File size: 7,255 Bytes
fdfbdae
 
 
 
 
 
e4849a3
 
 
fdfbdae
 
 
 
 
 
e4849a3
fdfbdae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4849a3
fdfbdae
 
 
 
 
 
 
 
e4849a3
 
 
fdfbdae
 
 
e4849a3
fdfbdae
 
 
 
 
 
 
e4849a3
fdfbdae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4849a3
 
 
fdfbdae
 
 
 
 
 
 
 
 
 
 
 
 
e4849a3
fdfbdae
 
 
 
 
 
 
 
 
 
 
 
e4849a3
fdfbdae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4849a3
fdfbdae
 
e4849a3
fdfbdae
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
                                       DEFAULT_SOURCE_VIEW_NAME, Tasks)

_LOCAL = False

_DATASETNAME = "nusax_senti"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME

_LANGUAGES = ["ind", "ace", "ban", "bjn", "bbc", "bug", "jav", "mad", "min", "nij", "sun", "eng"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)

_CITATION = """\
@misc{winata2022nusax,
      title={NusaX: Multilingual Parallel Sentiment Dataset for 10 Indonesian Local Languages},
      author={Winata, Genta Indra and Aji, Alham Fikri and Cahyawijaya,
      Samuel and Mahendra, Rahmad and Koto, Fajri and Romadhony,
      Ade and Kurniawan, Kemal and Moeljadi, David and Prasojo,
      Radityo Eko and Fung, Pascale and Baldwin, Timothy and Lau,
      Jey Han and Sennrich, Rico and Ruder, Sebastian},
      year={2022},
      eprint={2205.15960},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
NusaX is a high-quality multilingual parallel corpus that covers 12 languages, Indonesian, English, and 10 Indonesian local languages, namely Acehnese, Balinese, Banjarese, Buginese, Madurese, Minangkabau, Javanese, Ngaju, Sundanese, and Toba Batak.

NusaX-Senti is a 3-labels (positive, neutral, negative) sentiment analysis dataset for 10 Indonesian local languages + Indonesian and English.
"""

_HOMEPAGE = "https://github.com/IndoNLP/nusax/tree/main/datasets/sentiment"

_LICENSE = "Creative Commons Attribution Share-Alike 4.0 International"

_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"

_URLS = {
    "train": "https://raw.githubusercontent.com/IndoNLP/nusax/main/datasets/sentiment/{lang}/train.csv",
    "validation": "https://raw.githubusercontent.com/IndoNLP/nusax/main/datasets/sentiment/{lang}/valid.csv",
    "test": "https://raw.githubusercontent.com/IndoNLP/nusax/main/datasets/sentiment/{lang}/test.csv",
}


def seacrowd_config_constructor(lang, schema, version):
    """Construct SEACrowdConfig with nusax_senti_{lang}_{schema} as the name format"""
    if schema != "source" and schema != "seacrowd_text":
        raise ValueError(f"Invalid schema: {schema}")

    if lang == "":
        return SEACrowdConfig(
            name="nusax_senti_{schema}".format(schema=schema),
            version=datasets.Version(version),
            description="nusax_senti with {schema} schema for all 12 languages".format(schema=schema),
            schema=schema,
            subset_id="nusax_senti",
        )
    else:
        return SEACrowdConfig(
            name="nusax_senti_{lang}_{schema}".format(lang=lang, schema=schema),
            version=datasets.Version(version),
            description="nusax_senti with {schema} schema for {lang} language".format(lang=lang, schema=schema),
            schema=schema,
            subset_id="nusax_senti",
        )


LANGUAGES_MAP = {
    "ace": "acehnese",
    "ban": "balinese",
    "bjn": "banjarese",
    "bug": "buginese",
    "eng": "english",
    "ind": "indonesian",
    "jav": "javanese",
    "mad": "madurese",
    "min": "minangkabau",
    "nij": "ngaju",
    "sun": "sundanese",
    "bbc": "toba_batak",
}


class NusaXSenti(datasets.GeneratorBasedBuilder):
    """NusaX-Senti is a 3-labels (positive, neutral, negative) sentiment analysis dataset for 10 Indonesian local languages + Indonesian and English."""

    BUILDER_CONFIGS = (
        [seacrowd_config_constructor(lang, "source", _SOURCE_VERSION) for lang in LANGUAGES_MAP]
        + [seacrowd_config_constructor(lang, "seacrowd_text", _SEACROWD_VERSION) for lang in LANGUAGES_MAP]
        + [seacrowd_config_constructor("", "source", _SOURCE_VERSION), seacrowd_config_constructor("", "seacrowd_text", _SEACROWD_VERSION)]
    )

    DEFAULT_CONFIG_NAME = "nusax_senti_ind_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "label": datasets.Value("string"),
                }
            )
        elif self.config.schema == "seacrowd_text":
            features = schemas.text_features(["negative", "neutral", "positive"])

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        if self.config.name == "nusax_senti_source" or self.config.name == "nusax_senti_seacrowd_text":
            # Load all 12 languages
            train_csv_path = dl_manager.download_and_extract([_URLS["train"].format(lang=LANGUAGES_MAP[lang]) for lang in LANGUAGES_MAP])
            validation_csv_path = dl_manager.download_and_extract([_URLS["validation"].format(lang=LANGUAGES_MAP[lang]) for lang in LANGUAGES_MAP])
            test_csv_path = dl_manager.download_and_extract([_URLS["test"].format(lang=LANGUAGES_MAP[lang]) for lang in LANGUAGES_MAP])
        else:
            lang = self.config.name[12:15]
            train_csv_path = Path(dl_manager.download_and_extract(_URLS["train"].format(lang=LANGUAGES_MAP[lang])))
            validation_csv_path = Path(dl_manager.download_and_extract(_URLS["validation"].format(lang=LANGUAGES_MAP[lang])))
            test_csv_path = Path(dl_manager.download_and_extract(_URLS["test"].format(lang=LANGUAGES_MAP[lang])))

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": train_csv_path},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": validation_csv_path},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": test_csv_path},
            ),
        ]

    def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
        if self.config.schema != "source" and self.config.schema != "seacrowd_text":
            raise ValueError(f"Invalid config: {self.config.name}")

        if self.config.name == "nusax_senti_source" or self.config.name == "nusax_senti_seacrowd_text":
            ldf = []
            for fp in filepath:
                ldf.append(pd.read_csv(fp))
            df = pd.concat(ldf, axis=0, ignore_index=True).reset_index()
            # Have to use index instead of id to avoid duplicated key
            df = df.drop(columns=["id"]).rename(columns={"index": "id"})
        else:
            df = pd.read_csv(filepath).reset_index()

        for row in df.itertuples():
            ex = {"id": str(row.id), "text": row.text, "label": row.label}
            yield row.id, ex