lang)
                for lang in LANGUAGES_MAP
            ])
        else:
            lang = self.config.name.split('_')[2]
            train_csv_path = Path(
                dl_manager.download_and_extract(
                    _URLS["train"].format(lang=lang)))
            validation_csv_path = Path(
                dl_manager.download_and_extract(
                    _URLS["validation"].format(lang=lang)))
            test_csv_path = Path(
                dl_manager.download_and_extract(
                    _URLS["test"].format(lang=lang)))

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": train_csv_path},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": validation_csv_path},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": test_csv_path},
            ),
        ]

    def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
        if self.config.schema != "source" and self.config.schema != "seacrowd_text":
            raise ValueError(f"Invalid config: {self.config.name}")

        if self.config.name == "nusaparagraph_topic_source" or self.config.name == "nusaparagraph_topic_seacrowd_text":
            ldf = []
            for fp in filepath:
                ldf.append(pd.read_csv(fp))
            df = pd.concat(ldf, axis=0, ignore_index=True).reset_index()
            # Have to use index instead of id to avoid duplicated key
            df = df.drop(columns=["id"]).rename(columns={"index": "id"})
        else:
            df = pd.read_csv(filepath).reset_index()

        for row in df.itertuples():
            ex = {"id": str(row.id), "text": row.text, "label": row.label}
            yield row.id, ex