|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
import json |
|
import os |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks, DEFAULT_SOURCE_VIEW_NAME, DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
_DATASETNAME = "titml_idn" |
|
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME |
|
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{lestari2006titmlidn, |
|
title={A large vocabulary continuous speech recognition system for Indonesian language}, |
|
author={Lestari, Dessi Puji and Iwano, Koji and Furui, Sadaoki}, |
|
booktitle={15th Indonesian Scientific Conference in Japan Proceedings}, |
|
pages={17--22}, |
|
year={2006} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
TITML-IDN (Tokyo Institute of Technology Multilingual - Indonesian) is collected to build a pioneering Indonesian Large Vocabulary Continuous Speech Recognition (LVCSR) System. In order to build an LVCSR system, high accurate acoustic models and large-scale language models are essential. Since Indonesian speech corpus was not available yet, we tried to collect speech data from 20 Indonesian native speakers (11 males and 9 females) to construct a speech corpus for training the acoustic model based on Hidden Markov Models (HMMs). A text corpus which was collected by ILPS, Informatics Institute, University of Amsterdam, was used to build a 40K-vocabulary dictionary and a n-gram language model. |
|
""" |
|
|
|
_HOMEPAGE = "http://research.nii.ac.jp/src/en/TITML-IDN.html" |
|
|
|
_LICENSE = Licenses.OTHERS.value + " | For research purposes only. If you use this corpus, you have to cite (Lestari et al, 2006)." |
|
|
|
_URLs = {"titml-idn": "https://huggingface.co/datasets/holylovenia/TITML-IDN/resolve/main/IndoLVCSR.zip"} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class TitmlIdn(datasets.GeneratorBasedBuilder): |
|
"""TITML-IDN is a speech recognition dataset containing Indonesian speech collected with transcriptions from newpaper and magazine articles.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="titml_idn_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="TITML-IDN source schema", |
|
schema="source", |
|
subset_id="titml_idn", |
|
), |
|
SEACrowdConfig( |
|
name="titml_idn_seacrowd_sptext", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description="TITML-IDN Nusantara schema", |
|
schema="seacrowd_sptext", |
|
subset_id="titml_idn", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "titml_idn_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_sptext": |
|
features = schemas.speech_text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
base_path = dl_manager.download_and_extract(_URLs["titml-idn"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": base_path}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, n_speakers=20): |
|
|
|
if self.config.schema == "source" or self.config.schema == "seacrowd_sptext": |
|
|
|
for speaker_id in range(1, n_speakers + 1): |
|
speaker_id = str(speaker_id).zfill(2) |
|
dir_path = os.path.join(filepath, speaker_id) |
|
transcription_path = os.path.join(dir_path, "script~") |
|
|
|
with open(transcription_path, "r+") as f: |
|
for line in f: |
|
audio_id = line[2:8] |
|
text = line[9:].strip() |
|
wav_path = os.path.join(dir_path, "{}.wav".format(audio_id)) |
|
|
|
if os.path.exists(wav_path): |
|
if self.config.schema == "source": |
|
ex = { |
|
"id": audio_id, |
|
"speaker_id": speaker_id, |
|
"path": wav_path, |
|
"audio": wav_path, |
|
"text": text, |
|
} |
|
yield audio_id, ex |
|
elif self.config.schema == "seacrowd_sptext": |
|
ex = { |
|
"id": audio_id, |
|
"speaker_id": speaker_id, |
|
"path": wav_path, |
|
"audio": wav_path, |
|
"text": text, |
|
"metadata": { |
|
"speaker_age": None, |
|
"speaker_gender": None, |
|
} |
|
} |
|
yield audio_id, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|