|
""" |
|
SEA Crowd Data Loader for SEA MADLAD. |
|
""" |
|
|
|
import gzip |
|
import json |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from datasets.download.download_manager import DownloadManager |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks |
|
|
|
_CITATION = r""" |
|
@misc{kudugunta2023madlad400, |
|
title={MADLAD-400: A Multilingual And Document-Level Large Audited Dataset}, |
|
author={Sneha Kudugunta and Isaac Caswell and Biao Zhang and Xavier Garcia and Christopher A. Choquette-Choo and Katherine Lee and Derrick Xin and Aditya Kusupati and Romi Stella and Ankur Bapna and Orhan Firat}, |
|
year={2023}, |
|
eprint={2309.04662}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_LANG_CONFIG = { |
|
"ace": {"name": "Aceh", "source_subset": "ace"}, |
|
"akb": {"name": "Batak Angkola", "source_subset": "akb"}, |
|
"ban": {"name": "Bali", "source_subset": "ban"}, |
|
"bbc": {"name": "Batak Toba", "source_subset": "bbc"}, |
|
"bew": {"name": "Betawi", "source_subset": "bew"}, |
|
"btx": {"name": "Batak Karo", "source_subset": "btx"}, |
|
"ceb": {"name": "Cebuano", "source_subset": "ceb"}, |
|
"fil": {"name": "Filipino", "source_subset": "fil"}, |
|
"gor": {"name": "Gorontalo", "source_subset": "gor"}, |
|
"hil": {"name": "Hiligaynon", "source_subset": "hil"}, |
|
"iba": {"name": "Iban", "source_subset": "iba"}, |
|
"ilo": {"name": "Ilocano", "source_subset": "ilo"}, |
|
"ind": {"name": "Indonesian", "source_subset": "id"}, |
|
"jav": {"name": "Javanese", "source_subset": "jv"}, |
|
"kac": {"name": "Jingpho", "source_subset": "kac"}, |
|
"khm": {"name": "Khmer", "source_subset": "km"}, |
|
"kxd": {"name": "Brunei", "source_subset": "ms_Arab_BN"}, |
|
"lao": {"name": "Lao", "source_subset": "lo"}, |
|
"mad": {"name": "Madura", "source_subset": "mad"}, |
|
"mak": {"name": "Makasar", "source_subset": "mak"}, |
|
"meo": {"name": "Kedah Malay", "source_subset": "meo"}, |
|
"min": {"name": "Minangkabau", "source_subset": "min"}, |
|
"mkn": {"name": "Kupang Malay", "source_subset": "mkn"}, |
|
"msa": {"name": "Malay", "source_subset": "ms"}, |
|
"msi": {"name": "Sabah Malay", "source_subset": "msi"}, |
|
"mya": {"name": "Burmese", "source_subset": "my"}, |
|
"nij": {"name": "Ngaju", "source_subset": "nij"}, |
|
"nut": {"name": "Nung", "source_subset": "nut"}, |
|
"pag": {"name": "Pangasinan", "source_subset": "pag"}, |
|
"shn": {"name": "Shan", "source_subset": "shn"}, |
|
"sun": {"name": "Sunda", "source_subset": "su"}, |
|
"tet": {"name": "Tetun", "source_subset": "tet"}, |
|
"tha": {"name": "Thai", "source_subset": "th"}, |
|
"vie": {"name": "Vietnamese", "source_subset": "vi"}, |
|
"war": {"name": "Waray-Waray", "source_subset": "war"}, |
|
} |
|
|
|
|
|
|
|
_N_SHARDS_PER_SPLIT = { |
|
"ace": 1, |
|
"akb": 1, |
|
"ban": 1, |
|
"bbc": 1, |
|
"bew": 1, |
|
"btx": 1, |
|
"ceb": 1, |
|
"fil": 1, |
|
"gor": 1, |
|
"hil": 1, |
|
"iba": 1, |
|
"id": 18, |
|
"ilo": 1, |
|
"jv": 1, |
|
"kac": 1, |
|
"km": 1, |
|
"lo": 1, |
|
"mad": 1, |
|
"mak": 1, |
|
"meo": 1, |
|
"min": 1, |
|
"mkn": 1, |
|
"ms": 2, |
|
"ms_Arab_BN": 1, |
|
"msi": 1, |
|
"my": 1, |
|
"nij": 1, |
|
"nut": 1, |
|
"pag": 1, |
|
"shn": 1, |
|
"su": 1, |
|
"tet": 1, |
|
"th": 21, |
|
"vi": 32, |
|
"war": 1, |
|
} |
|
|
|
_LOCAL = False |
|
_LANGUAGES = list(_LANG_CONFIG.keys()) |
|
|
|
|
|
_DATASETNAME = "sea_madlad" |
|
_DESCRIPTION = r""" |
|
SEA MADLAD is a subset of MADLAD-400 (Multilingual Audited Dataset: Low-resource And Document-level), which is a document-level multilingual dataset based on Common Crawl. |
|
SEA MADLAD only filters the language of the "clean" subset, which covers 36 languages indigenous to SEA from 419 languages in total. |
|
As a result, some of SEA lang codes aren't available in this version because those belongs to the languages whose decision was to "remove from its clean version" based on MADLAD auditing process. |
|
MADLAD uses all snapshots of CommonCrawl available as of August 1, 2022. |
|
The primary advantage of this dataset over similar datasets is that it is more multilingual, it is audited and more highly filtered, and it is document-level. |
|
The main disadvantage is also its strength -- being more filtered, it may lack the recall needed for some applications. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/allenai/MADLAD-400" |
