repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
jeeftor/alfredtoday | src/lib/rsa/transform.py | bytes2int | python | def bytes2int(raw_bytes):
return int(binascii.hexlify(raw_bytes), 16) | r"""Converts a list of bytes or an 8-bit string to an integer.
When using unicode strings, encode it to some encoding like UTF8 first.
>>> (((128 * 256) + 64) * 256) + 15
8405007
>>> bytes2int(b'\x80@\x0f')
8405007 | https://github.com/jeeftor/alfredtoday/blob/f6e2c2228caa71015e654e1fdbf552e2ca4f90ad/src/lib/rsa/transform.py#L40-L52 | from __future__ import absolute_import
try:
import psyco
psyco.full()
except ImportError:
pass
import binascii
from struct import pack
from rsa import common
from rsa._compat import is_integer, b, byte, get_word_alignment, ZERO_BYTE, EMPTY_BYTE | MIT License |
nussl/nussl | nussl/separation/spatial/duet.py | Duet._compute_masks | python | def _compute_masks(self):
best_so_far = np.inf * np.ones_like(self.stft_ch0, dtype=float)
for i in range(0, self.num_sources):
mask_array = np.zeros_like(self.stft_ch0, dtype=bool)
phase = np.exp(-1j * self.frequency_matrix * self.delay_peak[i])
score = np.abs(self.atn_peak[i] * phase * self.stft_ch0 - self.stft_ch1) ** 2 / (1 + self.atn_peak[i] ** 2)
mask = (score < best_so_far)
mask_array[mask] = True
background_mask = self.mask_type(np.array(mask_array))
self.result_masks.append(background_mask)
self.result_masks[0].mask = np.logical_xor(self.result_masks[i].mask, self.result_masks[0].mask)
best_so_far[mask] = score[mask]
self.result_masks[0].mask = np.logical_not(self.result_masks[0].mask)
return self.result_masks | Receives the attenuation and delay peaks and computes a mask to be applied to the signal for source
separation. | https://github.com/nussl/nussl/blob/471e7965c5788bff9fe2e1f7884537cae2d18e6f/nussl/separation/spatial/duet.py#L314-L335 | import numpy as np
from scipy import signal
from .. import MaskSeparationBase
from ...core import utils
from ...core import constants
class Duet(MaskSeparationBase):
def __init__(self, input_audio_signal, num_sources,
attenuation_min=-3, attenuation_max=3, num_attenuation_bins=50,
delay_min=-3, delay_max=3, num_delay_bins=50,
peak_threshold=0.0, attenuation_min_distance=5, delay_min_distance=5,
p=1, q=0, mask_type='binary'):
super().__init__(
input_audio_signal=input_audio_signal,
mask_type=mask_type)
self.num_sources = num_sources
self.attenuation_min = attenuation_min
self.attenuation_max = attenuation_max
self.num_attenuation_bins = num_attenuation_bins
self.delay_min = delay_min
self.delay_max = delay_max
self.num_delay_bins = num_delay_bins
self.peak_threshold = peak_threshold
self.attenuation_min_distance = attenuation_min_distance
self.delay_min_distance = delay_min_distance
self.p = p
self.q = q
self.stft_ch0 = None
self.stft_ch1 = None
self.frequency_matrix = None
self.symmetric_atn = None
self.delay = None
self.num_time_bins = None
self.num_frequency_bins = None
self.attenuation_bins = None
self.delay_bins = None
self.normalized_attenuation_delay_histogram = None
self.attenuation_delay_histogram = None
self.peak_indices = None
self.delay_peak = None
self.atn_peak = None
self.separated_sources = None
def run(self):
self.result_masks = []
self.stft_ch0, self.stft_ch1, self.frequency_matrix = self._compute_spectrogram(
self.sample_rate)
self.symmetric_atn, self.delay = self._compute_atn_delay(
self.stft_ch0, self.stft_ch1, self.frequency_matrix)
self.normalized_attenuation_delay_histogram, self.attenuation_bins, self.delay_bins = (
self._make_histogram()
)
self.peak_indices = utils.find_peak_indices(
self.normalized_attenuation_delay_histogram, self.num_sources,
threshold=self.peak_threshold,
min_dist=[self.attenuation_min_distance, self.delay_min_distance])
self.delay_peak, atn_delay_est, self.atn_peak = self._convert_peaks(
self.peak_indices)
computed_masks = self._compute_masks()
return computed_masks
def _compute_spectrogram(self, sample_rate):
self.audio_signal.stft_params = self.stft_params
self.audio_signal.stft()
stft_ch0 = self.audio_signal.get_stft_channel(0)
stft_ch1 = self.audio_signal.get_stft_channel(1)
n_time_bins = len(self.audio_signal.time_bins_vector)
wmat = np.array(np.tile(np.mat(
self.audio_signal.freq_vector).T, (1, n_time_bins))) * (
2 * np.pi / sample_rate)
wmat += constants.EPSILON
return stft_ch0, stft_ch1, wmat
@staticmethod
def _compute_atn_delay(stft_ch0, stft_ch1, frequency_matrix):
inter_channel_ratio = (stft_ch1 + constants.EPSILON) / (stft_ch0 + constants.EPSILON)
attenuation = np.abs(inter_channel_ratio)
symmetric_attenuation = attenuation - 1 / attenuation
relative_delay = -np.imag(np.log(inter_channel_ratio)) / (2 * np.pi * frequency_matrix)
return symmetric_attenuation, relative_delay
def _make_histogram(self):
time_frequency_weights = (np.abs(self.stft_ch0) * np.abs(self.stft_ch1)) ** self.p * (np.abs(self.frequency_matrix)) ** self.q
attenuation_premask = np.logical_and(self.attenuation_min < self.symmetric_atn,
self.symmetric_atn < self.attenuation_max)
delay_premask = np.logical_and(self.delay_min < self.delay, self.delay < self.delay_max)
attenuation_delay_premask = np.logical_and(attenuation_premask, delay_premask)
nonzero_premask = np.nonzero(attenuation_delay_premask)
symmetric_attenuation_vector = self.symmetric_atn[nonzero_premask]
delay_vector = self.delay[nonzero_premask]
time_frequency_weights_vector = time_frequency_weights[nonzero_premask]
bins_array = np.array([self.num_attenuation_bins, self.num_delay_bins])
range_array = np.array([[self.attenuation_min, self.attenuation_max], [self.delay_min, self.delay_max]])
histogram, atn_bins, delay_bins = np.histogram2d(symmetric_attenuation_vector, delay_vector,
bins=bins_array, range=range_array,
weights=time_frequency_weights_vector)
self.attenuation_delay_histogram = histogram
histogram /= histogram.max()
histogram = self._smooth_matrix(histogram, np.array([3]))
return histogram, atn_bins, delay_bins
def _convert_peaks(self, peak_indices):
atn_indices = [x[0] for x in peak_indices]
delay_indices = [x[1] for x in peak_indices]
symmetric_atn_peak = self.attenuation_bins[atn_indices]
delay_peak = self.delay_bins[delay_indices]
atn_delay_est = np.column_stack((symmetric_atn_peak, delay_peak))
atn_peak = (symmetric_atn_peak + np.sqrt(symmetric_atn_peak ** 2 + 4)) / 2
return delay_peak, atn_delay_est, atn_peak | MIT License |
bitmovin/bitmovin-api-sdk-python | bitmovin_api_sdk/models/s3_role_based_input.py | S3RoleBasedInput.role_arn | python | def role_arn(self, role_arn):
if role_arn is not None:
if not isinstance(role_arn, string_types):
raise TypeError("Invalid type for `role_arn`, type has to be `string_types`")
self._role_arn = role_arn | Sets the role_arn of this S3RoleBasedInput.
Amazon ARN of the IAM Role (Identity and Access Management Role) that will be assumed for S3 access. This role has to be created by the owner of the account with the S3 bucket (i.e., you as a customer). For Bitmovin to be able to assume this role, the following has to be added to the trust policy of the role: ``` { \"Effect\": \"Allow\", \"Principal\": { \"AWS\": \"arn:aws:iam::630681592166:user/bitmovinCustomerS3Access\" }, \"Action\": \"sts:AssumeRole\", \"Condition\": { \"StringEquals\": { \"sts:ExternalId\": \"{{externalId}}\" } } } ``` where \"arn:aws:iam::630681592166:user/bitmovinCustomerS3Access\" is the Bitmovin user used for the access. The `Condition` is optional but we highly recommend it, see property `externalId` below for more information. This setup allows Bitmovin assume the provided IAM role and to read data from your S3 bucket. Please note that the IAM role has to have read access on S3. For more information about role creation please visit https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console (required)
:param role_arn: The role_arn of this S3RoleBasedInput.
:type: string_types | https://github.com/bitmovin/bitmovin-api-sdk-python/blob/79dd938804197151af7cbe5501c7ec1d97872c15/bitmovin_api_sdk/models/s3_role_based_input.py#L123-L137 | from enum import Enum
from six import string_types, iteritems
from bitmovin_api_sdk.common.poscheck import poscheck_model
from bitmovin_api_sdk.models.aws_cloud_region import AwsCloudRegion
from bitmovin_api_sdk.models.external_id_mode import ExternalIdMode
from bitmovin_api_sdk.models.input import Input
import pprint
import six
class S3RoleBasedInput(Input):
@poscheck_model
def __init__(self,
id_=None,
name=None,
description=None,
created_at=None,
modified_at=None,
custom_data=None,
bucket_name=None,
role_arn=None,
external_id=None,
external_id_mode=None,
cloud_region=None):
super(S3RoleBasedInput, self).__init__(id_=id_, name=name, description=description, created_at=created_at, modified_at=modified_at, custom_data=custom_data)
self._bucket_name = None
self._role_arn = None
self._external_id = None
self._external_id_mode = None
self._cloud_region = None
self.discriminator = None
if bucket_name is not None:
self.bucket_name = bucket_name
if role_arn is not None:
self.role_arn = role_arn
if external_id is not None:
self.external_id = external_id
if external_id_mode is not None:
self.external_id_mode = external_id_mode
if cloud_region is not None:
self.cloud_region = cloud_region
@property
def openapi_types(self):
types = {}
if hasattr(super(S3RoleBasedInput, self), 'openapi_types'):
types = getattr(super(S3RoleBasedInput, self), 'openapi_types')
types.update({
'bucket_name': 'string_types',
'role_arn': 'string_types',
'external_id': 'string_types',
'external_id_mode': 'ExternalIdMode',
'cloud_region': 'AwsCloudRegion'
})
return types
@property
def attribute_map(self):
attributes = {}
if hasattr(super(S3RoleBasedInput, self), 'attribute_map'):
attributes = getattr(super(S3RoleBasedInput, self), 'attribute_map')
attributes.update({
'bucket_name': 'bucketName',
'role_arn': 'roleArn',
'external_id': 'externalId',
'external_id_mode': 'externalIdMode',
'cloud_region': 'cloudRegion'
})
return attributes
@property
def bucket_name(self):
return self._bucket_name
@bucket_name.setter
def bucket_name(self, bucket_name):
if bucket_name is not None:
if not isinstance(bucket_name, string_types):
raise TypeError("Invalid type for `bucket_name`, type has to be `string_types`")
self._bucket_name = bucket_name
@property
def role_arn(self):
return self._role_arn
@role_arn.setter | MIT License |
zeliu98/group-free-3d | utils/logger.py | setup_logger | python | def setup_logger(
output=None, distributed_rank=0, *, color=True, name="log", abbrev_name=None
):
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
logger.propagate = False
if abbrev_name is None:
abbrev_name = name
plain_formatter = logging.Formatter(
"[%(asctime)s] %(name)s %(levelname)s: %(message)s", datefmt="%m/%d %H:%M:%S"
)
if distributed_rank == 0:
ch = logging.StreamHandler(stream=sys.stdout)
ch.setLevel(logging.DEBUG)
if color:
formatter = _ColorfulFormatter(
colored("[%(asctime)s %(name)s]: ", "green") + "%(message)s",
datefmt="%m/%d %H:%M:%S",
root_name=name,
abbrev_name=str(abbrev_name),
)
else:
formatter = plain_formatter
ch.setFormatter(formatter)
logger.addHandler(ch)
if output is not None:
if output.endswith(".txt") or output.endswith(".log"):
filename = output
else:
filename = os.path.join(output, "log.txt")
if distributed_rank > 0:
filename = filename + f".rank{distributed_rank}"
os.makedirs(os.path.dirname(filename), exist_ok=True)
fh = logging.StreamHandler(_cached_log_stream(filename))
fh.setLevel(logging.DEBUG)
fh.setFormatter(plain_formatter)
logger.addHandler(fh)
return logger | Initialize the detectron2 logger and set its verbosity level to "INFO".
Args:
output (str): a file name or a directory to save log. If None, will not save log file.
If ends with ".txt" or ".log", assumed to be a file name.
Otherwise, logs will be saved to `output/log.txt`.
name (str): the root module name of this logger
Returns:
logging.Logger: a logger | https://github.com/zeliu98/group-free-3d/blob/ef8b7bb5c3bf5b49b957624595dc6a642b6d0036/utils/logger.py#L31-L87 | import functools
import logging
import os
import sys
from termcolor import colored
class _ColorfulFormatter(logging.Formatter):
def __init__(self, *args, **kwargs):
self._root_name = kwargs.pop("root_name") + "."
self._abbrev_name = kwargs.pop("abbrev_name", "")
if len(self._abbrev_name):
self._abbrev_name = self._abbrev_name + "."
super(_ColorfulFormatter, self).__init__(*args, **kwargs)
def formatMessage(self, record):
record.name = record.name.replace(self._root_name, self._abbrev_name)
log = super(_ColorfulFormatter, self).formatMessage(record)
if record.levelno == logging.WARNING:
prefix = colored("WARNING", "red", attrs=["blink"])
elif record.levelno == logging.ERROR or record.levelno == logging.CRITICAL:
prefix = colored("ERROR", "red", attrs=["blink", "underline"])
else:
return log
return prefix + " " + log
@functools.lru_cache() | MIT License |
microsoft/azure-devops-python-api | azure-devops/azure/devops/v6_0/security/security_client.py | SecurityClient.query_security_namespaces | python | def query_security_namespaces(self, security_namespace_id=None, local_only=None):
route_values = {}
if security_namespace_id is not None:
route_values['securityNamespaceId'] = self._serialize.url('security_namespace_id', security_namespace_id, 'str')
query_parameters = {}
if local_only is not None:
query_parameters['localOnly'] = self._serialize.query('local_only', local_only, 'bool')
response = self._send(http_method='GET',
location_id='ce7b9f95-fde9-4be8-a86d-83b366f0b87a',
version='6.0-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[SecurityNamespaceDescription]', self._unwrap_collection(response)) | QuerySecurityNamespaces.
[Preview API] List all security namespaces or just the specified namespace.
:param str security_namespace_id: Security namespace identifier.
:param bool local_only: If true, retrieve only local security namespaces.
:rtype: [SecurityNamespaceDescription] | https://github.com/microsoft/azure-devops-python-api/blob/451cade4c475482792cbe9e522c1fee32393139e/azure-devops/azure/devops/v6_0/security/security_client.py#L205-L223 |
from msrest import Serializer, Deserializer
from ...client import Client
from . import models
class SecurityClient(Client):
def __init__(self, base_url=None, creds=None):
super(SecurityClient, self).__init__(base_url, creds)
client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
self._serialize = Serializer(client_models)
self._deserialize = Deserializer(client_models)
resource_area_identifier = None
def remove_access_control_entries(self, security_namespace_id, token=None, descriptors=None):
route_values = {}
if security_namespace_id is not None:
route_values['securityNamespaceId'] = self._serialize.url('security_namespace_id', security_namespace_id, 'str')
query_parameters = {}
if token is not None:
query_parameters['token'] = self._serialize.query('token', token, 'str')
if descriptors is not None:
query_parameters['descriptors'] = self._serialize.query('descriptors', descriptors, 'str')
response = self._send(http_method='DELETE',
location_id='ac08c8ff-4323-4b08-af90-bcd018d380ce',
version='6.0-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('bool', response)
def set_access_control_entries(self, container, security_namespace_id):
route_values = {}
if security_namespace_id is not None:
route_values['securityNamespaceId'] = self._serialize.url('security_namespace_id', security_namespace_id, 'str')
content = self._serialize.body(container, 'object')
response = self._send(http_method='POST',
location_id='ac08c8ff-4323-4b08-af90-bcd018d380ce',
version='6.0-preview.1',
route_values=route_values,
content=content)
return self._deserialize('[AccessControlEntry]', self._unwrap_collection(response))
def query_access_control_lists(self, security_namespace_id, token=None, descriptors=None, include_extended_info=None, recurse=None):
route_values = {}
if security_namespace_id is not None:
route_values['securityNamespaceId'] = self._serialize.url('security_namespace_id', security_namespace_id, 'str')
query_parameters = {}
if token is not None:
query_parameters['token'] = self._serialize.query('token', token, 'str')
if descriptors is not None:
query_parameters['descriptors'] = self._serialize.query('descriptors', descriptors, 'str')
if include_extended_info is not None:
query_parameters['includeExtendedInfo'] = self._serialize.query('include_extended_info', include_extended_info, 'bool')
if recurse is not None:
query_parameters['recurse'] = self._serialize.query('recurse', recurse, 'bool')
response = self._send(http_method='GET',
location_id='18a2ad18-7571-46ae-bec7-0c7da1495885',
version='6.0-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[AccessControlList]', self._unwrap_collection(response))
def remove_access_control_lists(self, security_namespace_id, tokens=None, recurse=None):
route_values = {}
if security_namespace_id is not None:
route_values['securityNamespaceId'] = self._serialize.url('security_namespace_id', security_namespace_id, 'str')
query_parameters = {}
if tokens is not None:
query_parameters['tokens'] = self._serialize.query('tokens', tokens, 'str')
if recurse is not None:
query_parameters['recurse'] = self._serialize.query('recurse', recurse, 'bool')
response = self._send(http_method='DELETE',
location_id='18a2ad18-7571-46ae-bec7-0c7da1495885',
version='6.0-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('bool', response)
def set_access_control_lists(self, access_control_lists, security_namespace_id):
route_values = {}
if security_namespace_id is not None:
route_values['securityNamespaceId'] = self._serialize.url('security_namespace_id', security_namespace_id, 'str')
content = self._serialize.body(access_control_lists, 'VssJsonCollectionWrapper')
self._send(http_method='POST',
location_id='18a2ad18-7571-46ae-bec7-0c7da1495885',
version='6.0-preview.1',
route_values=route_values,
content=content)
def has_permissions_batch(self, eval_batch):
content = self._serialize.body(eval_batch, 'PermissionEvaluationBatch')
response = self._send(http_method='POST',
location_id='cf1faa59-1b63-4448-bf04-13d981a46f5d',
version='6.0-preview.1',
content=content)
return self._deserialize('PermissionEvaluationBatch', response)
def has_permissions(self, security_namespace_id, permissions=None, tokens=None, always_allow_administrators=None, delimiter=None):
route_values = {}
if security_namespace_id is not None:
route_values['securityNamespaceId'] = self._serialize.url('security_namespace_id', security_namespace_id, 'str')
if permissions is not None:
route_values['permissions'] = self._serialize.url('permissions', permissions, 'int')
query_parameters = {}
if tokens is not None:
query_parameters['tokens'] = self._serialize.query('tokens', tokens, 'str')
if always_allow_administrators is not None:
query_parameters['alwaysAllowAdministrators'] = self._serialize.query('always_allow_administrators', always_allow_administrators, 'bool')
if delimiter is not None:
query_parameters['delimiter'] = self._serialize.query('delimiter', delimiter, 'str')
response = self._send(http_method='GET',
location_id='dd3b8bd6-c7fc-4cbd-929a-933d9c011c9d',
version='6.0-preview.2',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[bool]', self._unwrap_collection(response))
def remove_permission(self, security_namespace_id, descriptor, permissions=None, token=None):
route_values = {}
if security_namespace_id is not None:
route_values['securityNamespaceId'] = self._serialize.url('security_namespace_id', security_namespace_id, 'str')
if permissions is not None:
route_values['permissions'] = self._serialize.url('permissions', permissions, 'int')
query_parameters = {}
if descriptor is not None:
query_parameters['descriptor'] = self._serialize.query('descriptor', descriptor, 'str')
if token is not None:
query_parameters['token'] = self._serialize.query('token', token, 'str')
response = self._send(http_method='DELETE',
location_id='dd3b8bd6-c7fc-4cbd-929a-933d9c011c9d',
version='6.0-preview.2',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('AccessControlEntry', response) | MIT License |
chilcote/unearth | artifacts/active_directory_node.py | fact | python | def fact():
result = "None"
net_config = SCDynamicStoreCreate(None, "net", None, None)
d = SCDynamicStoreCopyValue(net_config, "com.apple.opendirectoryd.ActiveDirectory")
if d:
result = d.get("NodeName", None)
return {factoid: result} | Returns Active Directory node | https://github.com/chilcote/unearth/blob/1aaa79195850aac8920efe2d632911d19d998fa3/artifacts/active_directory_node.py#L6-L16 | from SystemConfiguration import SCDynamicStoreCopyValue, SCDynamicStoreCreate
factoid = "active_directory_node" | Apache License 2.0 |
botfront/rasa-for-botfront | rasa/core/actions/forms.py | FormAction.validate_slots | python | async def validate_slots(
self,
slot_candidates: Dict[Text, Any],
tracker: "DialogueStateTracker",
domain: Domain,
output_channel: OutputChannel,
nlg: NaturalLanguageGenerator,
) -> List[Event]:
logger.debug(f"Validating extracted slots: {slot_candidates}")
events = [
SlotSet(slot_name, value) for slot_name, value in slot_candidates.items()
]
validate_name = f"validate_{self.name()}"
if validate_name not in domain.action_names_or_texts:
return events
_tracker = self._temporary_tracker(tracker, events, domain)
_action = RemoteAction(validate_name, self.action_endpoint)
validate_events = await _action.run(output_channel, nlg, _tracker, domain)
validated_slot_names = [
event.key for event in validate_events if isinstance(event, SlotSet)
]
return validate_events + [
event for event in events if event.key not in validated_slot_names
] | Validate the extracted slots.
