File size: 4,637 Bytes
b73b0e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1868556
b73b0e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f03d076
 
b73b0e5
 
 
c5c9cb8
b73b0e5
 
 
 
 
 
 
 
 
 
 
 
d71b1b7
b73b0e5
 
d71b1b7
 
b73b0e5
 
aa67d37
b73b0e5
 
 
 
 
 
 
68d65fd
 
b73b0e5
 
 
 
2fee84f
 
b73b0e5
 
 
 
 
 
 
 
 
 
 
 
 
afa29bb
 
b73b0e5
 
 
 
 
 
 
 
 
1868556
b73b0e5
 
 
 
 
 
 
 
 
 
 
 
 
 
35f924d
b73b0e5
 
 
d71b1b7
1e12cfb
b73b0e5
f397a2b
35f924d
3856402
68d65fd
b73b0e5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""
Arguement Mining Dataset created by Stab , Gurevych et. al. CL 2017 
"""

import datasets
import os


_CITATION = """\
@article{stab2017parsing,
  title={Parsing argumentation structures in persuasive essays},
  author={Stab, Christian and Gurevych, Iryna},
  journal={Computational Linguistics},
  volume={43},
  number={3},
  pages={619--659},
  year={2017},
  publisher={MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info~…}
}
"""

_DESCRIPTION = """\
tokens along with chunk id. IOB1 format Begining of arguement denoted by B-ARG,inside arguement
denoted by I-ARG, other chunks are O
Orginial train,test split as used by the paper is provided
"""

_URL = "https://raw.githubusercontent.com/Sam131112/Argument-Mining-Dataset/main/"
_TRAINING_FILE = "train.txt"
_TEST_FILE = "test.txt"


class ArguementMiningCL2017Config(datasets.BuilderConfig):
    """BuilderConfig for CL2017"""

    def __init__(self, **kwargs):
        """BuilderConfig forCl2017.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(ArguementMiningCL2017Config, self).__init__(**kwargs)


class ArguementMiningCL2017(datasets.GeneratorBasedBuilder):
    """CL2017 dataset."""

    BUILDER_CONFIGS = [
        ArguementMiningCL2017Config(name="cl2017", version=datasets.Version("1.0.0"), description="Cl2017 dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "chunk_tags":datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-ARG",
                                "I-ARG",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://direct.mit.edu/coli/article/43/3/619/1573/Parsing-Argumentation-Structures-in-Persuasive",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": _TRAINING_FILE,
            "test": _TEST_FILE,
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        print("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            pos_tags = []
            chunk_tags = []
            ner_tags = []
            for line in f:
                if line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "chunk_tags": chunk_tags,
                        }
                        guid = guid+1
                        tokens = []
                        chunk_tags = []
                else:
                    # cl2017 tokens are space separated
                    line=line.strip('\n')
                    splits = line.split("\t")
                    #print(splits)
                    tokens.append(splits[0])
                    chunk_tags.append(splits[1])
                    #print({"id": str(guid),"tokens": tokens,"chunk_tags": chunk_tags,})
            # last example
            yield guid, {
                "id": str(guid),
                "tokens": tokens,
                "chunk_tags": chunk_tags,
            }