|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import gdown |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{10.1145/3587819.3592545, |
|
author = {Prakash, Nirmalendu and Hee, Ming Shan and Lee, Roy Ka-Wei}, |
|
title = {TotalDefMeme: A Multi-Attribute Meme dataset on Total Defence in Singapore}, |
|
year = {2023}, |
|
isbn = {9798400701481}, |
|
publisher = {Association for Computing Machinery}, |
|
address = {New York, NY, USA}, |
|
url = {https://doi.org/10.1145/3587819.3592545}, |
|
doi = {10.1145/3587819.3592545}, |
|
booktitle = {Proceedings of the 14th Conference on ACM Multimedia Systems}, |
|
pages = {369–375}, |
|
numpages = {7}, |
|
keywords = {multimodal, meme, dataset, topic clustering, stance classification}, |
|
location = {Vancouver, BC, Canada}, |
|
series = {MMSys '23} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "total_defense_meme" |
|
|
|
_DESCRIPTION = """\ |
|
This is a large-scale multimodal and multi-attribute dataset containing memes |
|
about Singapore's Total Defence policy from different social media platforms. |
|
The type (Singaporean or generic), pillars (military, civil, economic, social, |
|
psychological, digital, others), topics and stances (against, neutral, |
|
supportive) of each meme are manually identified by annotators. |
|
""" |
|
|
|
_HOMEPAGE = "https://gitlab.com/bottle_shop/meme/TotalDefMemes" |
|
|
|
_LANGUAGES = ["eng"] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"image": "https://drive.google.com/file/d/1oJIh4QQS3Idff2g6bZORstS5uBROjUUz/view?usp=share_link", |
|
"annotations": "https://gitlab.com/bottle_shop/meme/TotalDefMemes/-/raw/main/report/annotation.json?ref_type=heads", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.OPTICAL_CHARACTER_RECOGNITION, Tasks.IMAGE_CLASSIFICATION_MULTILABEL] |
|
_SEACROWD_SCHEMA = { |
|
task.value: f"seacrowd_{TASK_TO_SCHEMA[task].lower()}" for task in _SUPPORTED_TASKS |
|
} |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class TotalDefenseMemeDataset(datasets.GeneratorBasedBuilder): |
|
"""Multimodal dataset containing memes about Singapore's Total Defence policy""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{_SEACROWD_SCHEMA['OCR']}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=_SEACROWD_SCHEMA["OCR"], |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{_SEACROWD_SCHEMA['IMC_MULTI']}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=_SEACROWD_SCHEMA["IMC_MULTI"], |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
meme_type = ["Non_Memes", "Non_SG_Memes", "SG_Memes"] |
|
pillar_type = [ |
|
"Social", |
|
"Economic", |
|
"Psychological", |
|
"Military", |
|
"Civil", |
|
"Digital", |
|
"Others", |
|
] |
|
stance_type = ["Against", "Neutral", "Supportive"] |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"image_path": datasets.Value("string"), |
|
"meme_type": datasets.Sequence(datasets.ClassLabel(names=meme_type)), |
|
"text": datasets.Value("string"), |
|
"tags": datasets.Sequence(datasets.Value("string")), |
|
"pillar_stances": datasets.Sequence( |
|
{ |
|
"category": datasets.ClassLabel(names=pillar_type), |
|
"stance": datasets.Sequence(datasets.ClassLabel(names=stance_type)), |
|
} |
|
), |
|
} |
|
) |
|
|
|
elif self.config.schema == _SEACROWD_SCHEMA["OCR"]: |
|
features = schemas.image_text_features(label_names=meme_type) |
|
features["metadata"] = { |
|
"tags": datasets.Sequence(datasets.Value("string")), |