If a custom action is available for validating the slots, we call it to validate
them. Otherwise there is no validation.
Args:
slot_candidates: Extracted slots which are candidates to fill the slots required
by the form.
tracker: The current conversation tracker.
domain: The current model domain.
output_channel: The output channel which can be used to send messages
to the user.
nlg: `NaturalLanguageGenerator` to use for response generation.
Returns:
The validation events including potential bot messages and `SlotSet` events
for the validated slots. | https://github.com/botfront/rasa-for-botfront/blob/6e0e48d0059e197b5f686df1e27935769c3641b7/rasa/core/actions/forms.py#L378-L427 | from typing import Text, List, Optional, Union, Any, Dict, Tuple, Set
import logging
import json
from rasa.core.actions import action
from rasa.core.actions.loops import LoopAction
from rasa.core.channels import OutputChannel
from rasa.shared.core.domain import Domain, InvalidDomain, SlotMapping
from rasa.core.actions.action import ActionExecutionRejection, RemoteAction
from rasa.shared.core.constants import (
ACTION_LISTEN_NAME,
REQUESTED_SLOT,
LOOP_INTERRUPTED,
)
from rasa.shared.constants import UTTER_PREFIX
from rasa.shared.core.events import (
Event,
SlotSet,
ActionExecuted,
ActiveLoop,
ActionExecutionRejected,
)
from rasa.core.nlg import NaturalLanguageGenerator
from rasa.shared.core.trackers import DialogueStateTracker
from rasa.utils.endpoints import EndpointConfig
logger = logging.getLogger(__name__)
class FormAction(LoopAction):
def __init__(
self, form_name: Text, action_endpoint: Optional[EndpointConfig]
) -> None:
self._form_name = form_name
self.action_endpoint = action_endpoint
self._unique_entity_mappings = None
def name(self) -> Text:
return self._form_name
def required_slots(self, domain: Domain) -> List[Text]:
return list(domain.slot_mapping_for_form(self.name()).keys())
def from_entity(
self,
entity: Text,
intent: Optional[Union[Text, List[Text]]] = None,
not_intent: Optional[Union[Text, List[Text]]] = None,
role: Optional[Text] = None,
group: Optional[Text] = None,
) -> Dict[Text, Any]:
intent, not_intent = self._list_intents(intent, not_intent)
return {
"type": str(SlotMapping.FROM_ENTITY),
"entity": entity,
"intent": intent,
"not_intent": not_intent,
"role": role,
"group": group,
}
def get_mappings_for_slot(
self, slot_to_fill: Text, domain: Domain
) -> List[Dict[Text, Any]]:
requested_slot_mappings = self._to_list(
domain.slot_mapping_for_form(self.name()).get(
slot_to_fill, self.from_entity(slot_to_fill)
)
)
for requested_slot_mapping in requested_slot_mappings:
if (
not isinstance(requested_slot_mapping, dict)
or requested_slot_mapping.get("type") is None
):
raise TypeError("Provided incompatible slot mapping")
return requested_slot_mappings
def _create_unique_entity_mappings(self, domain: Domain) -> Set[Text]:
unique_entity_slot_mappings = set()
duplicate_entity_slot_mappings = set()
for slot_mappings in domain.slot_mapping_for_form(self.name()).values():
for slot_mapping in slot_mappings:
if slot_mapping.get("type") == str(SlotMapping.FROM_ENTITY):
mapping_as_string = json.dumps(slot_mapping, sort_keys=True)
if mapping_as_string in unique_entity_slot_mappings:
unique_entity_slot_mappings.remove(mapping_as_string)
duplicate_entity_slot_mappings.add(mapping_as_string)
elif mapping_as_string not in duplicate_entity_slot_mappings:
unique_entity_slot_mappings.add(mapping_as_string)
return unique_entity_slot_mappings
def _entity_mapping_is_unique(
self, slot_mapping: Dict[Text, Any], domain: Domain
) -> bool:
if self._unique_entity_mappings is None:
self._unique_entity_mappings = self._create_unique_entity_mappings(domain)
mapping_as_string = json.dumps(slot_mapping, sort_keys=True)
return mapping_as_string in self._unique_entity_mappings
@staticmethod
def intent_is_desired(
requested_slot_mapping: Dict[Text, Any], tracker: "DialogueStateTracker"
) -> bool:
mapping_intents = requested_slot_mapping.get("intent", [])
mapping_not_intents = requested_slot_mapping.get("not_intent", [])
intent = tracker.latest_message.intent.get("name")
intent_not_blocked = not mapping_intents and intent not in mapping_not_intents
return intent_not_blocked or intent in mapping_intents
def entity_is_desired(
self,
slot_mapping: Dict[Text, Any],
slot: Text,
entity_type_of_slot_to_fill: Optional[Text],
tracker: DialogueStateTracker,
domain: Domain,
) -> bool:
slot_equals_entity = slot == slot_mapping.get("entity")
entity_mapping_is_unique = self._entity_mapping_is_unique(slot_mapping, domain)
if (
slot_mapping.get("role") is None and slot_mapping.get("group") is None
) or entity_type_of_slot_to_fill != slot_mapping.get("entity"):
slot_fulfils_entity_mapping = False
else:
matching_values = self.get_entity_value(
slot_mapping.get("entity"),
tracker,
slot_mapping.get("role"),
slot_mapping.get("group"),
)
slot_fulfils_entity_mapping = matching_values is not None
return (
slot_equals_entity
or entity_mapping_is_unique
or slot_fulfils_entity_mapping
)
@staticmethod
def get_entity_value(
name: Text,
tracker: "DialogueStateTracker",
role: Optional[Text] = None,
group: Optional[Text] = None,
) -> Any:
value = list(
tracker.get_latest_entity_values(name, entity_group=group, entity_role=role)
)
if len(value) == 0:
value = None
elif len(value) == 1:
value = value[0]
return value
def extract_other_slots(
self, tracker: DialogueStateTracker, domain: Domain
) -> Dict[Text, Any]:
slot_to_fill = self.get_slot_to_fill(tracker)
entity_type_of_slot_to_fill = self._get_entity_type_of_slot_to_fill(
slot_to_fill, domain
)
slot_values = {}
for slot in self.required_slots(domain):
if slot != slot_to_fill:
slot_mappings = self.get_mappings_for_slot(slot, domain)
for slot_mapping in slot_mappings:
should_fill_entity_slot = (
slot_mapping["type"] == str(SlotMapping.FROM_ENTITY)
and self.intent_is_desired(slot_mapping, tracker)
and self.entity_is_desired(
slot_mapping,
slot,
entity_type_of_slot_to_fill,
tracker,
domain,
)
)
should_fill_trigger_slot = (
tracker.active_loop_name != self.name()
and slot_mapping["type"] == str(SlotMapping.FROM_TRIGGER_INTENT)
and self.intent_is_desired(slot_mapping, tracker)
)
if should_fill_entity_slot:
value = self.get_entity_value(
slot_mapping["entity"],
tracker,
slot_mapping.get("role"),
slot_mapping.get("group"),
)
elif should_fill_trigger_slot:
value = slot_mapping.get("value")
else:
value = None
if value is not None:
logger.debug(f"Extracted '{value}' for extra slot '{slot}'.")
slot_values[slot] = value
break
return slot_values
def get_slot_to_fill(self, tracker: "DialogueStateTracker") -> Optional[str]:
return (
tracker.get_slot(REQUESTED_SLOT)
if tracker.active_loop_name == self.name()
else None
)
def extract_requested_slot(
self, tracker: "DialogueStateTracker", domain: Domain
) -> Dict[Text, Any]:
slot_to_fill = self.get_slot_to_fill(tracker)
logger.debug(f"Trying to extract requested slot '{slot_to_fill}' ...")
requested_slot_mappings = self.get_mappings_for_slot(slot_to_fill, domain)
for requested_slot_mapping in requested_slot_mappings:
logger.debug(f"Got mapping '{requested_slot_mapping}'")
if self.intent_is_desired(requested_slot_mapping, tracker):
mapping_type = requested_slot_mapping["type"]
if mapping_type == str(SlotMapping.FROM_ENTITY):
value = self.get_entity_value(
requested_slot_mapping.get("entity"),
tracker,
requested_slot_mapping.get("role"),
requested_slot_mapping.get("group"),
)
elif mapping_type == str(SlotMapping.FROM_INTENT):
value = requested_slot_mapping.get("value")
elif mapping_type == str(SlotMapping.FROM_TRIGGER_INTENT):
continue
elif mapping_type == str(SlotMapping.FROM_TEXT):
value = tracker.latest_message.text
else:
raise InvalidDomain("Provided slot mapping type is not supported")
if value is not None:
logger.debug(
f"Successfully extracted '{value}' for requested slot "
f"'{slot_to_fill}'"
)
return {slot_to_fill: value}
logger.debug(f"Failed to extract requested slot '{slot_to_fill}'")
return {} | Apache License 2.0 |
fkie/multimaster_fkie | fkie_node_manager/src/fkie_node_manager/select_dialog.py | SelectDialog.__init__ | python | def __init__(self, items=list(), buttons=QDialogButtonBox.Cancel | QDialogButtonBox.Ok, exclusive=False,
preselect_all=False, title='', description='', icon='', parent=None, select_if_single=True,
checkitem1='', checkitem2='', closein=0, store_geometry=''):
QDialog.__init__(self, parent=parent)
self.setObjectName(' - '.join(['SelectDialog', utf8(items)]))
self.verticalLayout = QVBoxLayout(self)
self.verticalLayout.setObjectName("verticalLayout")
self.verticalLayout.setContentsMargins(3, 3, 3, 3)
self.filter_field = EnhancedLineEdit(self)
self.filter_field.setPlaceholderText("filter")
self.filter_field.textChanged.connect(self._on_filter_changed)
self.verticalLayout.addWidget(self.filter_field)
if description:
self.description_frame = QFrame(self)
descriptionLayout = QHBoxLayout(self.description_frame)
if icon:
self.icon_label = QLabel(self.description_frame)
self.icon_label.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed)
self.icon_label.setPixmap(QPixmap(icon).scaled(30, 30, Qt.KeepAspectRatio))
descriptionLayout.addWidget(self.icon_label)
self.description_label = QLabel(self.description_frame)
self.description_label.setWordWrap(True)
self.description_label.setText(description)
descriptionLayout.addWidget(self.description_label)
self.verticalLayout.addWidget(self.description_frame)
self.content = MainBox(self)
if items:
self.scroll_area = QScrollArea(self)
self.scroll_area.setFocusPolicy(Qt.NoFocus)
self.scroll_area.setObjectName("scroll_area")
self.scroll_area.setWidgetResizable(True)
self.scroll_area.setWidget(self.content)
self.verticalLayout.addWidget(self.scroll_area)
self.checkitem1 = checkitem1
self.checkitem1_result = False
self.checkitem2 = checkitem2
self.checkitem2_result = False
if not exclusive and items:
self._ignore_next_toggle = False
self.select_all_checkbox = QCheckBox('all entries')
self.select_all_checkbox.setTristate(True)
self.select_all_checkbox.stateChanged.connect(self._on_select_all_checkbox_stateChanged)
self.verticalLayout.addWidget(self.select_all_checkbox)
self.content.toggled.connect(self._on_main_toggle)
if self.checkitem1:
self.checkitem1_checkbox = QCheckBox(self.checkitem1)
self.checkitem1_checkbox.stateChanged.connect(self._on_select_checkitem1_checkbox_stateChanged)
self.verticalLayout.addWidget(self.checkitem1_checkbox)
if self.checkitem2:
self.checkitem2_checkbox = QCheckBox(self.checkitem2)
self.checkitem2_checkbox.stateChanged.connect(self._on_select_checkitem2_checkbox_stateChanged)
self.verticalLayout.addWidget(self.checkitem2_checkbox)
if not items:
spacerItem = QSpacerItem(1, 1, QSizePolicy.Expanding, QSizePolicy.Expanding)
self.verticalLayout.addItem(spacerItem)
self._close_timer = None
self._closein = closein - 1
if closein > 0:
self.closein_label = QLabel("OK in %d sec..." % closein)
self.closein_label.setAlignment(Qt.AlignRight)
self.verticalLayout.addWidget(self.closein_label)
self._close_timer = threading.Timer(1.0, self._on_close_timer)
self._close_timer.start()
self.buttonBox = QDialogButtonBox(self)
self.buttonBox.setObjectName("buttonBox")
self.buttonBox.setOrientation(Qt.Horizontal)
self.buttonBox.setStandardButtons(buttons)
self.buttonBox.accepted.connect(self.accept)
self.buttonBox.rejected.connect(self.reject)
self.verticalLayout.addWidget(self.buttonBox)
if items:
self.content.createFieldsFromValues(items, exclusive)
if (select_if_single and len(items) == 1) or preselect_all:
self.select_all_checkbox.setCheckState(Qt.Checked)
if not items or len(items) < 7:
self.filter_field.setVisible(False)
self._geometry_name = store_geometry
if store_geometry and nm.settings().store_geometry:
settings = nm.settings().qsettings(nm.settings().CFG_GUI_FILE)
settings.beginGroup(store_geometry)
self.resize(settings.value("size", QSize(480, 320)))
pos = settings.value("pos", QPoint(0, 0))
if pos.x() != 0 and pos.y() != 0:
self.move(pos)
settings.endGroup() | Creates an input dialog.
@param items: a list with strings
@type items: C{list()} | https://github.com/fkie/multimaster_fkie/blob/386ebf27f41bffdb1896bbcfdccb7c5290ac0eb4/fkie_node_manager/src/fkie_node_manager/select_dialog.py#L58-L165 | from python_qt_binding.QtCore import Qt, Signal, QPoint, QSize
try:
from python_qt_binding.QtGui import QCheckBox, QDialog, QFrame, QDialogButtonBox, QLabel, QLineEdit, QScrollArea, QWidget
from python_qt_binding.QtGui import QFormLayout, QHBoxLayout, QVBoxLayout, QSizePolicy, QSpacerItem
except Exception:
from python_qt_binding.QtWidgets import QCheckBox, QDialog, QFrame, QDialogButtonBox, QLabel, QLineEdit, QScrollArea, QWidget
from python_qt_binding.QtWidgets import QFormLayout, QHBoxLayout, QVBoxLayout, QSizePolicy, QSpacerItem
from python_qt_binding.QtGui import QPixmap
import re
import threading
import fkie_node_manager as nm
from fkie_node_manager_daemon.common import utf8
from fkie_node_manager.editor.line_edit import EnhancedLineEdit
class SelectDialog(QDialog):
MODAL_DIALOG = None | BSD 3-Clause New or Revised License |
crpurcell/friendlyvri | Imports/util_tk.py | ScrolledTreeTab.get_indx_selected | python | def get_indx_selected(self):
if self.rowSelected is None:
return None
else:
return int(self.rowSelected) | Return the index of the last row selected. | https://github.com/crpurcell/friendlyvri/blob/d30a99622742e06fe8b8b767b170c7353c281a82/Imports/util_tk.py#L186-L192 | try:
import Tkinter as tk
import ttk
import tkFont
except Exception:
import tkinter as tk
from tkinter import ttk
import tkinter.font as tkFont
import numpy as np
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
class ScrolledTreeTab(ttk.Frame):
def __init__(self, parent, virtEvent="<<tab_row_selected>>", strPad=10,
*args, **kw):
ttk.Frame.__init__(self, parent, *args, **kw)
self.parent = parent
self.rowSelected = None
self.textSelected = None
self.virtEvent = virtEvent
self.strPad = strPad
self.tree = ttk.Treeview(self, show="headings")
vsb = ttk.Scrollbar(self, orient="vertical",
command=self.tree.yview)
hsb = ttk.Scrollbar(self, orient="horizontal",
command=self.tree.xview)
self.tree.configure(yscrollcommand=vsb.set, xscrollcommand=hsb.set)
self.tree.grid(column=0, row=0, sticky="NSWE")
vsb.grid(column=1, row=0, sticky="NS")
hsb.grid(column=0, row=1, sticky="WE")
self.columnconfigure(0, weight=1)
self.columnconfigure(1, weight=0)
self.rowconfigure(0, weight=1)
self.tree.configure(selectmode="browse")
self.tree.bind("<<TreeviewSelect>>", self._on_row_select)
def _on_row_select(self, event=None):
item = event.widget.selection()
if not item=="":
indx = event.widget.item(item, "text")
self.rowSelected = int(indx)
self.textSelected = event.widget.item(item, "value")
self.event_generate(self.virtEvent)
def _sortby(self, tree, col, descending):
data = [(tree.set(child, col), child)
for child in tree.get_children('')]
data = self._change_numeric_onestep(data)
data.sort(reverse=descending)
for i, item in enumerate(data):
tree.move(item[1], '', i)
tree.heading(col, command=lambda col=col: self._sortby(tree, col, int(not descending)))
def _change_numeric_onestep(self, data):
newData = []
try:
for child, col in data:
if child=="None":
child = "-inf"
newData.append((float(child), col))
return newData
except Exception:
return data
def name_columns(self, colNames):
self.tree['columns'] = colNames
for col in colNames:
self.tree.heading(col, text=col, command=lambda c=col:
self._sortby(self.tree, c, 0))
strWidth = tkFont.Font().measure(col.title())
self.tree.column(col, width=strWidth + self.strPad)
self.tree.column(col, minwidth=strWidth + self.strPad)
def insert_rows(self, rows, colNames=None):
if colNames is None:
colNames = ["Row "+ str(x+1) for x in range(len(rows[0]))]
if len(self.tree['columns'])==0:
self.tree['columns'] = colNames
for col in colNames:
self.tree.heading(col, text=col, command=lambda c=col:
self._sortby(self.tree, c, 0))
strWidth = tkFont.Font().measure(col.title())
self.tree.column(col, width=strWidth + self.strPad)
self.tree.column(col, minwidth=strWidth + self.strPad)
rowIndx = 0
for row in rows:
row = [str(x) for x in row]
self.tree.insert('', 'end', values=row, text=str(rowIndx))
rowIndx += 1
for i, val in enumerate(row):
strWidth = tkFont.Font().measure(val.title())
if self.tree.column(colNames[i], width=None)< (strWidth + self.strPad):
self.tree.column(colNames[i], width=strWidth +
self.strPad)
self.tree.column(colNames[i], minwidth=strWidth +
self.strPad) | MIT License |
directgroup/direct | direct/functionals/challenges.py | fastmri_nmse | python | def fastmri_nmse(gt, pred):
gt = _to_numpy(gt)[:, 0, ...]
pred = _to_numpy(pred)[:, 0, ...]
out = np.linalg.norm(gt - pred) ** 2 / np.linalg.norm(gt) ** 2
return torch.from_numpy(np.array(out)).float() | Compute Normalized Mean Square Error metric (NMSE) compatible with the FastMRI challenge. | https://github.com/directgroup/direct/blob/961989bfac0177988de04e8a3ff563db850575e2/direct/functionals/challenges.py#L47-L52 | import numpy as np
import torch
__all__ = (
"fastmri_ssim",
"fastmri_psnr",
"fastmri_nmse",
"calgary_campinas_ssim",
"calgary_campinas_psnr",
"calgary_campinas_vif",
)
def _to_numpy(tensor):
if isinstance(tensor, np.ndarray):
return tensor
return tensor.cpu().numpy()
def fastmri_ssim(gt, target):
from skimage.metrics import structural_similarity
gt = _to_numpy(gt)[:, 0, ...]
target = _to_numpy(target)[:, 0, ...]
out = structural_similarity(
gt.transpose(1, 2, 0),
target.transpose(1, 2, 0),
multichannel=True,
data_range=gt.max(),
)
return torch.from_numpy(np.array(out)).float()
def fastmri_psnr(gt, pred):
gt = _to_numpy(gt)[:, 0, ...]
pred = _to_numpy(pred)[:, 0, ...]