|
_LICENSE = Licenses.CC_BY_4_0.value |
|
|
|
_URL = "https://huggingface.co/datasets/allenai/MADLAD-400/resolve/ecd71297d60c1eb996cd3d7c44c60ad5b55adfc6/data/{language}/{language}_{split}_{index:04d}.jsonl.gz" |
|
|
|
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS] |
|
|
|
|
|
def conform_init_config(): |
|
"""Assertion Function for Instantiated Configs""" |
|
if len(_LANGUAGES) == 0: |
|
raise AssertionError("No Languages detected from config!") |
|
if len(CONFIG_SUFFIXES_FOR_TASK) != len(_SUPPORTED_TASKS): |
|
raise AssertionError("Config prefixes don't matched in terms of `len` with `_SUPPORTED_TASKS`!") |
|
if len(CONFIG_SUFFIXES_FOR_TASK) == 0: |
|
raise AssertionError("Config prefixes and `_SUPPORTED_TASKS` have `len` of 0!") |
|
|
|
|
|
conform_init_config() |
|
|
|
|
|
def construct_configs_on_langs(languages: list = None) -> List[SEACrowdConfig]: |
|
""" |
|
The function `construct_configs` constructs a list of SEACrowdConfig objects based on the provided |
|
languages or a default language, and returns the list. |
|
|
|
input: |
|
languages (list, default None): The `languages` parameter is a list that specifies the languages for which the |
|
configurations need to be constructed. If no languages are provided (value=None), the first value in language config |
|
will be used. |
|
output: |
|
a list of `SEACrowdConfig` objects based on instantiated init variables |
|
""" |
|
|
|
|
|
config_list = [] |
|
|
|
|
|
TASKS_AND_CONFIG_SUFFIX_PAIRS = list(zip(_SUPPORTED_TASKS, CONFIG_SUFFIXES_FOR_TASK)) |
|
|
|
|
|
version, config_name_prefix = _SOURCE_VERSION, "source" |
|
config_list += [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{_LANG}_{config_name_prefix}", |
|
version=datasets.Version(version), |
|
description=f"{_DATASETNAME} {config_name_prefix} schema for language code {_LANG}", |
|
schema=f"{config_name_prefix}", |
|
subset_id=_LANG, |
|
) |
|
for _LANG in languages |
|
] |
|
|
|
|
|
version, config_name_prefix = _SEACROWD_VERSION, "seacrowd" |
|
for task_obj, config_name_suffix in TASKS_AND_CONFIG_SUFFIX_PAIRS: |
|
config_list += [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{_LANG}_{config_name_prefix}_{config_name_suffix}", |
|
version=datasets.Version(version), |
|
description=f"{_DATASETNAME} {config_name_prefix} schema for {task_obj.name} and language code {_LANG}", |
|
schema=f"{config_name_prefix}_{config_name_suffix}", |
|
subset_id=_LANG, |
|
) |
|
for _LANG in languages |
|
] |
|
return config_list |
|
|
|
|
|
class SEAMADLADDataset(datasets.GeneratorBasedBuilder): |
|
"""SEA MADLAD dataset, subsetted from https://huggingface.co/datasets/allenai/MADLAD-400""" |
|
|
|
|
|
BUILDER_CONFIGS = construct_configs_on_langs(_LANGUAGES) |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
_config_schema_name = self.config.schema |
|
logger.info(f"Received schema name: {self.config.schema}") |
|
|
|
if _config_schema_name == "source": |
|
features = datasets.Features({"text": datasets.Value("string")}) |
|
|
|
elif _config_schema_name == "seacrowd_ssp": |
|
features = schemas.ssp_features |
|
|
|
else: |
|
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: |
|
|
|
_lang = _LANG_CONFIG[self.config.subset_id]["source_subset"] |
|
_split = "clean" |
|
_data_list = [_URL.format(language=_lang, split=_split, index=idx) for idx in range(_N_SHARDS_PER_SPLIT[_lang])] |
|
|
|
filepaths = dl_manager.download(_data_list) |
|
|
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": filepaths})] |
|
|
|
def _generate_examples(self, filepaths) -> Tuple[int, Dict]: |
|
_config_schema_name = self.config.schema |
|
|
|
|
|
id_ = 0 |
|
for filepath in filepaths: |
|
logger.info("generating examples from = %s", filepath) |
|
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: |
|
for line in f: |
|
if line: |
|
example = json.loads(line) |
|
|
|
|
|
if _config_schema_name == "source": |
|
yield id_, {colname: example[colname] for colname in self.info.features} |
|
|
|
|
|
elif _config_schema_name == "seacrowd_ssp": |
|
yield id_, {"id": id_, "text": example["text"]} |
|
|
|
else: |
|
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!") |
|
|
|
id_ += 1 |
|
|