|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import glob |
|
import json |
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple, Union |
|
|
|
import datasets |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
|
|
_CITATION = """\ |
|
""" |
|
_DATASETNAME = "thai_ser" |
|
_DESCRIPTION = """\ |
|
THAI SER dataset consists of 5 main emotions assigned to actors: Neutral, |
|
Anger, Happiness, Sadness, and Frustration. The recordings were 41 hours, |
|
36 minutes long (27,854 utterances), and were performed by 200 professional |
|
actors (112 female, 88 male) and directed by students, former alumni, and |
|
professors from the Faculty of Arts, Chulalongkorn University. The THAI SER |
|
contains 100 recordings and is separated into two main categories: Studio and |
|
Zoom. Studio recordings also consist of two studio environments: Studio A, a |
|
controlled studio room with soundproof walls, and Studio B, a normal room |
|
without soundproof or noise control. |
|
""" |
|
_HOMEPAGE = "https://github.com/vistec-AI/dataset-releases/releases/tag/v1" |
|
_LANGUAGES = ["tha"] |
|
_LICENSE = Licenses.CC_BY_SA_4_0.value |
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"actor_demography": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/actor_demography.json", |
|
"emotion_label": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/emotion_label.json", |
|
"studio": { |
|
"studio1-10": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio1-10.zip", |
|
"studio11-20": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio11-20.zip", |
|
"studio21-30": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio21-30.zip", |
|
"studio31-40": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio31-40.zip", |
|
"studio41-50": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio41-50.zip", |
|
"studio51-60": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio51-60.zip", |
|
"studio61-70": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio61-70.zip", |
|
"studio71-80": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio71-80.zip", |
|
}, |
|
"zoom": {"zoom1-10": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/zoom1-10.zip", "zoom11-20": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/zoom11-20.zip"}, |
|
} |
|
_URLS["studio_zoom"] = {**_URLS["studio"], **_URLS["zoom"]} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SPEECH_EMOTION_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class ThaiSER(datasets.GeneratorBasedBuilder): |
|
"""Thai speech emotion recognition dataset THAI SER contains 100 recordings (80 studios and 20 zooms).""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "speech" |
|
_LABELS = ["Neutral", "Angry", "Happy", "Sad", "Frustrated"] |
|
|
|
BUILDER_CONFIGS = [ |
|
|
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
|
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_include_zoom_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_include_zoom", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_include_zoom_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}_include_zoom", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=44_100), |
|
"speaker_id": datasets.Value("string"), |
|
"labels": datasets.ClassLabel(names=self._LABELS), |
|
"majority_emo": datasets.Value("string"), |
|
"annotated": datasets.Value("string"), |
|
"agreement": datasets.Value("float32"), |
|
"metadata": { |
|
"speaker_age": datasets.Value("int64"), |
|
"speaker_gender": datasets.Value("string"), |
|
}, |
|
} |
|
) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
|
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=44_100), |
|
"speaker_id": datasets.Value("string"), |
|
"labels": datasets.ClassLabel(names=self._LABELS), |
|
"metadata": { |
|
"speaker_age": datasets.Value("int64"), |
|
"speaker_gender": datasets.Value("string"), |
|
}, |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
setting = "studio_zoom" if "zoom" in self.config.name else "studio" |
|
|
|
data_paths = {"actor_demography": Path(dl_manager.download_and_extract(_URLS["actor_demography"])), "emotion_label": Path(dl_manager.download_and_extract(_URLS["emotion_label"])), setting: {}} |
|
for url_name, url_path in _URLS[setting].items(): |
|
data_paths[setting][url_name] = Path(dl_manager.download_and_extract(url_path)) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"actor_demography_filepath": data_paths["actor_demography"], |
|
"emotion_label_filepath": data_paths["emotion_label"], |
|
"data_filepath": data_paths[setting], |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, actor_demography_filepath: Path, emotion_label_filepath: Path, data_filepath: Dict[str, Union[Path, Dict]], split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
with open(actor_demography_filepath, "r", encoding="utf-8") as actor_demography_file: |
|
actor_demography = json.load(actor_demography_file) |
|
actor_demography_dict = {actor["Actor's ID"]: {"speaker_age": actor["Age"], "speaker_gender": actor["Sex"].lower()} for actor in actor_demography["data"]} |
|
|
|
|
|
with open(emotion_label_filepath, "r", encoding="utf-8") as emotion_label_file: |
|
emotion_label = json.load(emotion_label_file) |
|
|
|
|
|
for folder_path in data_filepath.values(): |
|
flac_files = glob.glob(os.path.join(folder_path, "**/*.flac"), recursive=True) |
|
|
|
for audio_path in flac_files: |
|
id = audio_path.split("/")[-1] |
|
speaker_id = id.split("_")[2].strip("actor") |
|
|
|
|
|
if id in emotion_label.keys(): |
|
assigned_emo = emotion_label[id][0]["assigned_emo"] |
|
majority_emo = emotion_label[id][0]["majority_emo"] |
|
agreement = emotion_label[id][0]["agreement"] |
|
annotated = emotion_label[id][0]["annotated"] |
|
else: |
|
if "script" in id: |
|
label = id.split("_")[-1][0] |
|
assigned_emo = self._LABELS[int(label) - 1] |
|
majority_emo = agreement = annotated = None |
|
else: |
|
continue |
|
|
|
if self.config.schema == "source": |
|
example = { |
|
"id": id.strip(".flac"), |
|
"path": audio_path, |
|
"audio": audio_path, |
|
"speaker_id": speaker_id, |
|
"labels": assigned_emo, |
|
"majority_emo": majority_emo, |
|
"agreement": agreement, |
|
"annotated": annotated, |
|
"metadata": {"speaker_age": actor_demography_dict[speaker_id]["speaker_age"], "speaker_gender": actor_demography_dict[speaker_id]["speaker_gender"]}, |
|
} |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
example = { |
|
"id": id.strip(".flac"), |
|
"path": audio_path, |
|
"audio": audio_path, |
|
"speaker_id": speaker_id, |
|
"labels": assigned_emo, |
|
"metadata": {"speaker_age": actor_demography_dict[speaker_id]["speaker_age"], "speaker_gender": actor_demography_dict[speaker_id]["speaker_gender"]}, |
|
} |
|
|
|
yield id.strip(".flac"), example |
|
|