from skimage.metrics import peak_signal_noise_ratio as psnr
out = psnr(image_true=gt, image_test=pred, data_range=gt.max())
return torch.from_numpy(np.array(out)).float() | Apache License 2.0 |
gamer-os/steam-buddy | tests/test_downloader.py | empty_data | python | def empty_data(fs):
fs.create_dir(os.path.expanduser('~'))
yield fs | Mock an empty home directory as it should be on the first run | https://github.com/gamer-os/steam-buddy/blob/2df83290d32c03ce71f694166570a2247684e4cd/tests/test_downloader.py#L8-L11 | import os
import json
import pytest
from chimera_app.data import Downloader
@pytest.fixture | MIT License |
seaglass-project/seaglass | common/scan.py | Bcch_Measurement.document | python | def document(self):
doc = {}
doc['arfcn'] = int(self.arfcn)
doc['rx_lev'] = int(self.rx_lev)
doc['measurement_blob'] = self.blob
bcch = {}
bcch['num_channels'] = int(self.num_channels)
bcch['num_arfcn'] = int(self.num_arfcn)
format_channels = []
format_arfcns = []
for channel in self.channels:
format_channels.append(int(channel))
for arfcn in self.arfcns:
format_arfcns.append(int(arfcn))
bcch['channels'] = format_channels
bcch['arfcns'] = format_arfcns
for key in self.data:
if self.data[key] is None:
bcch[key] = self.data[key]
elif key == 'cell_status':
bcch[key] = self.data[key]
elif key == 'ber':
bcch[key] = float(self.data[key])
else:
bcch[key] = int(self.data[key])
doc['bcch'] = bcch
return doc | This makes a nice formated document that can be inserted to mongo | https://github.com/seaglass-project/seaglass/blob/04ae18807d188b211167acdb329050a173cba0ba/common/scan.py#L332-L382 | import copy
GPS_FIELDS = ['mode',
'time',
'ept',
'lat',
'lon',
'alt',
'epx',
'epy',
'cpv',
'track',
'speed',
'climb',
'epd',
'eps',
'epc']
def scan_factory(gsm, gps_before, gps_after, sensor_name=None, high_quality=True):
gpsb = Gps_Scan(gps_before)
gpsa = Gps_Scan(gps_after)
gsm_scan = Gsm_Scan(gsm['scan_blob'])
gsm_scan.set_error(gsm['error'])
gsm_scan.set_jammed(gsm['jammed'])
if 'freq_low' in gsm and 'freq_high' in gsm:
gsm_scan.set_freq_range(gsm['freq_low'], gsm['freq_high'])
if 'antenna' in gsm:
gsm_scan.set_antenna(gsm['antenna'])
for raw_meas in gsm['measurements']:
if 'bcch' in raw_meas:
meas = Bcch_Measurement(raw_meas['measurement_blob'])
raw_bcch = raw_meas['bcch']
meas.set_arfcn_lst(raw_bcch['arfcns'], raw_bcch['num_arfcn'])
meas.set_channel_lst(raw_bcch['channels'], raw_bcch['num_channels'])
bcch_cpy = copy.deepcopy(raw_bcch)
del bcch_cpy['arfcns']
del bcch_cpy['num_arfcn']
del bcch_cpy['channels']
del bcch_cpy['num_channels']
meas.set_bcch_data(bcch_cpy)
else:
meas = Gsm_Measurement(raw_meas['measurement_blob'])
meas.set_arfcn(raw_meas['arfcn'])
meas.set_rx_lev(raw_meas['rx_lev'])
gsm_scan.add_measurement(meas)
return Scan(gsm_scan, gpsb, gpsa, sensor_name, high_quality)
class Scan():
def __init__(self, gsm, gpsb, gpsa, sensor_name=None, high_quality=True):
self.gsm = gsm
self.gps_before = gpsb
self.gps_after = gpsa
self.sensor_name = sensor_name
self.high_quality = high_quality
def document(self):
doc = {}
doc['gsm'] = self.gsm.document()
doc['gps_before'] = self.gps_before.document()
doc['gps_after'] = self.gps_after.document()
doc['sensor_name'] = self.sensor_name
doc['high_quality'] = self.high_quality
return doc
def get_gsm(self):
return self.gsm
def get_gps_before(self):
return self.gps_before
def get_gps_after(self):
return self.gps_after
def get_sensor_name(self):
return self.sensor_name
def get_high_quality(self):
return self.high_quality
class Gps_Scan():
def __init__(self, raw_gps):
cur_gps_fields = list(raw_gps.keys())
fields = list(set(cur_gps_fields).intersection(GPS_FIELDS))
self.gps_data = {gps_field: raw_gps[gps_field] for gps_field in fields}
def get_gps_data(self):
return self.gps_data
def get_time(self):
try:
time = self.gps_data.get('time', None)
if time is not None:
return str(time)
else:
return None
except:
return None
def get_mode(self):
try:
mode = self.gps_data.get('mode', None)
if mode is not None:
return str(mode)
else:
return None
except:
return None
def document(self):
return self.gps_data
class Gsm_Scan():
def __init__(self, blob, freq_low = None, freq_high = None):
self.blob = blob
self.freq_low = freq_low
self.freq_high = freq_high
self.error = 0
self.gsm_measurements = []
self.jammed = 0
def set_freq_range(self, freq_low, freq_high):
self.freq_low = freq_low
self.freq_high = freq_high
def set_error(self, error):
self.error = error
def set_jammed(self, jammed):
self.jammed = jammed
def get_freq_range(self):
return (self.freq_low, self.freq_high)
def get_error(self):
return self.error
def get_jammed(self):
return self.jammed
def add_measurement(self, measurement):
self.gsm_measurements.append(measurement)
def measurement_cursor(self):
for measurement in self.gsm_measurements:
yield measurement
def __str__(self):
s = ""
s += "Error: " + str(self.error) + "\n\n"
i = 0
for i in range(len(self.gsm_measurements)):
s += "===========================================\n"
s += "Measurement " + str(i+1) + ":\n"
s += "===========================================\n"
s += str(self.gsm_measurements[i]) + "\n"
i = i + 1
return s
def document(self):
doc = {}
doc['scan_blob'] = self.blob
if self.error == 0:
doc['error'] = False
else:
doc['error'] = True
if self.jammed == 1:
doc['jammed'] = True
else:
doc['jammed'] = False
if self.freq_low is not None:
doc['freq_low'] = self.freq_low
if self.freq_high is not None:
doc['freq_high'] = self.freq_high
measurements = []
for measurement in self.gsm_measurements:
measurements.append(measurement.document())
doc['measurements'] = measurements
return doc
class Gsm_Measurement():
def __init__(self, gsm_blob):
self.arfcn = None
self.rx_lev = None
self.blob = gsm_blob
def set_arfcn(self, arfcn):
self.arfcn = arfcn
def set_rx_lev(self, rx_lev):
self.rx_lev = rx_lev
def get_arfcn(self):
return self.arfcn
def get_rx_lev(self):
return self.rx_lev
def __str__(self):
s = ""
s += "-------------RAW BEGIN-----------------\n"
s += self.blob + "\n"
s += "--------------RAW END-----------------\n"
s += "arfcn: " + self.arfcn + "\n"
s += "rx_lev: " + self.rx_lev + "\n"
return s
def document(self):
doc = {}
doc['arfcn'] = int(self.arfcn)
doc['rx_lev'] = int(self.rx_lev)
doc['measurement_blob'] = self.blob
return doc
class Bcch_Measurement(Gsm_Measurement):
def __init__(self, gsm_blob):
super().__init__(gsm_blob)
self.data = {}
self.num_channels = None
self.channels = []
self.num_arfcn = None
self.arfcns = []
def set_arfcn_lst(self, arfcn_lst, num_arfcn):
self.arfcns = arfcn_lst
self.num_arfcn = num_arfcn
def set_channel_lst(self, channel_lst, num_channels):
self.channels = channel_lst
self.num_channels = num_channels
def set_bcch_data(self, data):
self.data = data
def get_arfcn_lst(self):
return (self.arfcns, self.num_arfcn)
def get_channel_lst(self):
return (self.channels, self.num_channels)
def get_data(self):
return self.data
def __str__(self):
s = ""
s += "-------------RAW BEGIN-----------------\n"
s += self.blob + "\n"
s += "--------------RAW END-----------------\n"
s += "arfcn: " + self.arfcn + "\n"
s += "rx_lev: " + self.rx_lev + "\n"
s += "num_channels: " + self.num_channels + "\n"
s += "channels: " + str(self.channels) + "\n"
s += "num_arfcn: " + self.num_arfcn + "\n"
s += "arfcns: " + str(self.arfcns) + "\n"
for key in self.data:
s += key + ": " + str(self.data[key]) + "\n"
return s | BSD 3-Clause New or Revised License |
henriquemiranda/yambopy | yambopy/io/factories.py | PhPhononTasks | python | def PhPhononTasks(structure,kpoints,ecut,qpoints=None):
qe_input = PwIn.from_structure_dict(structure,kpoints=kpoints,ecut=ecut)
qe_scf_task = PwTask.from_input(qe_input)
if qpoints is None: qpoints = qe_input.kpoints
ph_input = PhIn.from_qpoints(qpoints)
ph_task = PhTask.from_scf_task([ph_input,qe_scf_task],dependencies=qe_scf_task)
matdyn_task = DynmatTask.from_phonon_task(ph_task,dependencies=ph_task)
return qe_scf_task, ph_task, matdyn_task | Return a ScfTask, a PhTask and Matdyn task | https://github.com/henriquemiranda/yambopy/blob/41b860c47e95a0d65be2a138b0043278508caee9/yambopy/io/factories.py#L425-L442 | from qepy.pw import PwIn
from qepy.ph import PhIn
from qepy.pwxml import PwXML
from qepy.lattice import *
from qepy.matdyn import Matdyn
from qepy import qepyenv
from yambopy.io.inputfile import YamboIn
from yambopy.tools.duck import isiter
from yambopy.flow import PwTask, PhTask, P2yTask, YamboTask, DynmatTask, YambopyFlow, AbinitTask, E2yTask
__all__ = [
,
,
,
,
,
,
,
]
class FiniteDifferencesPhononFlow():
def __init__(self,structure,phonon_modes):
self.structure = structure
if not isinstance(phonon_modes,Matdyn):
raise ValueError('phonon_modes must be an instance of Matdyn')
self.phonon_modes = phonon_modes
def get_tasks(self,path,kpoints,ecut,nscf_bands,nscf_kpoints=None,
imodes_list=None,displacements=[0.01,-0.01],iqpoint=0,**kwargs):
if imodes_list is None: imodes_list = list(range(self.phonon_modes.nmodes))
if not isiter(displacements): displacements = [displacements]
generator = kwargs.pop("generator",PwNscfYamboIPChiTasks)
pwin = PwIn.from_structure_dict(self.structure,kpoints=kpoints,ecut=ecut)
tasks = []
tasks.extend(generator(pwin.get_structure(),kpoints,ecut,nscf_bands,nscf_kpoints=nscf_kpoints,**kwargs))
reference = [dict(imode=None,displacement=0)]
for imode in imodes_list:
cart_mode = self.phonon_modes.modes[iqpoint,imode]
for displacement in displacements:
input_mock = pwin.get_displaced(cart_mode, displacement=displacement)
displaced_structure = input_mock.get_structure()
new_tasks = generator(displaced_structure,kpoints,ecut,
nscf_bands,nscf_kpoints=nscf_kpoints,**kwargs)
tasks.extend(new_tasks)
reference.append([dict(imode=None,displacement=displacement)])
self.reference = reference
return tasks
def get_flow(self,path,kpoints,ecut,nscf_bands,nscf_kpoints=None,imodes_list=None,**kwargs):
tasks = self.get_tasks(path=path,kpoints=kpoints,ecut=ecut,nscf_bands=nscf_bands,
nscf_kpoints=nscf_kpoints,imodes_list=imodes_list,**kwargs)
self.yambo_flow = YambopyFlow.from_tasks(path,tasks)
return self.yambo_flow
def get_dchi(self):
raise NotImplementedError('TODO')
pass
def plot_ax(self,what):
raise NotImplementedError('TODO')
pass
@property
def path(self):
return self.yambo_flow.path
class KpointsConvergenceFlow():
def __init__(self,structure):
self.structure = structure
def get_tasks(self,scf_kpoints,nscf_kpoints_list,ecut,nscf_bands,**kwargs):
generator = kwargs.pop("generator",PwNscfYamboIPChiTasks)
qe_input = PwIn.from_structure_dict(self.structure,kpoints=scf_kpoints,ecut=ecut)
qe_scf_task = PwTask.from_input(qe_input)
tasks = [qe_scf_task]
for nscf_kpoints in nscf_kpoints_list:
new_tasks = generator(structure=self.structure,kpoints=scf_kpoints,
nscf_kpoints=nscf_kpoints,
ecut=ecut,nscf_bands=nscf_bands,**kwargs)
tasks.extend(new_tasks)
return tasks
def get_flow(self,path,scf_kpoints,nscf_kpoints_list,ecut,nscf_bands,**kwargs):
tasks = self.get_tasks(scf_kpoints=scf_kpoints,ecut=ecut,nscf_bands=nscf_bands,
nscf_kpoints_list=nscf_kpoints_list,**kwargs)
self.yambo_flow = YambopyFlow.from_tasks(path,tasks,**kwargs)
return self.yambo_flow
class BandsConvergenceFlow():
def __init__(self,structure):
self.structure = structure
def get_tasks(self,scf_kpoints,ecut,nscf_kpoints,bands_list,**kwargs):
generator = kwargs.pop("generator",YamboIPChiTask)
conv_thr = kwargs.pop("conv_thr",qepyenv.CONV_THR)
nscf_bands = max(bands_list)
tasks = PwNscfTasks(self.structure,kpoints=scf_kpoints,ecut=ecut,
nscf_bands=nscf_bands,nscf_kpoints=nscf_kpoints,conv_thr=conv_thr)
qe_scf_task, qe_nscf_task, p2y_task = tasks
tasks = list(tasks)
link_task = p2y_task
new_task = p2y_task
for bands in sorted(bands_list,reverse=True):
new_task = generator(link_task,bands=bands,dependencies=new_task,**kwargs)
tasks.append(new_task)
link_task = [p2y_task,new_task]
return tasks
def get_flow(self,path,scf_kpoints,ecut,nscf_kpoints,bands_list,**kwargs):
tasks = self.get_tasks(scf_kpoints=scf_kpoints,ecut=ecut,nscf_kpoints=nscf_kpoints,
bands_list=bands_list,**kwargs)
self.yambo_flow = YambopyFlow.from_tasks(path,tasks,**kwargs)
return self.yambo_flow
def copy_pp(self):
import os
import glob
import shutil
from netCDF4 import Dataset
nospin_task = self.get_vars('nospin_task')
spin_bands = self.get_vars('spin_bands')
src = os.path.join(nospin_task.path,'run')
dst = os.path.join(self.path,'run')
if not os.path.isdir(dst): os.mkdir(dst)
ppfiles = glob.glob(os.path.join(src,'ndb.pp*'))
for ppfile_path in ppfiles:
ppfile = os.path.basename(ppfile_path)
shutil.copy(ppfile_path,os.path.join(dst,ppfile))
main_pp = os.path.join(dst,'ndb.pp')
with Dataset(main_pp,'r+') as dst_db:
dst_db.variables['SPIN_VARS'][1]=2
dst_db.variables['X_PARS_1'][2]=spin_bands
def update_cell_and_positions(self):
from qepy import PwXML
pwtask = self.get_vars("pwtask")
prefix = pwtask.pwinput.prefix
pwxml = PwXML(prefix,path=pwtask.path)
self.pwinput.update_structure_from_xml(pwxml)
def get_scissor(self):
import os
from yambopy.dbs.qpdb import YamboQPDB
qp_task = self.get_vars('qp_task')
valence = self.get_vars('valence')
qp_path = os.path.join(qp_task.path,'run')
qpdb = YamboQPDB.from_db(folder=qp_path)
scissor = qpdb.get_scissor(valence,verbose=0)[:3]
self.yamboin_dict['KfnQP_E'] = list(scissor)
class SpinOrbitFlow():
def __init__(self,structure,structure_spin=None):
self.structure_nospin = structure
if structure_spin is None: self.structure_spin = structure
def get_tasks(self,scf_kpoints,ecut,nscf_kpoints,chi_bands,spin_bands,**kwargs):
tasks=[]
conv_thr = kwargs.pop("conv_thr",qepyenv.CONV_THR)
yamboin_default_dict = dict(BndsRnXp=[1,chi_bands],
NGsBlkXp=[1,'Ry'],
EXXRLvcs=[10,'Ry'],
QPkrange=[1,1,1,spin_bands],
GbndRnge=[1,spin_bands])
yamboin_dict = kwargs.pop("yamboin_dict",yamboin_default_dict)
generator = kwargs.pop("generator",YamboQPTask)
pp_runlevel = kwargs.pop("pp_runlevel",'-p p -V all')
qp_runlevel = kwargs.pop("qp_runlevel",'-p p -g n -V all')
spin_runlevel = kwargs.pop("spin_runlevel",qp_runlevel)
new_tasks = PwNscfTasks(self.structure_nospin,kpoints=scf_kpoints,ecut=ecut,
nscf_bands=chi_bands,nscf_kpoints=nscf_kpoints,conv_thr=conv_thr)
qe_scf_task, qe_nscf_task, p2y_task = new_tasks
nospin_task = generator(p2y_task,runlevel=pp_runlevel,yamboin_dict=yamboin_dict,dependencies=p2y_task,**kwargs)
tasks.extend( [qe_scf_task, qe_nscf_task, p2y_task, nospin_task] )
new_tasks = PwNscfTasks(self.structure_spin,kpoints=scf_kpoints,ecut=ecut,
nscf_bands=spin_bands,nscf_kpoints=nscf_kpoints,conv_thr=conv_thr)
qe_scf_task, qe_nscf_task, p2y_task = new_tasks
qe_scf_task.get_instances_from_inputs(PwIn)[0].set_spinorbit()
qe_nscf_task.get_instances_from_inputs(PwIn)[0].set_spinorbit()
spin_task = generator(p2y_task,runlevel=spin_runlevel,yamboin_dict=yamboin_dict,dependencies=p2y_task,**kwargs)
tasks.extend( [qe_scf_task, qe_nscf_task, p2y_task, spin_task] )
spin_task.set_vars('spin_bands',spin_bands)
spin_task.set_vars('nospin_task',nospin_task)
spin_task.set_code('initialize',copy_pp)
return tasks
def get_flow(self,path,scf_kpoints,ecut,nscf_kpoints,chi_bands,spin_bands,**kwargs):
tasks = self.get_tasks(scf_kpoints=scf_kpoints,ecut=ecut,nscf_kpoints=nscf_kpoints,
chi_bands=chi_bands,spin_bands=spin_bands,**kwargs)
self.yambo_flow = YambopyFlow.from_tasks(path,tasks,**kwargs)
return self.yambo_flow
def PwNscfYamboIPChiTasks(structure,kpoints,ecut,nscf_bands,
yambo_runlevel='-o c -V all',nscf_kpoints=None,**kwargs):
conv_thr = kwargs.pop("conv_thr",qepyenv.CONV_THR)
tmp_tasks = PwNscfTasks(structure,kpoints,ecut,nscf_bands,nscf_kpoints,conv_thr=conv_thr)
qe_scf_task,qe_nscf_task,p2y_task = tmp_tasks
yambo_task = YamboIPChiTask(p2y_task,yambo_runlevel=yambo_runlevel,**kwargs)
return qe_scf_task,qe_nscf_task,p2y_task,yambo_task
def YamboIPChiTask(p2y_task,**kwargs):
yambo_ip_default_dict = dict(QpntsRXd=[1,1],
ETStpsXd=1000)
yambo_ip_dict = kwargs.pop('yambo_ip_dict',yambo_ip_default_dict)
yambo_runlevel = kwargs.pop('yambo_runlevel','-o c -V all')
bands = kwargs.pop('bands',None)
dependencies = kwargs.pop('dependencies',p2y_task)
if bands: yambo_ip_dict['BndsRnXd'] = [1,bands]
yambo_task = YamboTask.from_runlevel(p2y_task,yambo_runlevel,yambo_ip_dict,
dependencies=dependencies)
return yambo_task
def YamboQPBSETasks(p2y_task,qp_dict,bse_dict,qp_runlevel='-p p -g n -V all',
bse_runlevel='-p p -k sex -y d -V all',valence=False,**kwargs):
import copy
dependencies = kwargs.pop('dependencies',p2y_task)
inputs = [p2y_task]
additional_inputs = kwargs.pop('additional_inputs',None)
if additional_inputs:
if not isiter(additional_inputs): additional_inputs = [additional_inputs]
inputs.extend(additional_inputs)
qp_task = YamboTask.from_runlevel(inputs,qp_runlevel,qp_dict,dependencies=dependencies)
bse_dict['KfnQPdb']="E < run/ndb.QP"
qp_bse_task = YamboTask.from_runlevel([p2y_task,qp_task],bse_runlevel,bse_dict,
dependencies=qp_task)
if valence:
bse_dict = copy.deepcopy(bse_dict)
bse_dict.pop('KfnQPdb')
scissor_bse_task = YamboTask.from_runlevel([p2y_task,qp_task],bse_runlevel,bse_dict,
dependencies=qp_task)
scissor_bse_task.set_vars('qp_task',qp_task)
scissor_bse_task.set_vars('valence',valence)
scissor_bse_task.set_code('initialize',get_scissor)
return qp_task, qp_bse_task, scissor_bse_task
return qp_task, qp_bse_task
def YamboQPTask(p2y_task,yamboin_dict,runlevel='-p p -g n -V all',**kwargs):
dependencies = kwargs.pop('dependencies',p2y_task)
qp_task = YamboTask.from_runlevel(p2y_task,runlevel,yamboin_dict,dependencies=p2y_task)
return qp_task | BSD 3-Clause New or Revised License |
globocom/globonetworkapi-client-python | networkapiclient/ApiEnvironmentVip.py | ApiEnvironmentVip.__init__ | python | def __init__(self, networkapi_url, user, password, user_ldap=None):
super(ApiEnvironmentVip, self).__init__(
networkapi_url,
user,
password,
user_ldap
) | Class constructor receives parameters to connect to the networkAPI.
:param networkapi_url: URL to access the network API.
:param user: User for authentication.
:param password: Password for authentication. | https://github.com/globocom/globonetworkapi-client-python/blob/08dc24c54ee3cd6cdcca1fb33fb4796db8118e6f/networkapiclient/ApiEnvironmentVip.py#L22-L34 | from networkapiclient.ApiGenericClient import ApiGenericClient
from networkapiclient.utils import build_uri_with_ids
class ApiEnvironmentVip(ApiGenericClient): | Apache License 2.0 |
azure/azure-devops-cli-extension | azure-devops/azext_devops/devops_sdk/v5_1/task/task_client.py | TaskClient.delete_timeline | python | def delete_timeline(self, scope_identifier, hub_name, plan_id, timeline_id):
route_values = {}
if scope_identifier is not None:
route_values['scopeIdentifier'] = self._serialize.url('scope_identifier', scope_identifier, 'str')
if hub_name is not None:
route_values['hubName'] = self._serialize.url('hub_name', hub_name, 'str')
if plan_id is not None:
route_values['planId'] = self._serialize.url('plan_id', plan_id, 'str')
if timeline_id is not None:
route_values['timelineId'] = self._serialize.url('timeline_id', timeline_id, 'str')
self._send(http_method='DELETE',
location_id='83597576-cc2c-453c-bea6-2882ae6a1653',
version='5.1',
route_values=route_values) | DeleteTimeline.
