Datasets:

Modalities:
Audio
Text
Formats:
arrow
ArXiv:
Libraries:
Datasets
License:
File size: 4,649 Bytes
d7a93a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a40ef80
d7a93a5
 
 
 
 
cb51d1c
 
 
 
 
d7a93a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
license: cc-by-4.0
size_categories:
  - 1M<n<10M
configs:
  - config_name: pre
    data_files:
      - pre/*/*.arrow
  - config_name: raw
    data_files:
      - raw/*/*.arrow
  - config_name: GK
    data_files:
      - pre/geekonomy/*.arrow
      - raw/geekonomy/*.arrow
  - config_name: GK_pre
    data_files: pre/geekonomy/*.arrow
  - config_name: GK_raw
    data_files: raw/geekonomy/*.arrow
  - config_name: OH
    data_files:
      - pre/osim-history/*.arrow
      - raw/osim-history/*.arrow
  - config_name: OH_pre
    data_files: pre/osim-history/*.arrow
  - config_name: OH_raw
    data_files: raw/osim-history/*.arrow
  - config_name: DK
    data_files:
      - pre/dor/*.arrow
      - raw/dor/*.arrow
  - config_name: DK_pre
    data_files: pre/dor/*.arrow
  - config_name: DK_raw
    data_files: raw/dor/*.arrow
  - config_name: YO
    data_files:
      - pre/Yo_the_podcast/*.arrow
      - raw/Yo_the_podcast/*.arrow
  - config_name: YO_pre
    data_files: pre/Yo_the_podcast/*.arrow
  - config_name: YO_raw
    data_files: raw/Yo_the_podcast/*.arrow
  - config_name: YV
    data_files:
      - pre/Yad_vashem/*.arrow
      - raw/Yad_vashem/*.arrow
  - config_name: YV_pre
    data_files: pre/Yad_vashem/*.arrow
  - config_name: YV_raw
    data_files: raw/Yad_vashem/*.arrow

---

# HebDB

 **Paper:** http://arxiv.org/abs/2407.07566

If you use our datasets,  please use the following:


```
@article{turetzky2024hebdb,
  title={HebDB: a Weakly Supervised Dataset for Hebrew Speech Processing},
  author={Turetzky, Arnon and Tal, Or and Segal-Feldman, Yael and Dissen, Yehoshua and Zeldes, Ella and Roth, Amit and Cohen, Eyal and Shrem, Yosi and Chernyak, Bronya R and Seleznova, Olga and others},
  journal={arXiv preprint arXiv:2407.07566},
  year={2024}
}
  
```



### Dataset Summary

A weakly supervised dataset for spoken language processing in the Hebrew language. HEBDB offers roughly 2500 hours of natural and spontaneous speech recordings in the Hebrew language, consisting of a large variety of speakers and topics. We provide raw recordings together with a pre-processed, weakly supervised, and filtered version. The goal of HEBDB is to further enhance research and development of spoken language processing tools for the Hebrew language.

Data variants are: `pre`, `raw`. Note variants share the same columns to ease the usage of dataset subsets but `raw` only use the columns: `fname`, `audio` and `is_raw`.

#### How do I download this?

##### Using 🤗 Datasets

```python
from datasets import load_dataset

# pre only
hebdb_pre = load_dataset("SLPRL-HUJI/HebDB", "pre")

# raw only
hebdb_raw = load_dataset("SLPRL-HUJI/HebDB", "raw")

# One specific source(see code list below), both raw and pre
geekonomy = load_dataset("SLPRL-HUJI/HebDB", "GK")

# One specific source, both raw and pre
geekonomy_pre = load_dataset("SLPRL-HUJI/HebDB", "GK_pre")
```

To avoid downloading the entire dataset you can load it in streaming mode using `streaming=True`, for example:

```python
hebdb_pre = load_dataset("SLPRL-HUJI/HebDB", "pre", streaming=True)
```

You can also load and mix:

```python
from datasets import concatenate_datasets, load_dataset

geekonomy = load_dataset("SLPRL-HUJI/HebDB", "GK_pre")
osim_history = load_dataset("SLPRL-HUJI/HebDB", "OH_pre")

# Concatenate both datasets
concatenated = concatenate_datasets([geekonomy, osim_history])

```

### Sources

The 6 available sources are reported in the table below.

| code  | name        				|
|:------|:--------------------------|
| GK	| Geekonomy					|
| OH	| Osim   History			|
| DK	| The Dor Kahn Experience	|
| YO	| Yo! The podcast			|
| GQ	| Good Question				|
| YV	| Yad vashem				|



### Data Fields

The data have several fields:
- `fname`:  file name
- `audio`:
	- `array`:  array of audio samples
	- `sample_rate`:  audio sampling rate
	- `path`: path to the audio file saved location
- `is_raw`: Flag for raw/preprocessed
- `raw`:
    - `fname`: origin raw file name
    - `start_sec`: start time mark in seconds   
    - `end_sec`: end time mark in seconds
- `source`: Source name
- `n_samples`: Number of samples
- `text`: Transcription
- `normalized_text`: Normalized transcription (details in paper)
- `score`: Transcription quality score obtained by forced aligner (details in paper)



### Licensing Information

Data is licensed under the terms of the Creative Commons Attribution 4.0 
International License (CC BY 4.0), The full text of the CC-BY 4.0 license is available at
https://creativecommons.org/licenses/by/4.0/.

### Acknowledgements

This research work was supported by the Israel Innovation Authority, grant number 78563.