|
"pillar_stances": datasets.Sequence( |
|
{ |
|
"category": datasets.ClassLabel(names=pillar_type), |
|
"stance": datasets.Sequence(datasets.ClassLabel(names=stance_type)), |
|
} |
|
), |
|
} |
|
elif self.config.schema == _SEACROWD_SCHEMA["IMC_MULTI"]: |
|
features = schemas.image_multi_features(label_names=pillar_type) |
|
features["metadata"] = { |
|
"tags": datasets.Sequence(datasets.Value("string")), |
|
"stances": datasets.Sequence(datasets.Sequence(datasets.ClassLabel(names=stance_type))), |
|
} |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
output_dir = Path.cwd() / "data" / _DATASETNAME |
|
output_dir.mkdir(parents=True, exist_ok=True) |
|
output_file = output_dir / f"{_DATASETNAME}.zip" |
|
if not output_file.exists(): |
|
gdown.download(_URLS["image"], str(output_file), fuzzy=True) |
|
else: |
|
print(f"File already downloaded: {str(output_file)}") |
|
|
|
image_dir = Path(dl_manager.extract(output_file)) / "TD_Memes" |
|
|
|
|
|
annotation_path = Path(dl_manager.download(_URLS["annotations"])) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"image_dir": image_dir, |
|
"annotation_file": annotation_path, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, image_dir: Path, annotation_file: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
with open(annotation_file, "r", encoding="utf-8") as file: |
|
annotation = json.load(file) |
|
|
|
|
|
image_names = sorted( |
|
list( |
|
set(annotation["Non_Memes"]) |
|
| set(annotation["Non_SG_Memes"]) |
|
| set(annotation["SG_Memes"]) |
|
) |
|
) |
|
|
|
|
|
def get_value(image_name, list_of_dicts): |
|
for dictionary in list_of_dicts: |
|
if image_name in dictionary: |
|
return dictionary[image_name] |
|
return None |
|
|
|
key = 0 |
|
for image_name in image_names: |
|
|
|
assert (image_dir / image_name).exists(), f"Image {image_name} not found" |
|
image_path = str(image_dir / image_name) |
|
|
|
|
|
categories = [] |
|
if image_name in annotation["Non_Memes"]: |
|
categories.append("Non_Memes") |
|
if image_name in annotation["Non_SG_Memes"]: |
|
categories.append("Non_SG_Memes") |
|
if image_name in annotation["SG_Memes"]: |
|
categories.append("SG_Memes") |
|
|
|
|
|
text = get_value(image_name, annotation["Text"]) |
|
tags = get_value(image_name, annotation["Tags"]) |
|
raw_pillar_stances = get_value(image_name, annotation["Pillar_Stances"]) |
|
|
|
|
|
pillar_stances = [] |
|
if raw_pillar_stances: |
|
for pillar, stances in raw_pillar_stances: |
|
category = pillar.split(" ")[0] |
|
pillar_stances.append({"category": category, "stance": stances}) |
|
|
|
|
|
if self.config.schema == "source": |
|
yield key, { |
|
"image_path": image_path, |
|
"meme_type": categories, |
|
"text": text, |
|
"tags": tags, |
|
"pillar_stances": pillar_stances, |
|
} |
|
key += 1 |
|
|
|
|
|
elif self.config.schema == _SEACROWD_SCHEMA["OCR"]: |
|
yield key, { |
|
"id": str(key), |
|
"image_paths": [image_path], |
|
"texts": text, |
|
"metadata": { |
|
"tags": tags, |
|
"pillar_stances": pillar_stances, |
|
}, |
|
} |
|
key += 1 |
|
|
|
|
|
elif self.config.schema == _SEACROWD_SCHEMA["IMC_MULTI"]: |
|
if pillar_stances: |
|
yield key, { |
|
"id": str(key), |
|
"labels": [pillar["category"] for pillar in pillar_stances], |
|
"image_path": image_path, |
|
"metadata": { |
|
"tags": tags, |
|
"stances": [pillar["stance"] for pillar in pillar_stances], |
|
}, |
|
} |
|
key += 1 |
|
|