:param str scope_identifier: The project GUID to scope the request
:param str hub_name: The name of the server hub: "build" for the Build server or "rm" for the Release Management server
:param str plan_id:
:param str timeline_id: | https://github.com/azure/azure-devops-cli-extension/blob/5f33f7d81a9c2d2990044fbd9ffa6b535cbda528/azure-devops/azext_devops/devops_sdk/v5_1/task/task_client.py#L376-L395 |
from msrest import Serializer, Deserializer
from ...client import Client
from . import models
class TaskClient(Client):
def __init__(self, base_url=None, creds=None):
super(TaskClient, self).__init__(base_url, creds)
client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
self._serialize = Serializer(client_models)
self._deserialize = Deserializer(client_models)
resource_area_identifier = None
def get_plan_attachments(self, scope_identifier, hub_name, plan_id, type):
route_values = {}
if scope_identifier is not None:
route_values['scopeIdentifier'] = self._serialize.url('scope_identifier', scope_identifier, 'str')
if hub_name is not None:
route_values['hubName'] = self._serialize.url('hub_name', hub_name, 'str')
if plan_id is not None:
route_values['planId'] = self._serialize.url('plan_id', plan_id, 'str')
if type is not None:
route_values['type'] = self._serialize.url('type', type, 'str')
response = self._send(http_method='GET',
location_id='eb55e5d6-2f30-4295-b5ed-38da50b1fc52',
version='5.1-preview.1',
route_values=route_values)
return self._deserialize('[TaskAttachment]', self._unwrap_collection(response))
def create_attachment(self, upload_stream, scope_identifier, hub_name, plan_id, timeline_id, record_id, type, name, **kwargs):
route_values = {}
if scope_identifier is not None:
route_values['scopeIdentifier'] = self._serialize.url('scope_identifier', scope_identifier, 'str')
if hub_name is not None:
route_values['hubName'] = self._serialize.url('hub_name', hub_name, 'str')
if plan_id is not None:
route_values['planId'] = self._serialize.url('plan_id', plan_id, 'str')
if timeline_id is not None:
route_values['timelineId'] = self._serialize.url('timeline_id', timeline_id, 'str')
if record_id is not None:
route_values['recordId'] = self._serialize.url('record_id', record_id, 'str')
if type is not None:
route_values['type'] = self._serialize.url('type', type, 'str')
if name is not None:
route_values['name'] = self._serialize.url('name', name, 'str')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
content = self._client.stream_upload(upload_stream, callback=callback)
response = self._send(http_method='PUT',
location_id='7898f959-9cdf-4096-b29e-7f293031629e',
version='5.1-preview.1',
route_values=route_values,
content=content,
media_type='application/octet-stream')
return self._deserialize('TaskAttachment', response)
def get_attachment(self, scope_identifier, hub_name, plan_id, timeline_id, record_id, type, name):
route_values = {}
if scope_identifier is not None:
route_values['scopeIdentifier'] = self._serialize.url('scope_identifier', scope_identifier, 'str')
if hub_name is not None:
route_values['hubName'] = self._serialize.url('hub_name', hub_name, 'str')
if plan_id is not None:
route_values['planId'] = self._serialize.url('plan_id', plan_id, 'str')
if timeline_id is not None:
route_values['timelineId'] = self._serialize.url('timeline_id', timeline_id, 'str')
if record_id is not None:
route_values['recordId'] = self._serialize.url('record_id', record_id, 'str')
if type is not None:
route_values['type'] = self._serialize.url('type', type, 'str')
if name is not None:
route_values['name'] = self._serialize.url('name', name, 'str')
response = self._send(http_method='GET',
location_id='7898f959-9cdf-4096-b29e-7f293031629e',
version='5.1-preview.1',
route_values=route_values)
return self._deserialize('TaskAttachment', response)
def get_attachment_content(self, scope_identifier, hub_name, plan_id, timeline_id, record_id, type, name, **kwargs):
route_values = {}
if scope_identifier is not None:
route_values['scopeIdentifier'] = self._serialize.url('scope_identifier', scope_identifier, 'str')
if hub_name is not None:
route_values['hubName'] = self._serialize.url('hub_name', hub_name, 'str')
if plan_id is not None:
route_values['planId'] = self._serialize.url('plan_id', plan_id, 'str')
if timeline_id is not None:
route_values['timelineId'] = self._serialize.url('timeline_id', timeline_id, 'str')
if record_id is not None:
route_values['recordId'] = self._serialize.url('record_id', record_id, 'str')
if type is not None:
route_values['type'] = self._serialize.url('type', type, 'str')
if name is not None:
route_values['name'] = self._serialize.url('name', name, 'str')
response = self._send(http_method='GET',
location_id='7898f959-9cdf-4096-b29e-7f293031629e',
version='5.1-preview.1',
route_values=route_values,
accept_media_type='application/octet-stream')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def get_attachments(self, scope_identifier, hub_name, plan_id, timeline_id, record_id, type):
route_values = {}
if scope_identifier is not None:
route_values['scopeIdentifier'] = self._serialize.url('scope_identifier', scope_identifier, 'str')
if hub_name is not None:
route_values['hubName'] = self._serialize.url('hub_name', hub_name, 'str')
if plan_id is not None:
route_values['planId'] = self._serialize.url('plan_id', plan_id, 'str')
if timeline_id is not None:
route_values['timelineId'] = self._serialize.url('timeline_id', timeline_id, 'str')
if record_id is not None:
route_values['recordId'] = self._serialize.url('record_id', record_id, 'str')
if type is not None:
route_values['type'] = self._serialize.url('type', type, 'str')
response = self._send(http_method='GET',
location_id='7898f959-9cdf-4096-b29e-7f293031629e',
version='5.1-preview.1',
route_values=route_values)
return self._deserialize('[TaskAttachment]', self._unwrap_collection(response))
def append_log_content(self, upload_stream, scope_identifier, hub_name, plan_id, log_id, **kwargs):
route_values = {}
if scope_identifier is not None:
route_values['scopeIdentifier'] = self._serialize.url('scope_identifier', scope_identifier, 'str')
if hub_name is not None:
route_values['hubName'] = self._serialize.url('hub_name', hub_name, 'str')
if plan_id is not None:
route_values['planId'] = self._serialize.url('plan_id', plan_id, 'str')
if log_id is not None:
route_values['logId'] = self._serialize.url('log_id', log_id, 'int')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
content = self._client.stream_upload(upload_stream, callback=callback)
response = self._send(http_method='POST',
location_id='46f5667d-263a-4684-91b1-dff7fdcf64e2',
version='5.1',
route_values=route_values,
content=content,
media_type='application/octet-stream')
return self._deserialize('TaskLog', response)
def create_log(self, log, scope_identifier, hub_name, plan_id):
route_values = {}
if scope_identifier is not None:
route_values['scopeIdentifier'] = self._serialize.url('scope_identifier', scope_identifier, 'str')
if hub_name is not None:
route_values['hubName'] = self._serialize.url('hub_name', hub_name, 'str')
if plan_id is not None:
route_values['planId'] = self._serialize.url('plan_id', plan_id, 'str')
content = self._serialize.body(log, 'TaskLog')
response = self._send(http_method='POST',
location_id='46f5667d-263a-4684-91b1-dff7fdcf64e2',
version='5.1',
route_values=route_values,
content=content)
return self._deserialize('TaskLog', response)
def get_log(self, scope_identifier, hub_name, plan_id, log_id, start_line=None, end_line=None):
route_values = {}
if scope_identifier is not None:
route_values['scopeIdentifier'] = self._serialize.url('scope_identifier', scope_identifier, 'str')
if hub_name is not None:
route_values['hubName'] = self._serialize.url('hub_name', hub_name, 'str')
if plan_id is not None:
route_values['planId'] = self._serialize.url('plan_id', plan_id, 'str')
if log_id is not None:
route_values['logId'] = self._serialize.url('log_id', log_id, 'int')
query_parameters = {}
if start_line is not None:
query_parameters['startLine'] = self._serialize.query('start_line', start_line, 'long')
if end_line is not None:
query_parameters['endLine'] = self._serialize.query('end_line', end_line, 'long')
response = self._send(http_method='GET',
location_id='46f5667d-263a-4684-91b1-dff7fdcf64e2',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[str]', self._unwrap_collection(response))
def get_logs(self, scope_identifier, hub_name, plan_id):
route_values = {}
if scope_identifier is not None:
route_values['scopeIdentifier'] = self._serialize.url('scope_identifier', scope_identifier, 'str')
if hub_name is not None:
route_values['hubName'] = self._serialize.url('hub_name', hub_name, 'str')
if plan_id is not None:
route_values['planId'] = self._serialize.url('plan_id', plan_id, 'str')
response = self._send(http_method='GET',
location_id='46f5667d-263a-4684-91b1-dff7fdcf64e2',
version='5.1',
route_values=route_values)
return self._deserialize('[TaskLog]', self._unwrap_collection(response))
def get_records(self, scope_identifier, hub_name, plan_id, timeline_id, change_id=None):
route_values = {}
if scope_identifier is not None:
route_values['scopeIdentifier'] = self._serialize.url('scope_identifier', scope_identifier, 'str')
if hub_name is not None:
route_values['hubName'] = self._serialize.url('hub_name', hub_name, 'str')
if plan_id is not None:
route_values['planId'] = self._serialize.url('plan_id', plan_id, 'str')
if timeline_id is not None:
route_values['timelineId'] = self._serialize.url('timeline_id', timeline_id, 'str')
query_parameters = {}
if change_id is not None:
query_parameters['changeId'] = self._serialize.query('change_id', change_id, 'int')
response = self._send(http_method='GET',
location_id='8893bc5b-35b2-4be7-83cb-99e683551db4',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[TimelineRecord]', self._unwrap_collection(response))
def update_records(self, records, scope_identifier, hub_name, plan_id, timeline_id):
route_values = {}
if scope_identifier is not None:
route_values['scopeIdentifier'] = self._serialize.url('scope_identifier', scope_identifier, 'str')
if hub_name is not None:
route_values['hubName'] = self._serialize.url('hub_name', hub_name, 'str')
if plan_id is not None:
route_values['planId'] = self._serialize.url('plan_id', plan_id, 'str')
if timeline_id is not None:
route_values['timelineId'] = self._serialize.url('timeline_id', timeline_id, 'str')
content = self._serialize.body(records, 'VssJsonCollectionWrapper')
response = self._send(http_method='PATCH',
location_id='8893bc5b-35b2-4be7-83cb-99e683551db4',
version='5.1',
route_values=route_values,
content=content)
return self._deserialize('[TimelineRecord]', self._unwrap_collection(response))
def create_timeline(self, timeline, scope_identifier, hub_name, plan_id):
route_values = {}
if scope_identifier is not None:
route_values['scopeIdentifier'] = self._serialize.url('scope_identifier', scope_identifier, 'str')
if hub_name is not None:
route_values['hubName'] = self._serialize.url('hub_name', hub_name, 'str')
if plan_id is not None:
route_values['planId'] = self._serialize.url('plan_id', plan_id, 'str')
content = self._serialize.body(timeline, 'Timeline')
response = self._send(http_method='POST',
location_id='83597576-cc2c-453c-bea6-2882ae6a1653',
version='5.1',
route_values=route_values,
content=content)
return self._deserialize('Timeline', response) | MIT License |
rwbfd/opencompetition | src/nlp/common/networks/modeling_auto.py | AutoModelForSequenceClassification.from_config | python | def from_config(cls, config):
if isinstance(config, AlbertConfig):
return AlbertForSequenceClassification(config)
elif isinstance(config, CamembertConfig):
return CamembertForSequenceClassification(config)
elif isinstance(config, DistilBertConfig):
return DistilBertForSequenceClassification(config)
elif isinstance(config, RobertaConfig):
return RobertaForSequenceClassification(config)
elif isinstance(config, BertConfig):
return BertForSequenceClassification(config)
elif isinstance(config, XLNetConfig):
return XLNetForSequenceClassification(config)
elif isinstance(config, XLMConfig):
return XLMForSequenceClassification(config)
elif isinstance(config, XLMRobertaConfig):
return XLMRobertaForSequenceClassification(config)
raise ValueError("Unrecognized configuration class {}".format(config)) | r""" Instantiates one of the base model classes of the library
from a configuration.
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
The model class to instantiate is selected based on the configuration class:
- isInstance of `distilbert` configuration class: DistilBertModel (DistilBERT model)
- isInstance of `roberta` configuration class: RobertaModel (RoBERTa model)
- isInstance of `bert` configuration class: BertModel (Bert model)
- isInstance of `xlnet` configuration class: XLNetModel (XLNet model)
- isInstance of `xlm` configuration class: XLMModel (XLM model)
Examples::
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
model = AutoModelForSequenceClassification.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` | https://github.com/rwbfd/opencompetition/blob/5262fc5fa7efd7b483c1dc09cb7747dd75e37175/src/nlp/common/networks/modeling_auto.py#L554-L587 | import logging
from .configuration_auto import (
AlbertConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
GPT2Config,
OpenAIGPTConfig,
RobertaConfig,
TransfoXLConfig,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
)
from .modeling_albert import (
ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
AlbertForMaskedLM,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertModel,
)
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
BertForMaskedLM,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertModel,
)
from .modeling_camembert import (
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
CamembertForMaskedLM,
CamembertForSequenceClassification,
CamembertForTokenClassification,
CamembertModel,
)
from .modeling_ctrl import CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, CTRLLMHeadModel, CTRLModel
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
from .modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, GPT2LMHeadModel, GPT2Model
from .modeling_openai import OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, OpenAIGPTLMHeadModel, OpenAIGPTModel
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
RobertaForMaskedLM,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
)
from .modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_MAP, T5Model, T5WithLMHeadModel
from .modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP, TransfoXLLMHeadModel, TransfoXLModel
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_MAP,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMModel,
XLMWithLMHeadModel,
)
from .modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
XLMRobertaForMaskedLM,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaModel,
)
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
)
logger = logging.getLogger(__name__)
ALL_PRETRAINED_MODEL_ARCHIVE_MAP = dict(
(key, value)
for pretrained_map in [
BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP,
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP,
CTRL_PRETRAINED_MODEL_ARCHIVE_MAP,
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP,
XLM_PRETRAINED_MODEL_ARCHIVE_MAP,
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
T5_PRETRAINED_MODEL_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
]
for key, value, in pretrained_map.items()
)
class AutoModel(object):
def __init__(self):
raise EnvironmentError(
"AutoModel is designed to be instantiated "
"using the `AutoModel.from_pretrained(pretrained_model_name_or_path)` or "
"`AutoModel.from_config(config)` methods."
)
@classmethod
def from_config(cls, config):
if isinstance(config, DistilBertConfig):
return DistilBertModel(config)
elif isinstance(config, RobertaConfig):
return RobertaModel(config)
elif isinstance(config, BertConfig):
return BertModel(config)
elif isinstance(config, OpenAIGPTConfig):
return OpenAIGPTModel(config)
elif isinstance(config, GPT2Config):
return GPT2Model(config)
elif isinstance(config, TransfoXLConfig):
return TransfoXLModel(config)
elif isinstance(config, XLNetConfig):
return XLNetModel(config)
elif isinstance(config, XLMConfig):
return XLMModel(config)
elif isinstance(config, CTRLConfig):
return CTRLModel(config)
elif isinstance(config, AlbertConfig):
return AlbertModel(config)
elif isinstance(config, CamembertConfig):
return CamembertModel(config)
elif isinstance(config, XLMRobertaConfig):
return XLMRobertaModel(config)
raise ValueError("Unrecognized configuration class {}".format(config))
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
if "t5" in pretrained_model_name_or_path:
return T5Model.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "distilbert" in pretrained_model_name_or_path:
return DistilBertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "albert" in pretrained_model_name_or_path:
return AlbertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "camembert" in pretrained_model_name_or_path:
return CamembertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "xlm-roberta" in pretrained_model_name_or_path:
return XLMRobertaModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "roberta" in pretrained_model_name_or_path:
return RobertaModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "bert" in pretrained_model_name_or_path:
return BertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "openai-gpt" in pretrained_model_name_or_path:
return OpenAIGPTModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "gpt2" in pretrained_model_name_or_path:
return GPT2Model.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "transfo-xl" in pretrained_model_name_or_path:
return TransfoXLModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "xlnet" in pretrained_model_name_or_path:
return XLNetModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "xlm" in pretrained_model_name_or_path:
return XLMModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "ctrl" in pretrained_model_name_or_path:
return CTRLModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
raise ValueError(
"Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
"'xlm-roberta', 'xlm', 'roberta, 'ctrl', 'distilbert', 'camembert', 'albert'".format(
pretrained_model_name_or_path
)
)
class AutoModelWithLMHead(object):
def __init__(self):
raise EnvironmentError(
"AutoModelWithLMHead is designed to be instantiated "
"using the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` or "
"`AutoModelWithLMHead.from_config(config)` methods."
)
@classmethod
def from_config(cls, config):
if isinstance(config, DistilBertConfig):
return DistilBertForMaskedLM(config)
elif isinstance(config, RobertaConfig):
return RobertaForMaskedLM(config)
elif isinstance(config, BertConfig):
return BertForMaskedLM(config)
elif isinstance(config, OpenAIGPTConfig):
return OpenAIGPTLMHeadModel(config)
elif isinstance(config, GPT2Config):
return GPT2LMHeadModel(config)
elif isinstance(config, TransfoXLConfig):
return TransfoXLLMHeadModel(config)
elif isinstance(config, XLNetConfig):
return XLNetLMHeadModel(config)
elif isinstance(config, XLMConfig):
return XLMWithLMHeadModel(config)
elif isinstance(config, CTRLConfig):
return CTRLLMHeadModel(config)
elif isinstance(config, XLMRobertaConfig):
return XLMRobertaForMaskedLM(config)
raise ValueError("Unrecognized configuration class {}".format(config))
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
if "t5" in pretrained_model_name_or_path:
return T5WithLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "distilbert" in pretrained_model_name_or_path:
return DistilBertForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "albert" in pretrained_model_name_or_path:
return AlbertForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "camembert" in pretrained_model_name_or_path:
return CamembertForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "xlm-roberta" in pretrained_model_name_or_path:
return XLMRobertaForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "roberta" in pretrained_model_name_or_path:
return RobertaForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "bert" in pretrained_model_name_or_path:
return BertForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "openai-gpt" in pretrained_model_name_or_path:
return OpenAIGPTLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "gpt2" in pretrained_model_name_or_path:
return GPT2LMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "transfo-xl" in pretrained_model_name_or_path:
return TransfoXLLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "xlnet" in pretrained_model_name_or_path:
return XLNetLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "xlm" in pretrained_model_name_or_path:
return XLMWithLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif "ctrl" in pretrained_model_name_or_path:
return CTRLLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
raise ValueError(
"Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
"'xlm-roberta', 'xlm', 'roberta','ctrl', 'distilbert', 'camembert', 'albert'".format(
pretrained_model_name_or_path
)
)
class AutoModelForSequenceClassification(object):
def __init__(self):
raise EnvironmentError(
"AutoModelForSequenceClassification is designed to be instantiated "
"using the `AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)` or "
"`AutoModelForSequenceClassification.from_config(config)` methods."
)
@classmethod | Apache License 2.0 |
mlindauer/autofolio | autofolio/feature_preprocessing/standardscaler.py | StandardScalerWrapper.fit | python | def fit(self, scenario: ASlibScenario, config: Configuration):
if config.get("StandardScaler"):
self.active = True
self.scaler = StandardScaler()
self.scaler.fit(scenario.feature_data.values) | fit StandardScaler object to ASlib scenario data
Arguments
---------
scenario: data.aslib_scenario.ASlibScenario
ASlib Scenario with all data in pandas
config: ConfigSpace.Configuration
configuration | https://github.com/mlindauer/autofolio/blob/f296f528b1b684d36837075b0e8160e3fa4124f7/autofolio/feature_preprocessing/standardscaler.py#L39-L54 | import logging
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from ConfigSpace.hyperparameters import CategoricalHyperparameter, UniformFloatHyperparameter, UniformIntegerHyperparameter
from ConfigSpace.conditions import EqualsCondition, InCondition
from ConfigSpace.configuration_space import ConfigurationSpace
from ConfigSpace import Configuration
from aslib_scenario.aslib_scenario import ASlibScenario
__author__ = "Marius Lindauer"
__license__ = "BSD"
class StandardScalerWrapper(object):
@staticmethod
def add_params(cs: ConfigurationSpace):
switch = CategoricalHyperparameter(
"StandardScaler", choices=[True, False], default_value=True)
cs.add_hyperparameter(switch)
def __init__(self):
self.scaler = None
self.active = False
self.logger = logging.getLogger("StandardScaler") | BSD 2-Clause Simplified License |
capitalone/rubicon | rubicon_ml/repository/base.py | BaseRepository.create_artifact | python | def create_artifact(self, artifact, data, project_name, experiment_id=None):
artifact_metadata_path = self._get_artifact_metadata_path(
project_name, experiment_id, artifact.id
)
artifact_data_path = self._get_artifact_data_path(project_name, experiment_id, artifact.id)
self._persist_bytes(data, artifact_data_path)
self._persist_domain(artifact, artifact_metadata_path) | Persist an artifact to the configured filesystem.
Parameters
----------
artifact : rubicon.domain.Artifact
The artifact to persist.
data : bytes
The raw data to persist as an artifact.
project_name : str
The name of the project this artifact belongs to.
experiment_id : str, optional
The ID of the experiment this artifact belongs to.
