|
""" |
|
This new update refers to the this HF dataloader script |
|
https://huggingface.co/datasets/csebuetnlp/xlsum/blob/main/xlsum.py |
|
while conforming to SEACrowd schema |
|
""" |
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import json |
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{hasan2021xl, |
|
title={XL-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages}, |
|
author={Hasan, Tahmid and Bhattacharjee, Abhik and Islam, Md Saiful and Mubasshir, Kazi and Li, Yuan-Fang and Kang, Yong-Bin and Rahman, M Sohel and Shahriyar, Rifat}, |
|
booktitle={Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021}, |
|
pages={4693--4703}, |
|
year={2021} |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind", "mya", "tha", "vie", "eng"] |
|
|
|
_LANG_TO_DATASOURCE_LANG = { |
|
"ind": "indonesian", |
|
"mya": "burmese", |
|
"vie": "vietnamese", |
|
"tha": "thai"} |
|
|
|
_DATASETNAME = "xl_sum" |
|
|
|
_DESCRIPTION = """\ |
|
XL-Sum, a comprehensive and diverse dataset comprising 1 million professionally annotated article-summary pairs from BBC, was extracted using a set of carefully designed heuristics. |
|
The dataset covers 44 languages ranging from low to high-resource, including 4 indigenous languages spoken in Southeast Asia region. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/csebuetnlp/xl-sum" |
|
|
|
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value |
|
|
|
_URLS = "https://huggingface.co/datasets/csebuetnlp/xlsum/resolve/main/data/{}_XLSum_v{}.tar.bz2" |
|
|
|
_SUPPORTED_TASKS = [Tasks.SUMMARIZATION] |
|
|
|
_SOURCE_VERSION = "2.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
def construct_configs_on_langs() -> List[SEACrowdConfig]: |
|
""" |
|
The function `construct_configs` constructs a list of SEACrowdConfig objects based on `_LANGUAGES` var, and returns the list. |
|
|
|
output: |
|
a list of `SEACrowdConfig` objects based on instantiated init variables |
|
""" |
|
|
|
|
|
config_list = [] |
|
|
|
|
|
CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS] |
|
TASKS_AND_CONFIG_SUFFIX_PAIRS = list(zip(_SUPPORTED_TASKS, CONFIG_SUFFIXES_FOR_TASK)) |
|
|
|
|
|
version, config_name_prefix = _SOURCE_VERSION, "source" |
|
config_list += [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{_LANG}_{config_name_prefix}", |
|
version=datasets.Version(version), |
|
description=f"{_DATASETNAME} {config_name_prefix} schema for language code {_LANG}", |
|
schema=f"{config_name_prefix}", |
|
subset_id=_LANG, |
|
) |
|
|
|
for _LANG in _LANGUAGES if _LANG != "eng" |
|
] |
|
|
|
|
|
version, config_name_prefix = _SEACROWD_VERSION, "seacrowd" |
|
for task_obj, config_name_suffix in TASKS_AND_CONFIG_SUFFIX_PAIRS: |
|
config_list += [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{_LANG}_{config_name_prefix}_{config_name_suffix}", |
|
version=datasets.Version(version), |
|
description=f"{_DATASETNAME} {config_name_prefix} schema for {task_obj.name} and language code {_LANG}", |
|
schema=f"{config_name_prefix}_{config_name_suffix}", |
|
subset_id=_LANG, |
|
) |
|
|
|
for _LANG in _LANGUAGES if _LANG != "eng" |
|
] |
|
return config_list |
|
|
|
|
|
class XLSum(datasets.GeneratorBasedBuilder): |
|
"""XL-Sum is a large-scale multilingual summarization dataset that covers 45 languages including Indonesian text summarization.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = construct_configs_on_langs() |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"summary": datasets.Value("string") |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
lang = _LANG_TO_DATASOURCE_LANG[self.config.subset_id] |
|
url = _URLS.format(lang, self.SOURCE_VERSION.version_str[:-2]) |
|
|
|
data_dir = dl_manager.download_and_extract(url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, lang + "_train.jsonl"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, lang + "_test.jsonl"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, lang + "_val.jsonl"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
|
|
if self.config.schema == "source": |
|
with open(filepath, encoding="utf-8") as f: |
|
for row in f: |
|
data = json.loads(row) |
|
ex = { |
|
"id": data["id"], |
|
"url": data["url"], |
|
"title": data["title"], |
|
"text": data["text"], |
|
"summary": data["summary"], |
|
} |
|
yield data["id"], ex |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
for row in f: |
|
data = json.loads(row) |
|
ex = { |
|
"id": data["id"], |
|
"text_1": data["text"], |
|
"text_2": data["summary"], |
|
"text_1_name": "text", |
|
"text_2_name": "summary" |
|
} |
|
yield data["id"], ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|