Artifacts do not need to belong to an experiment. | https://github.com/capitalone/rubicon/blob/86278a98cf5fd0b7e179a2949fce5a12e42fd7be/rubicon_ml/repository/base.py#L247-L268 | import os
import warnings
from pathlib import Path
import fsspec
import pandas as pd
from dask import dataframe as dd
from rubicon_ml import domain
from rubicon_ml.exceptions import RubiconException
from rubicon_ml.repository.utils import json, slugify
class BaseRepository:
def __init__(self, root_dir, **storage_options):
self.filesystem = fsspec.filesystem(self.PROTOCOL, **storage_options)
self.root_dir = root_dir.rstrip("/")
def _ls_directories_only(self, path):
directories = [
os.path.join(p.get("name"), "metadata.json")
for p in self.filesystem.ls(path, detail=True)
if p.get("type", p.get("StorageClass")).lower() == "directory"
]
return directories
def _cat_paths(self, metadata_paths):
files = []
for path, metadata in self.filesystem.cat(metadata_paths, on_error="return").items():
if isinstance(metadata, FileNotFoundError):
warning = f"{path} not found. Was this file unintentionally created?"
warnings.warn(warning)
else:
files.append(metadata)
return files
def _get_project_metadata_path(self, project_name):
return f"{self.root_dir}/{slugify(project_name)}/metadata.json"
def create_project(self, project):
project_metadata_path = self._get_project_metadata_path(project.name)
if self.filesystem.exists(project_metadata_path):
raise RubiconException(f"A project with name '{project.name}' already exists.")
self._persist_domain(project, project_metadata_path)
def get_project(self, project_name):
project_metadata_path = self._get_project_metadata_path(project_name)
try:
project = json.loads(self.filesystem.cat(project_metadata_path))
except FileNotFoundError:
raise RubiconException(f"No project with name '{project_name}' found.")
return domain.Project(**project)
def get_projects(self):
try:
project_metadata_paths = self._ls_directories_only(self.root_dir)
projects = [
domain.Project(**json.loads(metadata))
for metadata in self._cat_paths(project_metadata_paths)
]
projects.sort(key=lambda a: a.created_at)
except FileNotFoundError:
return []
return projects
def _get_experiment_metadata_root(self, project_name):
return f"{self.root_dir}/{slugify(project_name)}/experiments"
def _get_experiment_metadata_path(self, project_name, experiment_id):
experiment_metadata_root = self._get_experiment_metadata_root(project_name)
return f"{experiment_metadata_root}/{experiment_id}/metadata.json"
def create_experiment(self, experiment):
experiment_metadata_path = self._get_experiment_metadata_path(
experiment.project_name, experiment.id
)
self._persist_domain(experiment, experiment_metadata_path)
def get_experiment(self, project_name, experiment_id):
experiment_metadata_path = self._get_experiment_metadata_path(project_name, experiment_id)
try:
open_file = self.filesystem.open(experiment_metadata_path)
except FileNotFoundError:
raise RubiconException(f"No experiment with id `{experiment_id}` found.")
with open_file as f:
experiment = json.load(f)
return domain.Experiment(**experiment)
def get_experiments(self, project_name):
experiment_metadata_root = self._get_experiment_metadata_root(project_name)
try:
experiment_metadata_paths = self._ls_directories_only(experiment_metadata_root)
experiments = [
domain.Experiment(**json.loads(metadata))
for metadata in self._cat_paths(experiment_metadata_paths)
]
experiments.sort(key=lambda a: a.created_at)
except FileNotFoundError:
return []
return experiments
def _get_artifact_metadata_root(self, project_name, experiment_id=None):
if experiment_id is not None:
experiment_metadata_root = self._get_experiment_metadata_root(project_name)
return f"{experiment_metadata_root}/{experiment_id}/artifacts"
else:
return f"{self.root_dir}/{slugify(project_name)}/artifacts"
def _get_artifact_metadata_path(self, project_name, experiment_id, artifact_id):
artifact_metadata_root = self._get_artifact_metadata_root(project_name, experiment_id)
return f"{artifact_metadata_root}/{artifact_id}/metadata.json"
def _get_artifact_data_path(self, project_name, experiment_id, artifact_id):
artifact_metadata_root = self._get_artifact_metadata_root(project_name, experiment_id)
return f"{artifact_metadata_root}/{artifact_id}/data" | Apache License 2.0 |
cloud-bulldozer/benchmark-wrapper | snafu/fio_wrapper/fio_analyzer.py | Fio_Analyzer.add_fio_result_documents | python | def add_fio_result_documents(self, document_list, starttime):
for document in document_list:
fio_result = {}
fio_result["document"] = document
fio_result["starttime"] = starttime
self.fio_processed_results_list.append(fio_result) | for each new document add it to the results list with its starttime | https://github.com/cloud-bulldozer/benchmark-wrapper/blob/032b0920397888bbae1a62ca27fae28d1be4537c/snafu/fio_wrapper/fio_analyzer.py#L23-L31 | import statistics
import time
class Fio_Analyzer:
def __init__(self, uuid, user, cluster_name):
self.uuid = uuid
self.user = user
self.fio_processed_results_list = []
self.sample_list = []
self.operation_list = []
self.io_size_list = []
self.sumdoc = {}
self.cluster_name = cluster_name | Apache License 2.0 |
chronicle/detection-api | detect/v2/delete_rule.py | delete_rule | python | def delete_rule(http_session: requests.AuthorizedSession, rule_id: str):
url = f"{CHRONICLE_API_BASE_URL}/v2/detect/rules/{rule_id}"
response = http_session.request("DELETE", url)
if response.status_code >= 400:
print(response.text)
response.raise_for_status() | Delete a specific detection rule.
Args:
http_session: Authorized session for HTTP requests.
rule_id: Unique ID of the detection rule to delete ("ru_<UUID>"). It does
not accept version id format ("ru_<UUID>@v_<seconds>_<nanoseconds>").
Raises:
requests.exceptions.HTTPError: HTTP request resulted in an error
(response.status_code >= 400). | https://github.com/chronicle/detection-api/blob/f0ec1f837c0c1e6af68d003dcd6c5774e524bba5/detect/v2/delete_rule.py#L33-L53 | import argparse
from google.auth.transport import requests
from common import chronicle_auth
from common import regions
CHRONICLE_API_BASE_URL = "https://backstory.googleapis.com" | Apache License 2.0 |
intel/openfl | openfl/cryptography/participant.py | generate_csr | python | def generate_csr(common_name, server=False):
private_key = rsa.generate_private_key(
public_exponent=65537,
key_size=3072,
backend=default_backend()
)
builder = x509.CertificateSigningRequestBuilder()
subject = x509.Name([
x509.NameAttribute(NameOID.COMMON_NAME, common_name),
])
builder = builder.subject_name(subject)
builder = builder.add_extension(
x509.BasicConstraints(ca=False, path_length=None), critical=True,
)
if server:
builder = builder.add_extension(
x509.ExtendedKeyUsage([x509.ExtendedKeyUsageOID.SERVER_AUTH]),
critical=True
)
else:
builder = builder.add_extension(
x509.ExtendedKeyUsage([x509.ExtendedKeyUsageOID.CLIENT_AUTH]),
critical=True
)
builder = builder.add_extension(
x509.KeyUsage(
digital_signature=True,
key_encipherment=True,
data_encipherment=False,
key_agreement=False,
content_commitment=False,
key_cert_sign=False,
crl_sign=False,
encipher_only=False,
decipher_only=False
),
critical=True
)
builder = builder.add_extension(
x509.SubjectAlternativeName([x509.DNSName(common_name)]),
critical=False
)
csr = builder.sign(
private_key=private_key, algorithm=hashes.SHA384(),
backend=default_backend()
)
return private_key, csr | Issue certificate signing request for server and client. | https://github.com/intel/openfl/blob/4bda3850b6bce7c904a5ac3ed56115bec00be2e0/openfl/cryptography/participant.py#L13-L68 | from cryptography import x509
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.x509.oid import NameOID | Apache License 2.0 |
jgraving/deepposekit | deepposekit/models/LEAP.py | LEAP.__init__ | python | def __init__(
self,
train_generator,
filters=64,
upsampling=False,
activation="relu",
batchnorm=False,
use_bias=True,
pooling="max",
interpolation="bilinear",
subpixel=False,
initializer="glorot_uniform",
**kwargs
):
self.filters = filters
self.upsampling = upsampling
self.activation = activation
if activation is "selu":
batchnorm = False
use_bias = False
if batchnorm:
use_bias = False
self.batchnorm = batchnorm
self.use_bias = use_bias
self.pooling = pooling
self.interpolation = interpolation
self.subpixel = subpixel
self.initializer = initializer
super(LEAP, self).__init__(train_generator, subpixel, **kwargs) | Define a LEAP model from Pereira et al., 2018 [1]
See `References` for details on the model architecture.
Parameters
----------
train_generator : class deepposekit.io.TrainingGenerator
A deepposekit.io.TrainingGenerator class for generating
images and confidence maps.
filters : int, default = 64
The base number of channels to output from each
convolutional layer. Increases by up to a factor
of 4 with network depth.
upsampling_layers: bool, default = False
Whether to use upsampling or transposed convolutions
for upsampling layers. Default is False, which uses
transposed convolutions.
activation: str or callable, default = 'relu'
The activation function to use for each convolutional layer.
batchnorm : bool, default = False
Whether to use batch normalization in each convolutional block.
If activation is 'selu' then batchnorm is automatically set to
False, as the network is already self-normalizing.
pooling: str, default = 'max'
The type of pooling to use during downsampling.
Must be either 'max' or 'average'.
interpolation: str, default = 'nearest'
The type of interpolation to use when upsampling.
Must be 'nearest', 'bilinear', or 'bicubic'.
The default is 'nearest', which is the most efficient.
subpixel: bool, default = True
Whether to use subpixel maxima for calculating
keypoint coordinates in the prediction model.
initializer: str or callable, default='glorot_uniform'
The initializer for the convolutional kernels.
Default is 'glorot_uniform' which is the keras default.
If activation is 'selu', the initializer is automatically
changed to 'lecun_normal', which is the recommended initializer
for that activation function [4].
Attributes
-------
train_model: keras.Model
A model for training the network to produce confidence maps with
one input layer for images
predict_model: keras.Model
A model for predicting keypoint coordinates using with Maxima2D or
SubpixelMaxima2D layers at the output of the network.
Both of these models share the same computational graph,
so training train_model updates the weights of predict_model
References
----------
1. Pereira, T. D., Aldarondo, D. E., Willmore, L., Kislin, M.,
Wang, S. S. H., Murthy, M., & Shaevitz, J. W. (2019).
Fast animal pose estimation using deep neural networks.
Nature methods, 16(1), 117. | https://github.com/jgraving/deepposekit/blob/cecdb0c8c364ea049a3b705275ae71a2f366d4da/deepposekit/models/LEAP.py#L26-L115 | from tensorflow.keras import Input, Model
from tensorflow.keras.layers import Conv2D, Conv2DTranspose, BatchNormalization
from deepposekit.models.layers.convolutional import UpSampling2D
from deepposekit.models.layers.util import ImageNormalization
from deepposekit.models.layers.leap import ConvBlock2D, ConvPool2D
from deepposekit.models.engine import BaseModel
class LEAP(BaseModel): | Apache License 2.0 |
halit/isip | isip/scapy/contrib/gsm_um.py | systemInformationType2 | python | def systemInformationType2():
a = L2PseudoLength(l2pLength=0x16)
b = TpPd(pd=0x6)
c = MessageType(mesType=0x1a)
d = NeighbourCellsDescription()
e = NccPermitted()
f = RachControlParameters()
packet = a / b / c / d / e / f
return packet | SYSTEM INFORMATION TYPE 2 Section 9.1.32 | https://github.com/halit/isip/blob/fad1f10b02f9e075451588cc6a18a46cc5fbd66b/isip/scapy/contrib/gsm_um.py#L997-L1006 | import logging
from types import IntType
from types import NoneType
from types import StringType
import socket
logging.getLogger("scapy").setLevel(1)
from scapy.all import *
def sendum(x, typeSock=0):
try:
if type(x) is not str:
x = str(x)
if typeSock is 0:
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
host = '127.0.0.1'
port = 28670
s.connect((host, port))
elif typeSock is 1:
s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
s.connect("/tmp/osmoL")
elif typeSock is 2:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host = '127.0.0.1'
port = 43797
s.connect((host, port))
s.send(x)
s.close()
except:
print "[Error]: There was a problem when trying to transmit data.\
Please make sure you started the socket server."
class ErrorLength(Exception):
def __str__(self):
error = "ERROR: Please make sure you build entire, 8 bit fields."
return repr(error)
def adapt(min_length, max_length, fields, fields2, location=2):
location = min_length - location
i = len(fields) - 1
rm = mysum = 0
while i >= 0:
if fields[i] is None:
rm += 1
try:
mysum += fields2[i].size
except AttributeError:
mysum += 8
else:
break
i -= 1
if mysum % 8 is 0:
length = mysum / 8
dyn_length = (max_length - min_length - length)
if dyn_length < 0:
dyn_length = 0
if length is max_length:
length -= min_length
return [length, dyn_length + location]
else:
raise ErrorLength()
def examples(example=None):
if example == None:
print """This command presents some example to introduce scapy
gsm-um to new users.
The following parameters can be used:
examples("imsiDetach")
examples("call")
examples("dissect")"""
elif example == "imsiDetach":
print """
>>> a=imsiDetachIndication()
... a.typeOfId=1; a.odd=1; a.idDigit1=0xF;
... a.idDigit2_1=2; a.idDigit2=7; a.idDigit3_1=0;
... a.idDigit3=7; a.idDigit4_1=7; a.idDigit4=2;
... a.idDigit5_1=0; a.idDigit5=0; a.idDigit6_1=0;
... a.idDigit6=1; a.idDigit7_1=2; a.idDigit7=7;
... a.idDigit8_1=7; a.idDigit8=5; a.idDigit9_1=1; a.idDigit9=4;
>>> hexdump(a)
0000 05 01 00 08 F0 27 07 72 00 01 27 75 14 .....'.r..'u.
>>> sendum(a)
"""
elif example == "call":
print """
If you use an USRP and the testcall function this sets up a phonecall:
>>> sendum(setupMobileOriginated())
>>> sendum(connectAcknowledge())
"""
class TpPd(Packet):
name = "Skip Indicator And Transaction Identifier and Protocol \
Discriminator"
fields_desc = [
BitField("ti", 0x0, 4),
BitField("pd", 0x3, 4)
]
class MessageType(Packet):
name = "Message Type"
fields_desc = [
XByteField("mesType", 0x3C)
]
def additionalAssignment(MobileAllocation_presence=0,
StartingTime_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x3B)
c = ChannelDescription()
packet = a / b / c
if MobileAllocation_presence is 1:
d = MobileAllocationHdr(ieiMA=0x72, eightBitMA=0x0)
packet = packet / d
if StartingTime_presence is 1:
e = StartingTimeHdr(ieiST=0x7C, eightBitST=0x0)
packet = packet / e
return packet
def assignmentCommand(FrequencyList_presence=0,
CellChannelDescription_presence=0,
CellChannelDescription_presence1=0,
MultislotAllocation_presence=0,
ChannelMode_presence=0, ChannelMode_presence1=0,
ChannelMode_presence2=0, ChannelMode_presence3=0,
ChannelMode_presence4=0, ChannelMode_presence5=0,
ChannelMode_presence6=0, ChannelMode_presence7=0,
ChannelDescription=0, ChannelMode2_presence=0,
MobileAllocation_presence=0, StartingTime_presence=0,
FrequencyList_presence1=0,
ChannelDescription2_presence=0,
ChannelDescription_presence=0,
FrequencyChannelSequence_presence=0,
MobileAllocation_presence1=0,
CipherModeSetting_presence=0,
VgcsTargetModeIdentication_presence=0,
MultiRateConfiguration_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x2e)
c = ChannelDescription2()
d = PowerCommand()
packet = a / b / c / d
if FrequencyList_presence is 1:
e = FrequencyListHdr(ieiFL=0x05, eightBitFL=0x0)
packet = packet / e
if CellChannelDescription_presence is 1:
f = CellChannelDescriptionHdr(ieiCCD=0x62, eightBitCCD=0x0)
packet = packet / f
if MultislotAllocation_presence is 1:
g = MultislotAllocationHdr(ieiMSA=0x10, eightBitMSA=0x0)
packet = packet / g
if ChannelMode_presence is 1:
h = ChannelModeHdr(ieiCM=0x63, eightBitCM=0x0)
packet = packet / h
if ChannelMode_presence1 is 1:
i = ChannelModeHdr(ieiCM=0x11, eightBitCM=0x0)
packet = packet / i
if ChannelMode_presence2 is 1:
j = ChannelModeHdr(ieiCM=0x13, eightBitCM=0x0)
packet = packet / j
if ChannelMode_presence3 is 1:
k = ChannelModeHdr(ieiCM=0x14, eightBitCM=0x0)
packet = packet / k
if ChannelMode_presence4 is 1:
l = ChannelModeHdr(ieiCM=0x15, eightBitCM=0x0)
packet = packet / l
if ChannelMode_presence5 is 1:
m = ChannelModeHdr(ieiCM=0x16, eightBitCM=0x0)
packet = packet / m
if ChannelMode_presence6 is 1:
n = ChannelModeHdr(ieiCM=0x17, eightBitCM=0x0)
packet = packet / n
if ChannelMode_presence7 is 1:
o = ChannelModeHdr(ieiCM=0x18, eightBitCM=0x0)
packet = packet / o
if ChannelDescription_presence is 1:
p = ChannelDescriptionHdr(ieiCD=0x64, eightBitCD=0x0)
packet = packet / p
if ChannelMode2_presence is 1:
q = ChannelMode2Hdr(ieiCM2=0x66, eightBitCM2=0x0)
packet = packet / q
if MobileAllocation_presence is 1:
r = MobileAllocationHdr(ieiMA=0x72, eightBitMA=0x0)
packet = packet / r
if StartingTime_presence is 1:
s = StartingTimeHdr(ieiST=0x7C, eightBitST=0x0)
packet = packet / s
if FrequencyList_presence1 is 1:
t = FrequencyListHdr(ieiFL=0x19, eightBitFL=0x0)
packet = packet / t
if ChannelDescription2_presence is 1:
u = ChannelDescription2Hdr(ieiCD2=0x1C, eightBitCD2=0x0)
packet = packet / u
if ChannelDescription_presence is 1:
v = ChannelDescriptionHdr(ieiCD=0x1D, eightBitCD=0x0)
packet = packet / v
if FrequencyChannelSequence_presence is 1:
w = FrequencyChannelSequenceHdr(ieiFCS=0x1E, eightBitFCS=0x0)
packet = packet / w
if MobileAllocation_presence1 is 1:
x = MobileAllocationHdr(ieiMA=0x21, eightBitMA=0x0)
packet = packet / x
if CipherModeSetting_presence is 1:
y = CipherModeSettingHdr(ieiCMS=0x9, eightBitCMS=0x0)
packet = packet / y
if VgcsTargetModeIdentication_presence is 1:
z = VgcsTargetModeIdenticationHdr(ieiVTMI=0x01, eightBitVTMI=0x0)
packet = packet / z
if MultiRateConfiguration_presence is 1:
aa = MultiRateConfigurationHdr(ieiMRC=0x03, eightBitMRC=0x0)
packet = packet / aa
return packet
def assignmentComplete():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x29)
c = RrCause()
packet = a / b / c
return packet
def assignmentFailure():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x2F)
c = RrCause()
packet = a / b / c
return packet
def channelModeModify(VgcsTargetModeIdentication_presence=0,
MultiRateConfiguration_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x8)
c = ChannelDescription2()
d = ChannelMode()
packet = a / b / c / d
if VgcsTargetModeIdentication is 1:
e = VgcsTargetModeIdenticationHdr(ieiVTMI=0x01, eightBitVTMI=0x0)
packet = packet / e
if MultiRateConfiguration is 1:
f = MultiRateConfigurationHdr(ieiMRC=0x03, eightBitMRC=0x0)
packet = packet / f
return packet
def channelModeModifyAcknowledge():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x17)
c = ChannelDescription2()
d = ChannelMode()
packet = a / b / c / d
return packet
def channelRelease(BaRange_presence=0, GroupChannelDescription_presence=0,
GroupCipherKeyNumber_presence=0, GprsResumption_presence=0,
BaListPref_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0xD)
c = RrCause()
packet = a / b / c
if BaRange_presence is 1:
d = BaRangeHdr(ieiBR=0x73, eightBitBR=0x0)
packet = packet / d
if GroupChannelDescription_presence is 1:
e = GroupChannelDescriptionHdr(ieiGCD=0x74, eightBitGCD=0x0)
packet = packet / e
if GroupCipherKeyNumber_presence is 1:
f = GroupCipherKeyNumber(ieiGCKN=0x8)
packet = packet / f
if GprsResumption_presence is 1:
g = GprsResumptionHdr(ieiGR=0xC, eightBitGR=0x0)
packet = packet / g
if BaListPref_presence is 1:
h = BaListPrefHdr(ieiBLP=0x75, eightBitBLP=0x0)
packet = packet / h
return packet
class ChannelRequest(Packet):
name = "Channel Request"
fields_desc = [
ByteField("estCause", 0x0)
]
def channelRequest():
return ChannelRequest()
def cipheringModeCommand():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x35)
c = RrCause()
d = CipherModeSettingAndcipherResponse()
packet = a / b / c / d
return packet
def cipheringModeComplete(MobileId_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x32)
packet = a / b
if MobileId_presence is 1:
c = MobileIdHdr(ieiMI=0x17, eightBitMI=0x0)
packet = packet / c
return packet
def classmarkChange(MobileStationClassmark3_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x16)
c = MobileStationClassmark2()
packet = a / b / c
if MobileStationClassmark3_presence is 1:
e = MobileStationClassmark3(ieiMSC3=0x20)
packet = packet / e
return packet
def classmarkEnquiry():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x13)
packet = a / b
return packet
def configurationChangeCommand(ChannelMode_presence=0,
ChannelMode_presence1=0,
ChannelMode_presence2=0,
ChannelMode_presence3=0,
ChannelMode_presence4=0,
ChannelMode_presence5=0,
ChannelMode_presence6=0,
ChannelMode_presence7=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x30)
c = MultislotAllocation()
packet = a / b / c
if ChannelMode_presence is 1:
d = ChannelModeHdr(ieiCM=0x63, eightBitCM=0x0)
packet = packet / d
if ChannelMode_presence1 is 1:
e = ChannelModeHdr(ieiCM=0x11, eightBitCM=0x0)
packet = packet / e
if ChannelMode_presence2 is 1:
f = ChannelModeHdr(ieiCM=0x13, eightBitCM=0x0)
packet = packet / f
if ChannelMode_presence3 is 1:
g = ChannelModeHdr(ieiCM=0x14, eightBitCM=0x0)
packet = packet / g
if ChannelMode_presence4 is 1:
h = ChannelModeHdr(ieiCM=0x15, eightBitCM=0x0)
packet = packet / h
if ChannelMode_presence5 is 1:
i = ChannelModeHdr(ieiCM=0x16, eightBitCM=0x0)
packet = packet / i
if ChannelMode_presence6 is 1:
j = ChannelModeHdr(ieiCM=0x17, eightBitCM=0x0)
packet = packet / j
if ChannelMode_presence7 is 1:
k = ChannelModeHdr(ieiCM=0x18, eightBitCM=0x0)
packet = packet / k
return packet
def configurationChangeAcknowledge():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x31)
c = MobileId()
packet = a / b / c
return packet
def configurationChangeReject():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x33)
c = RrCause()
packet = a / b / c
return packet
def frequencyRedefinition(CellChannelDescription_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x14)
c = ChannelDescription()
d = MobileAllocation()
e = StartingTime()
packet = a / b / c / d / e
if CellChannelDescription_presence is 1:
f = CellChannelDescriptionHdr(ieiCCD=0x62, eightBitCCD=0x0)
packet = packet / f
return packet
def pdchAssignmentCommand(ChannelDescription_presence=0,
CellChannelDescription_presence=0,
MobileAllocation_presence=0,
StartingTime_presence=0, FrequencyList_presence=0,
ChannelDescription_presence1=0,
FrequencyChannelSequence_presence=0,
MobileAllocation_presence1=0,
PacketChannelDescription_presence=0,
DedicatedModeOrTBF_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x23)
c = ChannelDescription()
packet = a / b / c
if ChannelDescription_presence is 1:
d = ChannelDescriptionHdr(ieiCD=0x62, eightBitCD=0x0)
packet = packet / d
if CellChannelDescription_presence is 1:
e = CellChannelDescriptionHdr(ieiCCD=0x05, eightBitCCD=0x0)
packet = packet / e
if MobileAllocation_presence is 1:
f = MobileAllocationHdr(ieiMA=0x72, eightBitMA=0x0)
packet = packet / f
if StartingTime_presence is 1:
g = StartingTimeHdr(ieiST=0x7C, eightBitST=0x0)
packet = packet / g
if FrequencyList_presence is 1:
h = FrequencyListHdr(ieiFL=0x19, eightBitFL=0x0)
packet = packet / h
if ChannelDescription_presence1 is 1:
i = ChannelDescriptionHdr(ieiCD=0x1C, eightBitCD=0x0)
packet = packet / i
if FrequencyChannelSequence_presence is 1:
j = FrequencyChannelSequenceHdr(ieiFCS=0x1E, eightBitFCS=0x0)
packet = packet / j
if MobileAllocation_presence1 is 1:
k = MobileAllocationHdr(ieiMA=0x21, eightBitMA=0x0)
packet = packet / k
if PacketChannelDescription_presence is 1:
l = PacketChannelDescription(ieiPCD=0x22)
packet = packet / l
if DedicatedModeOrTBF_presence is 1:
m = DedicatedModeOrTBFHdr(ieiDMOT=0x23, eightBitDMOT=0x0)
packet = packet / m
return packet
def gprsSuspensionRequest():
a = TpPd(pd=0x6)
b = MessageType()
c = Tlli()
d = RoutingAreaIdentification()
e = SuspensionCause()
packet = a / b / c / d / e
return packet
class HandoverAccess(Packet):
name = "Handover Access"
fields_desc = [
ByteField("handover", None),
]
def handoverCommand(SynchronizationIndication_presence=0,
FrequencyShortList_presence=0, FrequencyList_presence=0,
CellChannelDescription_presence=0,
MultislotAllocation_presence=0,
ChannelMode_presence=0, ChannelMode_presence1=0,
ChannelMode_presence2=0,
ChannelMode_presence3=0, ChannelMode_presence4=0,
ChannelMode_presence5=0,
ChannelMode_presence6=0, ChannelMode_presence7=0,
ChannelDescription_presence1=0, ChannelMode2_presence=0,
FrequencyChannelSequence_presence=0,
MobileAllocation_presence=0,
StartingTime_presence=0, TimeDifference_presence=0,
TimingAdvance_presence=0,
FrequencyShortList_presence1=0,
FrequencyList_presence1=0,
ChannelDescription2_presence=0,
ChannelDescription_presence2=0,
FrequencyChannelSequence_presence1=0,
MobileAllocation_presence1=0,
CipherModeSetting_presence=0,
VgcsTargetModeIdentication_presence=0,
MultiRateConfiguration_presence=0):
name = "Handover Command"
a = TpPd(pd=0x6)
b = MessageType(mesType=0x2b)
c = CellDescription()
d = ChannelDescription2()
e = HandoverReference()
f = PowerCommandAndAccessType()
packet = a / b / c / d / e / f
if SynchronizationIndication_presence is 1:
g = SynchronizationIndicationHdr(ieiSI=0xD, eightBitSI=0x0)
packet = packet / g
if FrequencyShortList_presence is 1:
h = FrequencyShortListHdr(ieiFSL=0x02)
packet = packet / h
if FrequencyList_presence is 1:
i = FrequencyListHdr(ieiFL=0x05, eightBitFL=0x0)
packet = packet / i
if CellChannelDescription_presence is 1:
j = CellChannelDescriptionHdr(ieiCCD=0x62, eightBitCCD=0x0)
packet = packet / j
if MultislotAllocation_presence is 1:
k = MultislotAllocationHdr(ieiMSA=0x10, eightBitMSA=0x0)
packet = packet / k
if ChannelMode_presence is 1:
l = ChannelModeHdr(ieiCM=0x63, eightBitCM=0x0)
packet = packet / l
if ChannelMode_presence1 is 1:
m = ChannelModeHdr(ieiCM=0x11, eightBitCM=0x0)
packet = packet / m
if ChannelMode_presence2 is 1:
n = ChannelModeHdr(ieiCM=0x13, eightBitCM=0x0)
packet = packet / n
if ChannelMode_presence3 is 1:
o = ChannelModeHdr(ieiCM=0x14, eightBitCM=0x0)
packet = packet / o
if ChannelMode_presence4 is 1:
p = ChannelModeHdr(ieiCM=0x15, eightBitCM=0x0)
packet = packet / p
if ChannelMode_presence5 is 1:
q = ChannelModeHdr(ieiCM=0x16, eightBitCM=0x0)
packet = packet / q
if ChannelMode_presence6 is 1:
r = ChannelModeHdr(ieiCM=0x17, eightBitCM=0x0)
packet = packet / r
if ChannelMode_presence7 is 1:
s = ChannelModeHdr(ieiCM=0x18, eightBitCM=0x0)
packet = packet / s
if ChannelDescription_presence1 is 1:
s1 = ChannelDescriptionHdr(ieiCD=0x64, eightBitCD=0x0)
packet = packet / s1
if ChannelMode2_presence is 1:
t = ChannelMode2Hdr(ieiCM2=0x66, eightBitCM2=0x0)
packet = packet / t
if FrequencyChannelSequence_presence is 1:
u = FrequencyChannelSequenceHdr(ieiFCS=0x69, eightBitFCS=0x0)
packet = packet / u
if MobileAllocation_presence is 1:
v = MobileAllocationHdr(ieiMA=0x72, eightBitMA=0x0)
packet = packet / v
if StartingTime_presence is 1:
w = StartingTimeHdr(ieiST=0x7C, eightBitST=0x0)
packet = packet / w
if TimeDifference_presence is 1:
x = TimeDifferenceHdr(ieiTD=0x7B, eightBitTD=0x0)
packet = packet / x
if TimingAdvance_presence is 1:
y = TimingAdvanceHdr(ieiTA=0x7D, eightBitTA=0x0)
packet = packet / y
if FrequencyShortList_presence1 is 1:
z = FrequencyShortListHdr(ieiFSL=0x12)
packet = packet / z
if FrequencyList_presence1 is 1:
aa = FrequencyListHdr(ieiFL=0x19, eightBitFL=0x0)
packet = packet / aa
if ChannelDescription2_presence is 1:
ab = ChannelDescription2Hdr(ieiCD2=0x1C, eightBitCD2=0x0)
packet = packet / ab
if ChannelDescription_presence2 is 1:
ac = ChannelDescriptionHdr(ieiCD=0x1D, eightBitCD=0x0)
packet = packet / ac
if FrequencyChannelSequence_presence1 is 1:
ad = FrequencyChannelSequenceHdr(ieiFCS=0x1E, eightBitFCS=0x0)
packet = packet / ad
if MobileAllocation_presence1 is 1:
ae = MobileAllocationHdr(ieiMA=0x21, eightBitMA=0x0)
packet = packet / ae
if CipherModeSetting_presence is 1:
af = CipherModeSettingHdr(ieiCMS=0x9, eightBitCMS=0x0)
packet = packet / af
if VgcsTargetModeIdentication_presence is 1:
ag = VgcsTargetModeIdenticationHdr(ieiVTMI=0x01, eightBitVTMI=0x0)
packet = packet / ag
if MultiRateConfiguration_presence is 1:
ah = MultiRateConfigurationHdr(ieiMRC=0x03, eightBitMRC=0x0)
packet = packet / ah
return packet
def handoverComplete(MobileTimeDifference_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x2c)
c = RrCause()
packet = a / b / c
if MobileTimeDifference_presence is 1:
d = MobileTimeDifferenceHdr(ieiMTD=0x77, eightBitMTD=0x0)
packet = packet / d
return packet
def handoverFailure():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x28)
c = RrCause()
packet = a / b / c
return packet
def immediateAssignment(ChannelDescription_presence=0,
PacketChannelDescription_presence=0,
StartingTime_presence=0):
a = L2PseudoLength()
b = TpPd(pd=0x6)
c = MessageType(mesType=0x3F)
d = PageModeAndDedicatedModeOrTBF()
packet = a / b / c / d
if ChannelDescription_presence is 1:
f = ChannelDescription()
packet = packet / f
if PacketChannelDescription_presence is 1:
g = PacketChannelDescription()
packet = packet / g
h = RequestReference()
i = TimingAdvance()
j = MobileAllocation()
packet = packet / h / i / j
if StartingTime_presence is 1:
k = StartingTimeHdr(ieiST=0x7C, eightBitST=0x0)
packet = packet / k
l = IaRestOctets()
packet = packet / l
return packet
def immediateAssignmentExtended(StartingTime_presence=0):
a = L2PseudoLength()
b = TpPd(pd=0x6)
c = MessageType(mesType=0x39)
d = PageModeAndSpareHalfOctets()
f = ChannelDescription()
g = RequestReference()
h = TimingAdvance()
i = MobileAllocation()
packet = a / b / c / d / f / g / h / i
if StartingTime_presence is 1:
j = StartingTimeHdr(ieiST=0x7C, eightBitST=0x0)
packet = packet / j
k = IaxRestOctets()
packet = packet / k
return packet
def immediateAssignmentReject():
a = L2PseudoLength(l2pLength=0x13)
b = TpPd(pd=0x6)
c = MessageType(mesType=0x3a)
d = PageModeAndSpareHalfOctets()
f = RequestReference()
g = WaitIndication()
h = RequestReference()
i = WaitIndication()
j = RequestReference()
k = WaitIndication()
l = RequestReference()
m = WaitIndication()
n = IraRestOctets()
packet = a / b / c / d / f / g / h / i / j / k / l / m / n
return packet
def measurementReport():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x15)
c = MeasurementResults()
packet = a / b / c
return packet
class NotificationFacch():
name = "Notification/facch"
fields_desc = [
BitField("rr", 0x0, 1),
BitField("msgTyoe", 0x0, 5),
BitField("layer2Header", 0x0, 2),
BitField("frChanDes", 0x0, 24)
]
def notificationNch():
a = L2PseudoLength(l2pLength=0x01)
b = TpPd(pd=0x6)
c = MessageType(mesType=0x20)
d = NtNRestOctets()
packet = a / b / c / d
return packet
def notificationResponse():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x26)
c = MobileStationClassmark2()
d = MobileId()
e = DescriptiveGroupOrBroadcastCallReference()
packet = a / b / c / d / e
return packet
def rrCellChangeOrder():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x8)
c = CellDescription()
d = NcModeAndSpareHalfOctets()
packet = a / b / c / d
return packet
def pagingRequestType1(MobileId_presence=0):
a = L2PseudoLength()
b = TpPd(pd=0x6)
c = MessageType(mesType=0x21)
d = PageModeAndChannelNeeded()
f = MobileId()
packet = a / b / c / d / f
if MobileId_presence is 1:
g = MobileIdHdr(ieiMI=0x17, eightBitMI=0x0)
packet = packet / g
h = P1RestOctets()
packet = packet / h
return packet
def pagingRequestType2(MobileId_presence=0):
a = L2PseudoLength()
b = TpPd(pd=0x6)
c = MessageType(mesType=0x22)
d = PageModeAndChannelNeeded()
f = MobileId()
g = MobileId()
packet = a / b / c / d / f / g
if MobileId_presence is 1:
h = MobileIdHdr(ieiMI=0x17, eightBitMI=0x0)
packet = packet / h
i = P2RestOctets()
packet = packet / i
return packet
def pagingRequestType3():
a = L2PseudoLength(l2pLength=0x13)
b = TpPd(pd=0x6)
c = MessageType(mesType=0x24)
d = PageModeAndChannelNeeded()
e = TmsiPTmsi()
f = TmsiPTmsi()
g = TmsiPTmsi()
h = TmsiPTmsi()
i = P3RestOctets()
packet = a / b / c / d / e / f / g / h / i
return packet
def pagingResponse():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x27)
c = CiphKeySeqNrAndSpareHalfOctets()
d = MobileStationClassmark2()
e = MobileId()
packet = a / b / c / d / e
return packet
def partialRelease():
a = TpPd(pd=0x6)
b = MessageType(mesType=0xa)
c = ChannelDescription()
packet = a / b / c
return packet
def partialReleaseComplete():
a = TpPd(pd=0x6)
b = MessageType(mesType=0xf)
packet = a / b
return packet
def physicalInformation():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x2d)
c = TimingAdvance()
packet = a / b / c
return packet
def rrInitialisationRequest():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x3c)
c = CiphKeySeqNrAndMacModeAndChannelCodingRequest()
e = MobileStationClassmark2()
f = Tlli()
g = ChannelRequestDescription()
h = GprsMeasurementResults()
packet = a / b / c / e / f / g / h
return packet
def rrStatus():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x12)
c = RrCause()
packet = a / b / c
return packet
class SynchronizationChannelInformation():
name = "Synchronization Channel Information"
fields_desc = [
BitField("bsic", 0x0, 5),
BitField("t1Hi", 0x0, 3),
ByteField("t1Mi", 0x0),
BitField("t1Lo", 0x0, 1),
BitField("t2", 0x0, 5),
BitField("t3Hi", 0x0, 2),
BitField("t3Lo", 0x0, 1)
]
def systemInformationType1():
a = L2PseudoLength(l2pLength=0x15)
b = TpPd(pd=0x6)
c = MessageType(mesType=0x19)
d = CellChannelDescription()
e = RachControlParameters()
f = Si1RestOctets()
packet = a / b / c / d / e / f
return packet | MIT License |
sergioteula/python-amazon-paapi | amazon/paapi5_python_sdk/offer_listing.py | OfferListing.price | python | def price(self):
return self._price | Gets the price of this OfferListing. # noqa: E501
:return: The price of this OfferListing. # noqa: E501
:rtype: OfferPrice | https://github.com/sergioteula/python-amazon-paapi/blob/9cb744bef17f5127231367430191df12126e9c24/amazon/paapi5_python_sdk/offer_listing.py#L273-L280 | import pprint
import re
import six
from .offer_availability import OfferAvailability
from .offer_condition import OfferCondition
from .offer_delivery_info import OfferDeliveryInfo
from .offer_loyalty_points import OfferLoyaltyPoints
from .offer_merchant_info import OfferMerchantInfo
from .offer_price import OfferPrice
from .offer_program_eligibility import OfferProgramEligibility
from .offer_promotion import OfferPromotion
class OfferListing(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'availability': 'OfferAvailability',
'condition': 'OfferCondition',
'delivery_info': 'OfferDeliveryInfo',
'id': 'str',
'is_buy_box_winner': 'bool',
'loyalty_points': 'OfferLoyaltyPoints',
'merchant_info': 'OfferMerchantInfo',
'price': 'OfferPrice',
'program_eligibility': 'OfferProgramEligibility',
'promotions': 'list[OfferPromotion]',
'saving_basis': 'OfferPrice',
'violates_map': 'bool'
}
attribute_map = {
'availability': 'Availability',
'condition': 'Condition',
'delivery_info': 'DeliveryInfo',
'id': 'Id',
'is_buy_box_winner': 'IsBuyBoxWinner',
'loyalty_points': 'LoyaltyPoints',
'merchant_info': 'MerchantInfo',
'price': 'Price',
'program_eligibility': 'ProgramEligibility',
'promotions': 'Promotions',
'saving_basis': 'SavingBasis',
'violates_map': 'ViolatesMAP'
}
def __init__(self, availability=None, condition=None, delivery_info=None, id=None, is_buy_box_winner=None, loyalty_points=None, merchant_info=None, price=None, program_eligibility=None, promotions=None, saving_basis=None, violates_map=None):
self._availability = None
self._condition = None
self._delivery_info = None
self._id = None
self._is_buy_box_winner = None
self._loyalty_points = None
self._merchant_info = None
self._price = None
self._program_eligibility = None
self._promotions = None
self._saving_basis = None
self._violates_map = None
self.discriminator = None
if availability is not None:
self.availability = availability
if condition is not None:
self.condition = condition
if delivery_info is not None:
self.delivery_info = delivery_info
if id is not None:
self.id = id
if is_buy_box_winner is not None:
self.is_buy_box_winner = is_buy_box_winner
if loyalty_points is not None:
self.loyalty_points = loyalty_points
if merchant_info is not None:
self.merchant_info = merchant_info
if price is not None:
self.price = price
if program_eligibility is not None:
self.program_eligibility = program_eligibility
if promotions is not None:
self.promotions = promotions
if saving_basis is not None:
self.saving_basis = saving_basis
if violates_map is not None:
self.violates_map = violates_map
@property
def availability(self):
return self._availability
@availability.setter
def availability(self, availability):
self._availability = availability
@property
def condition(self):
return self._condition
@condition.setter
def condition(self, condition):
self._condition = condition
@property
def delivery_info(self):
return self._delivery_info
@delivery_info.setter
def delivery_info(self, delivery_info):
self._delivery_info = delivery_info
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def is_buy_box_winner(self):
return self._is_buy_box_winner
@is_buy_box_winner.setter
def is_buy_box_winner(self, is_buy_box_winner):
self._is_buy_box_winner = is_buy_box_winner
@property
def loyalty_points(self):
return self._loyalty_points
@loyalty_points.setter
def loyalty_points(self, loyalty_points):
self._loyalty_points = loyalty_points
@property
def merchant_info(self):
return self._merchant_info
@merchant_info.setter
def merchant_info(self, merchant_info):
self._merchant_info = merchant_info
@property | MIT License |
pelioniot/mbed-cloud-sdk-python | src/mbed_cloud/_backends/update_service/models/firmware_image_eq_neq_filter.py | FirmwareImageEqNeqFilter.datafile | python | def datafile(self, datafile):
self._datafile = datafile | Sets the datafile of this FirmwareImageEqNeqFilter.
:param datafile: The datafile of this FirmwareImageEqNeqFilter.
:type: str | https://github.com/pelioniot/mbed-cloud-sdk-python/blob/71dc67fc2a8d1aff31e35ec781fb328e6a60639c/src/mbed_cloud/_backends/update_service/models/firmware_image_eq_neq_filter.py#L105-L113 | from pprint import pformat
from six import iteritems
import re
class FirmwareImageEqNeqFilter(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'created_at': 'datetime',
'datafile': 'str',
'datafile_checksum': 'str',
'datafile_size': 'int',
'description': 'str',
'etag': 'datetime',
'id': 'str',
'name': 'str',
'updated_at': 'datetime'
}
attribute_map = {
'created_at': 'created_at',
'datafile': 'datafile',
'datafile_checksum': 'datafile_checksum',
'datafile_size': 'datafile_size',
'description': 'description',
'etag': 'etag',
'id': 'id',
'name': 'name',
'updated_at': 'updated_at'
}
def __init__(self, created_at=None, datafile=None, datafile_checksum=None, datafile_size=None, description=None, etag=None, id=None, name=None, updated_at=None):
self._created_at = created_at
self._datafile = datafile
self._datafile_checksum = datafile_checksum
self._datafile_size = datafile_size
self._description = description
self._etag = etag
self._id = id
self._name = name
self._updated_at = updated_at
self.discriminator = None
@property
def created_at(self):
return self._created_at
@created_at.setter
def created_at(self, created_at):
self._created_at = created_at
@property
def datafile(self):
return self._datafile
@datafile.setter | Apache License 2.0 |
autorope/donkeycar | donkeycar/parts/keras.py | conv2d | python | def conv2d(filters, kernel, strides, layer_num, activation='relu'):
return Convolution2D(filters=filters,
kernel_size=(kernel, kernel),
strides=(strides, strides),
activation=activation,
name='conv2d_' + str(layer_num)) | Helper function to create a standard valid-padded convolutional layer
with square kernel and strides and unified naming convention
:param filters: channel dimension of the layer
:param kernel: creates (kernel, kernel) kernel matrix dimension
:param strides: creates (strides, strides) stride
:param layer_num: used in labelling the layer
:param activation: activation, defaults to relu
:return: tf.keras Convolution2D layer | https://github.com/autorope/donkeycar/blob/688204ca074886321e0d58e75d81d89f04f7a2b6/donkeycar/parts/keras.py#L907-L923 | from abc import ABC, abstractmethod
from collections import deque
import numpy as np
from typing import Dict, Tuple, Optional, Union, List, Sequence, Callable
from logging import getLogger
from tensorflow.python.data.ops.dataset_ops import DatasetV1, DatasetV2
import donkeycar as dk
from donkeycar.utils import normalize_image, linear_bin
from donkeycar.pipeline.types import TubRecord
from donkeycar.parts.interpreter import Interpreter, KerasInterpreter
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.layers import Convolution2D, MaxPooling2D, BatchNormalization
from tensorflow.keras.layers import Activation, Dropout, Flatten
from tensorflow.keras.layers import LSTM
from tensorflow.keras.layers import TimeDistributed as TD
from tensorflow.keras.layers import Conv3D, MaxPooling3D, Conv2DTranspose
from tensorflow.keras.backend import concatenate
from tensorflow.keras.models import Model
from tensorflow.python.keras.callbacks import EarlyStopping, ModelCheckpoint
ONE_BYTE_SCALE = 1.0 / 255.0
XY = Union[float, np.ndarray, Tuple[Union[float, np.ndarray], ...]]
logger = getLogger(__name__)
class KerasPilot(ABC):
def __init__(self,
interpreter: Interpreter = KerasInterpreter(),
input_shape: Tuple[int, ...] = (120, 160, 3)) -> None:
self.input_shape = input_shape
self.optimizer = "adam"
self.interpreter = interpreter
self.interpreter.set_model(self)
logger.info(f'Created {self} with interpreter: {interpreter}')
def load(self, model_path: str) -> None:
logger.info(f'Loading model {model_path}')
self.interpreter.load(model_path)
def load_weights(self, model_path: str, by_name: bool = True) -> None:
self.interpreter.load_weights(model_path, by_name=by_name)
def shutdown(self) -> None:
pass
def compile(self) -> None:
pass
@abstractmethod
def create_model(self):
pass
def set_optimizer(self, optimizer_type: str,
rate: float, decay: float) -> None:
if optimizer_type == "adam":
optimizer = keras.optimizers.Adam(lr=rate, decay=decay)
elif optimizer_type == "sgd":
optimizer = keras.optimizers.SGD(lr=rate, decay=decay)
elif optimizer_type == "rmsprop":
optimizer = keras.optimizers.RMSprop(lr=rate, decay=decay)
else:
raise Exception(f"Unknown optimizer type: {optimizer_type}")
self.interpreter.set_optimizer(optimizer)
def get_input_shapes(self) -> List[tf.TensorShape]:
return self.interpreter.get_input_shapes()
def seq_size(self) -> int:
return 0
def run(self, img_arr: np.ndarray, other_arr: List[float] = None) -> Tuple[Union[float, np.ndarray], ...]:
norm_arr = normalize_image(img_arr)
np_other_array = np.array(other_arr) if other_arr else None
return self.inference(norm_arr, np_other_array)
def inference(self, img_arr: np.ndarray, other_arr: Optional[np.ndarray]) -> Tuple[Union[float, np.ndarray], ...]:
out = self.interpreter.predict(img_arr, other_arr)
return self.interpreter_to_output(out)
def inference_from_dict(self, input_dict: Dict[str, np.ndarray]) -> Tuple[Union[float, np.ndarray], ...]:
output = self.interpreter.predict_from_dict(input_dict)
return self.interpreter_to_output(output)
@abstractmethod
def interpreter_to_output(
self,
interpreter_out: Sequence[Union[float, np.ndarray]]) -> Tuple[Union[float, np.ndarray], ...]:
pass
def train(self,
model_path: str,
train_data: Union[DatasetV1, DatasetV2],
train_steps: int,
batch_size: int,
validation_data: Union[DatasetV1, DatasetV2],
validation_steps: int,
epochs: int,
verbose: int = 1,
min_delta: float = .0005,
patience: int = 5,
show_plot: bool = False) -> tf.keras.callbacks.History:
assert isinstance(self.interpreter, KerasInterpreter)
model = self.interpreter.model
self.compile()
callbacks = [
EarlyStopping(monitor='val_loss',
patience=patience,
min_delta=min_delta),
ModelCheckpoint(monitor='val_loss',
filepath=model_path,
save_best_only=True,
verbose=verbose)]
history: tf.keras.callbacks.History = model.fit(
x=train_data,
steps_per_epoch=train_steps,
batch_size=batch_size,
callbacks=callbacks,
validation_data=validation_data,
validation_steps=validation_steps,
epochs=epochs,
verbose=verbose,
workers=1,
use_multiprocessing=False)
if show_plot:
try:
import matplotlib.pyplot as plt
from pathlib import Path
plt.figure(1)
if 'angle_out_acc' in history.history:
plt.subplot(121)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validate'], loc='upper right')
if 'angle_out_acc' in history.history:
plt.subplot(122)
plt.plot(history.history['angle_out_acc'])
plt.plot(history.history['val_angle_out_acc'])
plt.title('model angle accuracy')
plt.ylabel('acc')
plt.xlabel('epoch')
plt.savefig(Path(model_path).with_suffix('.png'))
except Exception as ex:
print(f"problems with loss graph: {ex}")
return history
def x_transform(self, record: Union[TubRecord, List[TubRecord]]) -> XY:
assert isinstance(record, TubRecord), "TubRecord required"
img_arr = record.image(cached=True)
return img_arr
def x_translate(self, x: XY) -> Dict[str, Union[float, np.ndarray]]:
return {'img_in': x}
def x_transform_and_process(
self,
record: Union[TubRecord, List[TubRecord]],
img_processor: Callable[[np.ndarray], np.ndarray]) -> XY:
x_img = self.x_transform(record)
x_process = img_processor(x_img)
return x_process
def y_transform(self, record: Union[TubRecord, List[TubRecord]]) -> XY:
raise NotImplementedError(f'{self} not ready yet for new training '
f'pipeline')
def y_translate(self, y: XY) -> Dict[str, Union[float, List[float]]]:
raise NotImplementedError(f'{self} not ready yet for new training '
f'pipeline')
def output_types(self) -> Tuple[Dict[str, np.typename], ...]:
shapes = self.output_shapes()
types = tuple({k: tf.float64 for k in d} for d in shapes)
return types
def output_shapes(self) -> Dict[str, tf.TensorShape]:
return {}
def __str__(self) -> str:
return type(self).__name__
class KerasCategorical(KerasPilot):
def __init__(self,
interpreter: Interpreter = KerasInterpreter(),
input_shape: Tuple[int, ...] = (120, 160, 3),
throttle_range: float = 0.5):
super().__init__(interpreter, input_shape)
self.throttle_range = throttle_range
def create_model(self):
return default_categorical(self.input_shape)
def compile(self):
self.interpreter.compile(
optimizer=self.optimizer,
metrics=['accuracy'],
loss={'angle_out': 'categorical_crossentropy',
'throttle_out': 'categorical_crossentropy'},
loss_weights={'angle_out': 0.5, 'throttle_out': 0.5})
def interpreter_to_output(self, interpreter_out):
angle_binned, throttle_binned = interpreter_out
N = len(throttle_binned)
throttle = dk.utils.linear_unbin(throttle_binned, N=N,
offset=0.0, R=self.throttle_range)
angle = dk.utils.linear_unbin(angle_binned)
return angle, throttle
def y_transform(self, record: Union[TubRecord, List[TubRecord]]) -> XY:
assert isinstance(record, TubRecord), "TubRecord expected"
angle: float = record.underlying['user/angle']
throttle: float = record.underlying['user/throttle']
angle = linear_bin(angle, N=15, offset=1, R=2.0)
throttle = linear_bin(throttle, N=20, offset=0.0, R=self.throttle_range)
return angle, throttle
def y_translate(self, y: XY) -> Dict[str, Union[float, List[float]]]:
assert isinstance(y, tuple), 'Expected tuple'
angle, throttle = y
return {'angle_out': angle, 'throttle_out': throttle}
def output_shapes(self):
img_shape = self.get_input_shapes()[0][1:]
shapes = ({'img_in': tf.TensorShape(img_shape)},
{'angle_out': tf.TensorShape([15]),
'throttle_out': tf.TensorShape([20])})
return shapes
class KerasLinear(KerasPilot):
def __init__(self,
interpreter: Interpreter = KerasInterpreter(),
input_shape: Tuple[int, ...] = (120, 160, 3),
num_outputs: int = 2):
self.num_outputs = num_outputs
super().__init__(interpreter, input_shape)
def create_model(self):
return default_n_linear(self.num_outputs, self.input_shape)
def compile(self):
self.interpreter.compile(optimizer=self.optimizer, loss='mse')
def interpreter_to_output(self, interpreter_out):
steering = interpreter_out[0]
throttle = interpreter_out[1]
return steering[0], throttle[0]
def y_transform(self, record: Union[TubRecord, List[TubRecord]]) -> XY:
assert isinstance(record, TubRecord), 'TubRecord expected'
angle: float = record.underlying['user/angle']
throttle: float = record.underlying['user/throttle']
return angle, throttle
def y_translate(self, y: XY) -> Dict[str, Union[float, List[float]]]:
assert isinstance(y, tuple), 'Expected tuple'
angle, throttle = y
return {'n_outputs0': angle, 'n_outputs1': throttle}
def output_shapes(self):
img_shape = self.get_input_shapes()[0][1:]
shapes = ({'img_in': tf.TensorShape(img_shape)},
{'n_outputs0': tf.TensorShape([]),
'n_outputs1': tf.TensorShape([])})
return shapes
class KerasMemory(KerasLinear):
def __init__(self,
interpreter: Interpreter = KerasInterpreter(),
input_shape: Tuple[int, ...] = (120, 160, 3),
mem_length: int = 3,
mem_depth: int = 0,
mem_start_speed: float = 0.0):
self.mem_length = mem_length
self.mem_start_speed = mem_start_speed
self.mem_seq = deque([[0, mem_start_speed]] * mem_length)
self.mem_depth = mem_depth
super().__init__(interpreter, input_shape)
def seq_size(self) -> int:
return self.mem_length + 1
def create_model(self):
return default_memory(self.input_shape,
self.mem_length, self.mem_depth, )
def load(self, model_path: str) -> None:
super().load(model_path)
self.mem_length = self.interpreter.get_input_shapes()[1][1] // 2
self.mem_seq = deque([[0, self.mem_start_speed]] * self.mem_length)
logger.info(f'Loaded memory model with mem length {self.mem_length}')
def run(self, img_arr: np.ndarray, other_arr: List[float] = None) -> Tuple[Union[float, np.ndarray], ...]:
np_mem_arr = np.array(self.mem_seq).reshape((2 * self.mem_length,))
img_arr_norm = normalize_image(img_arr)
angle, throttle = super().inference(img_arr_norm, np_mem_arr)
self.mem_seq.popleft()
self.mem_seq.append([angle, throttle])
return angle, throttle
def x_transform(self, records: Union[TubRecord, List[TubRecord]]) -> XY:
assert isinstance(records, list), 'List[TubRecord] expected'
assert len(records) == self.mem_length + 1, f"Record list of length {self.mem_length} required but " f"{len(records)} was passed"
img_arr = records[-1].image(cached=True)
mem = [[r.underlying['user/angle'], r.underlying['user/throttle']]
for r in records[:-1]]
return img_arr, np.array(mem).reshape((2 * self.mem_length,))
def x_translate(self, x: XY) -> Dict[str, Union[float, np.ndarray]]:
assert(isinstance(x, tuple)), 'Tuple expected'
img_arr, mem = x
return {'img_in': img_arr, 'mem_in': mem}
def x_transform_and_process(
self,
record: Union[TubRecord, List[TubRecord]],
img_processor: Callable[[np.ndarray], np.ndarray]) -> XY:
xt = self.x_transform(record)
assert isinstance(xt, tuple), 'Tuple expected'
x_img, mem = xt
x_process = img_processor(x_img)
return x_process, mem
def y_transform(self, records: Union[TubRecord, List[TubRecord]]) -> XY:
assert isinstance(records, list), 'List[TubRecord] expected'
angle = records[-1].underlying['user/angle']
throttle = records[-1].underlying['user/throttle']
return angle, throttle
def output_shapes(self):
img_shape = self.get_input_shapes()[0][1:]
shapes = ({'img_in': tf.TensorShape(img_shape),
'mem_in': tf.TensorShape(2 * self.mem_length)},
{'n_outputs0': tf.TensorShape([]),
'n_outputs1': tf.TensorShape([])})
return shapes
def __str__(self) -> str:
return super().__str__() + f'-L:{self.mem_length}-D:{self.mem_depth}'
class KerasInferred(KerasPilot):
def __init__(self,
interpreter: Interpreter = KerasInterpreter(),
input_shape: Tuple[int, ...] = (120, 160, 3)):
super().__init__(interpreter, input_shape)
def create_model(self):
return default_n_linear(1, self.input_shape)
def compile(self):
self.interpreter.compile(optimizer=self.optimizer, loss='mse')
def interpreter_to_output(self, interpreter_out):
steering = interpreter_out[0]
return steering, dk.utils.throttle(steering)
def y_transform(self, record: Union[TubRecord, List[TubRecord]]) -> XY:
assert isinstance(record, TubRecord), "TubRecord expected"
angle: float = record.underlying['user/angle']
return angle
def y_translate(self, y: XY) -> Dict[str, Union[float, List[float]]]:
assert isinstance(y, float), 'Float expected'
return {'n_outputs0': y}
def output_shapes(self):
img_shape = self.get_input_shapes()[0][1:]
shapes = ({'img_in': tf.TensorShape(img_shape)},
{'n_outputs0': tf.TensorShape([])})
return shapes
class KerasIMU(KerasPilot):
imu_vec = [f'imu/{f}_{x}' for f in ('acl', 'gyr') for x in 'xyz']
def __init__(self,
interpreter: Interpreter = KerasInterpreter(),
input_shape: Tuple[int, ...] = (120, 160, 3),
num_outputs: int = 2, num_imu_inputs: int = 6):
self.num_outputs = num_outputs
self.num_imu_inputs = num_imu_inputs
super().__init__(interpreter, input_shape)
def create_model(self):
return default_imu(num_outputs=self.num_outputs,
num_imu_inputs=self.num_imu_inputs,
input_shape=self.input_shape)
def compile(self):
self.interpreter.compile(optimizer=self.optimizer, loss='mse')
def interpreter_to_output(self, interpreter_out) -> Tuple[Union[float, np.ndarray], ...]:
steering = interpreter_out[0]
throttle = interpreter_out[1]
return steering[0], throttle[0]
def x_transform(self, record: Union[TubRecord, List[TubRecord]]) -> XY:
assert isinstance(record, TubRecord), 'TubRecord expected'
img_arr = record.image(cached=True)
imu_arr = [record.underlying[k] for k in self.imu_vec]
return img_arr, np.array(imu_arr)
def x_transform_and_process(
self,
record: Union[TubRecord, List[TubRecord]],
img_processor: Callable[[np.ndarray], np.ndarray]) -> XY:
xt = self.x_transform(record)
assert isinstance(xt, tuple), 'Tuple expected'
x_img, x_imu = xt
x_img_process = img_processor(x_img)
return x_img_process, x_imu
def x_translate(self, x: XY) -> Dict[str, Union[float, np.ndarray]]:
assert isinstance(x, tuple), 'Tuple required'
return {'img_in': x[0], 'imu_in': x[1]}
def y_transform(self, record: Union[TubRecord, List[TubRecord]]) -> XY:
assert isinstance(record, TubRecord), "TubRecord expected"
angle: float = record.underlying['user/angle']
throttle: float = record.underlying['user/throttle']
return angle, throttle
def y_translate(self, y: XY) -> Dict[str, Union[float, List[float]]]:
assert isinstance(y, tuple), 'Expected tuple'
angle, throttle = y
return {'out_0': angle, 'out_1': throttle}
def output_shapes(self):
img_shape = self.get_input_shapes()[0][1:]
shapes = ({'img_in': tf.TensorShape(img_shape),
'imu_in': tf.TensorShape([self.num_imu_inputs])},
{'out_0': tf.TensorShape([]),
'out_1': tf.TensorShape([])})
return shapes
class KerasBehavioral(KerasCategorical):
def __init__(self,
interpreter: Interpreter = KerasInterpreter(),
input_shape: Tuple[int, ...] = (120, 160, 3),
throttle_range: float = 0.5,
num_behavior_inputs: int = 2):
self.num_behavior_inputs = num_behavior_inputs
super().__init__(interpreter, input_shape, throttle_range)
def create_model(self):
return default_bhv(num_bvh_inputs=self.num_behavior_inputs,
input_shape=self.input_shape)
def x_transform(self, record: Union[TubRecord, List[TubRecord]]) -> XY:
assert isinstance(record, TubRecord), 'TubRecord expected'
img_arr = record.image(cached=True)
bhv_arr = record.underlying['behavior/one_hot_state_array']
return img_arr, np.array(bhv_arr)
def x_transform_and_process(
self,
record: Union[TubRecord, List[TubRecord]],
img_processor: Callable[[np.ndarray], np.ndarray]) -> XY:
xt = self.x_transform(record)
assert isinstance(xt, tuple), 'Tuple expected'
x_img, bhv_arr = xt
x_img_process = img_processor(x_img)
return x_img_process, bhv_arr
def x_translate(self, x: XY) -> Dict[str, Union[float, np.ndarray]]:
assert isinstance(x, tuple), 'Tuple required'
return {'img_in': x[0], 'xbehavior_in': x[1]}
def output_shapes(self):
img_shape = self.get_input_shapes()[0][1:]
shapes = ({'img_in': tf.TensorShape(img_shape),
'xbehavior_in': tf.TensorShape([self.num_behavior_inputs])},
{'angle_out': tf.TensorShape([15]),
'throttle_out': tf.TensorShape([20])})
return shapes
class KerasLocalizer(KerasPilot):
def __init__(self,
interpreter: Interpreter = KerasInterpreter(),
input_shape: Tuple[int, ...] = (120, 160, 3),
num_locations: int = 8):
self.num_locations = num_locations
super().__init__(interpreter, input_shape)
def create_model(self):
return default_loc(num_locations=self.num_locations,
input_shape=self.input_shape)
def compile(self):
self.interpreter.compile(optimizer=self.optimizer, metrics=['acc'],
loss='mse')
def interpreter_to_output(self, interpreter_out) -> Tuple[Union[float, np.ndarray], ...]:
angle, throttle, track_loc = interpreter_out
loc = np.argmax(track_loc)
return angle[0], throttle[0], loc
def y_transform(self, record: Union[TubRecord, List[TubRecord]]) -> XY:
assert isinstance(record, TubRecord), "TubRecord expected"
angle: float = record.underlying['user/angle']
throttle: float = record.underlying['user/throttle']
loc = record.underlying['localizer/location']
loc_one_hot = np.zeros(self.num_locations)
loc_one_hot[loc] = 1
return angle, throttle, loc_one_hot
def y_translate(self, y: XY) -> Dict[str, Union[float, List[float]]]:
assert isinstance(y, tuple), 'Expected tuple'
angle, throttle, loc = y
return {'angle': angle, 'throttle': throttle, 'zloc': loc}
def output_shapes(self):
img_shape = self.get_input_shapes()[0][1:]
shapes = ({'img_in': tf.TensorShape(img_shape)},
{'angle': tf.TensorShape([]),
'throttle': tf.TensorShape([]),
'zloc': tf.TensorShape([self.num_locations])})
return shapes
class KerasLSTM(KerasPilot):
def __init__(self,
interpreter: Interpreter = KerasInterpreter(),
input_shape: Tuple[int, ...] = (120, 160, 3),
seq_length=3,
num_outputs=2):
self.num_outputs = num_outputs
self.seq_length = seq_length
super().__init__(interpreter, input_shape)
self.img_seq = deque()
self.optimizer = "rmsprop"
def seq_size(self) -> int:
return self.seq_length
def create_model(self):
return rnn_lstm(seq_length=self.seq_length,
num_outputs=self.num_outputs,
input_shape=self.input_shape)
def compile(self):
self.interpreter.compile(optimizer=self.optimizer, loss='mse')
def x_transform(self, records: Union[TubRecord, List[TubRecord]]) -> XY:
assert isinstance(records, list), 'List[TubRecord] expected'
assert len(records) == self.seq_length, f"Record list of length {self.seq_length} required but " f"{len(records)} was passed"
img_arrays = [rec.image(cached=True) for rec in records]
return np.array(img_arrays)
def x_translate(self, x: XY) -> Dict[str, Union[float, np.ndarray]]:
img_arr = x
return {'img_in': img_arr}
def x_transform_and_process(
self,
records: Union[TubRecord, List[TubRecord]],
img_processor: Callable[[np.ndarray], np.ndarray]) -> XY:
img_seq = self.x_transform(records)
assert isinstance(img_seq, np.ndarray)
x_process = [img_processor(img) for img in img_seq]
return np.array(x_process)
def y_transform(self, records: Union[TubRecord, List[TubRecord]]) -> XY:
assert isinstance(records, list), 'List[TubRecord] expected'
angle = records[-1].underlying['user/angle']
throttle = records[-1].underlying['user/throttle']
return angle, throttle
def y_translate(self, y: XY) -> Dict[str, Union[float, List[float]]]:
assert isinstance(y, tuple), 'Expected tuple'
return {'model_outputs': list(y)}
def run(self, img_arr, other_arr=None):
if img_arr.shape[2] == 3 and self.input_shape[2] == 1:
img_arr = dk.utils.rgb2gray(img_arr)
while len(self.img_seq) < self.seq_length:
self.img_seq.append(img_arr)
self.img_seq.popleft()
self.img_seq.append(img_arr)
new_shape = (self.seq_length, *self.input_shape)
img_arr = np.array(self.img_seq).reshape(new_shape)
img_arr_norm = normalize_image(img_arr)
return self.inference(img_arr_norm, other_arr)
def interpreter_to_output(self, interpreter_out) -> Tuple[Union[float, np.ndarray], ...]:
steering = interpreter_out[0]
throttle = interpreter_out[1]
return steering, throttle
def output_shapes(self):
img_shape = self.get_input_shapes()[0][1:]
shapes = ({'img_in': tf.TensorShape(img_shape)},
{'model_outputs': tf.TensorShape([self.num_outputs])})
return shapes
def __str__(self) -> str:
return f'{super().__str__()}-L:{self.seq_length}'
class Keras3D_CNN(KerasPilot):
def __init__(self,
interpreter: Interpreter = KerasInterpreter(),
input_shape: Tuple[int, ...] = (120, 160, 3),
seq_length=20,
num_outputs=2):
self.num_outputs = num_outputs
self.seq_length = seq_length
super().__init__(interpreter, input_shape)
self.img_seq = deque()
def seq_size(self) -> int:
return self.seq_length
def create_model(self):
return build_3d_cnn(self.input_shape, s=self.seq_length,
num_outputs=self.num_outputs)
def compile(self):
self.interpreter.compile(loss='mse', optimizer=self.optimizer)
def x_transform(self, records: Union[TubRecord, List[TubRecord]]) -> XY:
assert isinstance(records, list), 'List[TubRecord] expected'
assert len(records) == self.seq_length, f"Record list of length {self.seq_length} required but " f"{len(records)} was passed"
img_arrays = [rec.image(cached=True) for rec in records]
return np.array(img_arrays)
def x_translate(self, x: XY) -> Dict[str, Union[float, np.ndarray]]:
img_arr = x
return {'img_in': img_arr}
def x_transform_and_process(
self,
record: Union[TubRecord, List[TubRecord]],
img_processor: Callable[[np.ndarray], np.ndarray]) -> XY:
img_seq = self.x_transform(record)
assert isinstance(img_seq, np.ndarray), 'Expected np.ndarray'
x_process = [img_processor(img) for img in img_seq]
return np.array(x_process)
def y_transform(self, records: Union[TubRecord, List[TubRecord]]) -> XY:
assert isinstance(records, list), 'List[TubRecord] expected'
angle = records[-1].underlying['user/angle']
throttle = records[-1].underlying['user/throttle']
return angle, throttle
def y_translate(self, y: XY) -> Dict[str, Union[float, List[float]]]:
assert isinstance(y, tuple), 'Expected tuple'
return {'outputs': list(y)}
def run(self, img_arr, other_arr=None):
if img_arr.shape[2] == 3 and self.input_shape[2] == 1:
img_arr = dk.utils.rgb2gray(img_arr)
while len(self.img_seq) < self.seq_length:
self.img_seq.append(img_arr)
self.img_seq.popleft()
self.img_seq.append(img_arr)
new_shape = (self.seq_length, *self.input_shape)
img_arr = np.array(self.img_seq).reshape(new_shape)
img_arr_norm = normalize_image(img_arr)
return self.inference(img_arr_norm, other_arr)
def interpreter_to_output(self, interpreter_out) -> Tuple[Union[float, np.ndarray], ...]:
steering = interpreter_out[0]
throttle = interpreter_out[1]
return steering, throttle
def output_shapes(self):
img_shape = self.get_input_shapes()[0][1:]
shapes = ({'img_in': tf.TensorShape(img_shape)},
{'outputs': tf.TensorShape([self.num_outputs])})
return shapes
class KerasLatent(KerasPilot):
def __init__(self,
interpreter: Interpreter = KerasInterpreter(),
input_shape: Tuple[int, ...] = (120, 160, 3),
num_outputs: int = 2):
self.num_outputs = num_outputs
super().__init__(interpreter, input_shape)
def create_model(self):
return default_latent(self.num_outputs, self.input_shape)
def compile(self):
loss = {"img_out": "mse", "n_outputs0": "mse", "n_outputs1": "mse"}
weights = {"img_out": 100.0, "n_outputs0": 2.0, "n_outputs1": 1.0}
self.interpreter.compile(optimizer=self.optimizer,
loss=loss, loss_weights=weights)
def interpreter_to_output(self, interpreter_out) -> Tuple[Union[float, np.ndarray], ...]:
steering = interpreter_out[1]
throttle = interpreter_out[2]
return steering[0][0], throttle[0][0] | MIT License |
rlabbe/filterpy | filterpy/kalman/square_root.py | SquareRootKalmanFilter.Q1_2 | python | def Q1_2(self):
return self._Q1_2 | Sqrt Process uncertainty | https://github.com/rlabbe/filterpy/blob/a437893597957764fb6b415bfb5640bb117f5b99/filterpy/kalman/square_root.py#L281-L283 | from __future__ import (absolute_import, division)
from copy import deepcopy
import numpy as np
from numpy import dot, zeros, eye
from scipy.linalg import cholesky, qr, pinv
from filterpy.common import pretty_str
class SquareRootKalmanFilter(object):
def __init__(self, dim_x, dim_z, dim_u=0):
if dim_z < 1:
raise ValueError('dim_x must be 1 or greater')
if dim_z < 1:
raise ValueError('dim_x must be 1 or greater')
if dim_u < 0:
raise ValueError('dim_x must be 0 or greater')
self.dim_x = dim_x
self.dim_z = dim_z
self.dim_u = dim_u
self.x = zeros((dim_x, 1))
self._P = eye(dim_x)
self._P1_2 = eye(dim_x)
self._Q = eye(dim_x)
self._Q1_2 = eye(dim_x)
self.B = 0.
self.F = np.eye(dim_x)
self.H = np.zeros((dim_z, dim_x))
self._R1_2 = eye(dim_z)
self._R = eye(dim_z)
self.z = np.array([[None]*self.dim_z]).T
self.K = 0.
self.S = 0.
self.y = zeros((dim_z, 1))
self._I = np.eye(dim_x)
self.M = np.zeros((dim_z + dim_x, dim_z + dim_x))
self.x_prior = np.copy(self.x)
self._P1_2_prior = np.copy(self._P1_2)
self.x_post = np.copy(self.x)
self._P1_2_post = np.copy(self._P1_2)
def update(self, z, R2=None):
if z is None:
self.z = np.array([[None]*self.dim_z]).T
self.x_post = self.x.copy()
self._P1_2_post = np.copy(self._P1_2)
return
if R2 is None:
R2 = self._R1_2
elif np.isscalar(R2):
R2 = eye(self.dim_z) * R2
dim_z = self.dim_z
M = self.M
M[0:dim_z, 0:dim_z] = R2.T
M[dim_z:, 0:dim_z] = dot(self.H, self._P1_2).T
M[dim_z:, dim_z:] = self._P1_2.T
_, self.S = qr(M)
self.K = self.S[0:dim_z, dim_z:].T
N = self.S[0:dim_z, 0:dim_z].T
self.y = z - dot(self.H, self.x)
self.x += dot(self.K, pinv(N)).dot(self.y)
self._P1_2 = self.S[dim_z:, dim_z:].T
self.z = deepcopy(z)
self.x_post = self.x.copy()
self._P1_2_post = np.copy(self._P1_2)
def predict(self, u=0):
self.x = dot(self.F, self.x) + dot(self.B, u)
_, P2 = qr(np.hstack([dot(self.F, self._P1_2), self._Q1_2]).T)
self._P1_2 = P2[:self.dim_x, :self.dim_x].T
self.x_prior = np.copy(self.x)
self._P1_2_prior = np.copy(self._P1_2)
def residual_of(self, z):
return z - dot(self.H, self.x)
def measurement_of_state(self, x):
return dot(self.H, x)
@property
def Q(self):
return dot(self._Q1_2.T, self._Q1_2)
@property | MIT License |
sk2/ank_legacy_v2 | AutoNetkit/netkit.py | Netkit.connect_to_server | python | def connect_to_server(self):
shell = None
if self.host and self.username:
ssh_link = self.shell
if ssh_link != None:
return ssh_link
shell = pxssh.pxssh()
shell.logfile = self.logfile
LOG.info( "Connecting to {0}".format(self.host) )
shell.login(self.host, self.username)
LOG.info( "Connected to " + self.host )
else:
shell = pexpect.spawn (self.shell_type)
shell.sendline("uname")
shell.logfile = self.logfile
shell.setecho(True)
i = shell.expect(["Linux", "Darwin", pexpect.EOF, NETKIT_PROMPT])
if i == 0:
shell.sendline("ls")
elif i == 1:
LOG.warn("Specified Netkit host is running Mac OS X, "
"please specify a Linux Netkit host.")
return None
else:
LOG.warn("Provided Netkit host is not running Linux")
self.shell = shell
return | Connects to Netkit server (if remote) | https://github.com/sk2/ank_legacy_v2/blob/83a28aa54a4ea74962ee9a8c44f856a006a2e675/AutoNetkit/netkit.py#L102-L147 | __author__ = """\n""".join(['Simon Knight ([email protected])',
'Hung Nguyen ([email protected])'])
import config
import logging
LOG = logging.getLogger("ANK")
try:
import pexpect
import pxssh
except ImportError:
LOG.error("Netkit deployment requires pexpect")
import os
import sys
from netaddr import IPNetwork
NETKIT_PROMPT = "~#"
class Netkit:
def __init__(self, host=None, username=None, shell_type="bash",
tapsn=IPNetwork("172.16.0.0/16")):
self.host = host
self.username = username
self.shell = None
self.shell_type = shell_type
self.tap_host = tapsn[1]
self.tap_ip = tapsn[2]
self.NETKIT_PROMPT = NETKIT_PROMPT
self.tap_hostname = "taptunnelvm"
self.local_server = True
if self.host and self.username:
self.local_server = False
self.logfile = open( os.path.join(config.log_dir, "pxssh.log"), 'w')
def get_shell(self):
if self.shell:
return self.shell
else:
self.connect_to_server()
return self.shell
def transfer_file(self, local_file):
if self.local_server:
LOG.warn("Can only SCP to remote Netkit server")
return
child = pexpect.spawn("scp {0} {1}@{2}:.".format(local_file,
self.username, self.host))
child.logfile = self.logfile
child.expect(pexpect.EOF)
LOG.debug( "SCP result %s"% child.before.strip())
return | BSD 3-Clause New or Revised License |
deepmind/xmanager | xmanager/xm/core.py | Experiment.add | python | def add(self, job, args=immutabledict.immutabledict(), role=WorkUnitRole()):
experiment_unit = self._create_experiment_unit(args, role)
async def launch():
await experiment_unit.add(job, args)
return experiment_unit
return asyncio.wrap_future(self._create_task(launch())) | Adds a Job / JobGroup to the experiment.
A new Experiment Unit is created to run the job.
Args:
job: A Job or JobGroup to add.
args: Keyword arguments to be passed to the job. For Job and JobGroup args
are recursively expanded. For example,
```
wu.add(
JobGroup(agent=Job(...)),
args={'agent': {'args': {'learning_rate': 0.1}}},
)
```
would update `args` field of a job `agent` in the group.
role: The role of this unit in the experiment structure.
Returns:
An awaitable that would be fulfilled when the job is launched. | https://github.com/deepmind/xmanager/blob/4963986b77228bed72afcb6ada7008a7eb3a1393/xmanager/xm/core.py#L541-L572 | import abc
import asyncio
from concurrent import futures
import functools
import getpass
import inspect
import queue
import threading
from typing import Any, Awaitable, Callable, Dict, Mapping, Optional, Sequence, overload
import attr
import immutabledict
from xmanager.xm import async_packager
from xmanager.xm import id_predictor
from xmanager.xm import job_blocks
from xmanager.xm import job_operators
from xmanager.xm import metadata_context
from xmanager.xm import pattern_matching
def _apply_args_to_job(job: job_blocks.Job, args: Mapping[str, Any]) -> None:
if 'args' in args:
job.args = job_blocks.merge_args(job.args, args['args'])
job.env_vars.update(args.get('env_vars', {}))
def _apply_args_to_job_group(job_group: job_blocks.JobGroup,
args: Mapping[str, Any]) -> None:
if args:
for key, job in job_group.jobs.items():
_apply_args(job, args.get(key, {}))
_apply_args = pattern_matching.match(
_apply_args_to_job, _apply_args_to_job_group,
pattern_matching.Case([job_blocks.JobGeneratorType, Any],
lambda other, args: None))
class ExperimentUnitStatus(abc.ABC):
@property
@abc.abstractmethod
def is_active(self) -> bool:
raise NotImplementedError
@property
@abc.abstractmethod
def is_completed(self) -> bool:
raise NotImplementedError
@property
@abc.abstractmethod
def is_failed(self) -> bool:
raise NotImplementedError
@property
@abc.abstractmethod
def message(self) -> str:
raise NotImplementedError
class ExperimentUnitError(RuntimeError):
class ExperimentUnitFailedError(ExperimentUnitError):
class ExperimentUnitNotCompletedError(ExperimentUnitError):
class NotFoundError(KeyError):
def _work_unit_arguments(
job: job_blocks.JobType,
args: Mapping[str, Any],
) -> Mapping[str, Any]:
if args:
return args
def deduce_args_for_job(job: job_blocks.Job) -> Dict[str, Any]:
args = {
'args': job.args.to_dict(kwargs_only=True),
'env_vars': job.env_vars
}
return {key: value for key, value in args.items() if value}
def deduce_args_for_job_group(group: job_blocks.JobGroup) -> Dict[str, Any]:
args = {}
for job_name, job in group.jobs.items():
job_args = deduce_args(job)
if job_args:
args[job_name] = job_args
return args
deduce_args = pattern_matching.match(
deduce_args_for_job, deduce_args_for_job_group,
pattern_matching.Case([job_blocks.JobGeneratorType],
lambda generator: {}))
return deduce_args(job)
class ExperimentUnitRole(abc.ABC):
pass
class ExperimentUnit(abc.ABC):
def __init__(self, experiment: 'Experiment',
create_task: Callable[[Awaitable[Any]], futures.Future],
args: Mapping[str, Any], role: ExperimentUnitRole) -> None:
self._experiment = experiment
self._create_task = create_task
self._args = args
self._role = role
self._launched_error = None
@property
def experiment_id(self) -> int:
return self._experiment.experiment_id
@property
@functools.lru_cache()
def _launched_event(self) -> asyncio.Event:
return asyncio.Event()
def add(
self,
job: job_blocks.JobType,
args: Mapping[str, Any] = immutabledict.immutabledict()
) -> Awaitable[None]:
job = job_operators.shallow_copy_job_type(job)
_apply_args(job, args)
job_operators.populate_job_names(job)
def launch_job(job: job_blocks.Job) -> Awaitable[None]:
return self._launch_job_group(
job_blocks.JobGroup(**{job.name: job}),
_work_unit_arguments(job, self._args))
def launch_job_group(group: job_blocks.JobGroup) -> Awaitable[None]:
return self._launch_job_group(group,
_work_unit_arguments(group, self._args))
def launch_job_generator(
job_generator: job_blocks.JobGeneratorType) -> Awaitable[None]:
if not inspect.iscoroutinefunction(job_generator):
raise ValueError(
'Job generator must be an async function. Signature needs to be '
'`async def job_generator(work_unit: xm.WorkUnit):`')
return job_generator(self, **args)
job_awaitable = pattern_matching.match(launch_job, launch_job_group,
launch_job_generator)(
job)
async def launch():
try:
await job_awaitable
except Exception as e:
self._launched_error = ExperimentUnitError(e)
raise
finally:
self._launched_event.set()
return asyncio.wrap_future(self._create_task(launch()))
async def wait_until_complete(self):
await self._launched_event.wait()
if self._launched_error:
raise self._launched_error
await self._wait_until_complete()
async def _launch_job_group(self, job_group: job_blocks.JobGroup,
args_view: Mapping[str, Any]) -> None:
raise NotImplementedError
async def _wait_until_complete(self) -> None:
raise NotImplementedError
def stop(self) -> None:
raise NotImplementedError
def get_status(self) -> ExperimentUnitStatus:
raise NotImplementedError
@property
@abc.abstractmethod
def experiment_unit_name(self) -> str:
raise NotImplementedError
def get_full_job_name(self, job_name: str) -> str:
return f'{self.experiment_unit_name}_{job_name}'
@property
def context(self) -> metadata_context.MetadataContext:
return metadata_context.MetadataContext(
creator=getpass.getuser(),
annotations=metadata_context.ContextAnnotations())
@attr.s(auto_attribs=True)
class WorkUnitRole(ExperimentUnitRole):
class WorkUnit(ExperimentUnit):
@property
@abc.abstractmethod
def work_unit_id(self) -> int:
raise NotImplementedError
@attr.s(auto_attribs=True)
class AuxiliaryUnitRole(ExperimentUnitRole):
termination_delay_secs: int
class Experiment(abc.ABC):
_event_loop: asyncio.AbstractEventLoop
_running_tasks: queue.Queue
_work_unit_id_predictor: id_predictor.Predictor
_async_packager: async_packager.AsyncPackager
@property
def experiment_id(self) -> int:
raise NotImplementedError
def _enter(self) -> None:
self._running_tasks = queue.Queue()
self._work_unit_id_predictor = id_predictor.Predictor(1 +
self.work_unit_count)
def __enter__(self):
if asyncio.get_event_loop().is_running():
raise RuntimeError('When using Experiment from a coroutine plase use '
'`async with` syntax')
self._event_loop = asyncio.new_event_loop()
asyncio.get_child_watcher().attach_loop(self._event_loop)
self._event_loop_thread = threading.Thread(
target=self._event_loop.run_forever, daemon=True)
self._event_loop_thread.start()
self._enter()
return self
def _wait_for_tasks(self):
while not self._running_tasks.empty():
self._running_tasks.get_nowait().result()
def __exit__(self, exc_type, exc_value, traceback):
self._wait_for_tasks()
self._event_loop.call_soon_threadsafe(self._event_loop.stop)
self._event_loop_thread.join()
async def __aenter__(self):
self._event_loop = asyncio.get_event_loop()
self._enter()
return self
async def _await_for_tasks(self):
while not self._running_tasks.empty():
await asyncio.wrap_future(self._running_tasks.get_nowait())
async def __aexit__(self, exc_type, exc_value, traceback):
await self._await_for_tasks()
@classmethod
def package(
cls, packageables: Sequence[job_blocks.Packageable] = ()
) -> Sequence[job_blocks.Executable]:
return cls._async_packager.package(packageables)
@classmethod
def package_async(
cls,
packageable: job_blocks.Packageable) -> Awaitable[job_blocks.Executable]:
return cls._async_packager.add(packageable)
@overload
def add(self,
job: job_blocks.JobType,
args: Mapping[str, Any] = ...,
role: WorkUnitRole = ...) -> Awaitable[WorkUnit]:
...
@overload
def add(self, job: job_blocks.JobType, args: Mapping[str, Any],
role: ExperimentUnitRole) -> Awaitable[ExperimentUnit]:
...
@overload
def add(
self,
job: job_blocks.JobType,
args: Mapping[str, Any] = ...,
*,
role: ExperimentUnitRole
) -> Awaitable[ExperimentUnit]:
... | Apache License 2.0 |
tensorflow/data-validation | tensorflow_data_validation/utils/stats_util.py | load_stats_binary | python | def load_stats_binary(
input_path: Text) -> statistics_pb2.DatasetFeatureStatisticsList:
stats_proto = statistics_pb2.DatasetFeatureStatisticsList()
stats_proto.ParseFromString(io_util.read_file_to_string(
input_path, binary_mode=True))
return stats_proto | Loads a serialized DatasetFeatureStatisticsList proto from a file.
Args:
input_path: File path from which to load the DatasetFeatureStatisticsList
proto.
Returns:
A DatasetFeatureStatisticsList proto. | https://github.com/tensorflow/data-validation/blob/9855619b40a1c6dab2be3509fa252eaea5120596/tensorflow_data_validation/utils/stats_util.py#L220-L234 | from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
from typing import Dict, Optional, Text, Union
import numpy as np
import pyarrow as pa
import tensorflow as tf
from tensorflow_data_validation import types
from tensorflow_data_validation.arrow import arrow_util
from tensorflow_data_validation.utils import io_util
from google.protobuf import text_format
from tensorflow_metadata.proto.v0 import statistics_pb2
_NP_DTYPE_KIND_TO_FEATURE_TYPE = {
'f': statistics_pb2.FeatureNameStatistics.FLOAT,
'i': statistics_pb2.FeatureNameStatistics.INT,
'u': statistics_pb2.FeatureNameStatistics.INT,
'S': statistics_pb2.FeatureNameStatistics.STRING,
'O': statistics_pb2.FeatureNameStatistics.STRING,
'U': statistics_pb2.FeatureNameStatistics.STRING,
}
DOMAIN_INFO = 'domain_info'
def maybe_get_utf8(value: bytes) -> Optional[Text]:
try:
decoded_value = value.decode('utf-8')
except UnicodeError:
return None
return decoded_value
def get_feature_type(
dtype: np.dtype) -> Optional[types.FeatureNameStatisticsType]:
return _NP_DTYPE_KIND_TO_FEATURE_TYPE.get(dtype.kind)
def get_feature_type_from_arrow_type(
feature_path: types.FeaturePath,
arrow_type: pa.DataType) -> Optional[types.FeatureNameStatisticsType]:
if pa.types.is_null(arrow_type):
return None
if not arrow_util.is_list_like(arrow_type):
raise TypeError('Expected feature column to be a '
'(Large)List<primitive|struct> or null, but feature {} '
'was {}.'.format(feature_path, arrow_type))
value_type = arrow_util.get_innermost_nested_type(arrow_type)
if pa.types.is_integer(value_type):
return statistics_pb2.FeatureNameStatistics.INT
elif pa.types.is_floating(value_type):
return statistics_pb2.FeatureNameStatistics.FLOAT
elif arrow_util.is_binary_like(value_type):
return statistics_pb2.FeatureNameStatistics.STRING
elif pa.types.is_struct(value_type):
return statistics_pb2.FeatureNameStatistics.STRUCT
elif pa.types.is_null(value_type):
return None
raise TypeError('Feature {} has unsupported arrow type: {}'.format(
feature_path, arrow_type))
def make_dataset_feature_stats_proto(
stats_values: Dict[types.FeaturePath, Dict[Text, float]]
) -> statistics_pb2.DatasetFeatureStatistics:
result = statistics_pb2.DatasetFeatureStatistics()
feature_paths = sorted(stats_values.keys())
for feature_path in feature_paths:
feature_stats_proto = _make_feature_stats_proto(stats_values[feature_path],
feature_path)
new_feature_stats_proto = result.features.add()
new_feature_stats_proto.CopyFrom(feature_stats_proto)
return result
def _make_feature_stats_proto(
stats_values: Dict[Text, float],
feature_path: types.FeaturePath) -> statistics_pb2.FeatureNameStatistics:
result = statistics_pb2.FeatureNameStatistics()
result.path.CopyFrom(feature_path.to_proto())
stat_names = sorted(stats_values.keys())
for stat_name in stat_names:
result.custom_stats.add(name=stat_name, num=stats_values[stat_name])
return result
def write_stats_text(stats: statistics_pb2.DatasetFeatureStatisticsList,
output_path: Text) -> None:
if not isinstance(stats, statistics_pb2.DatasetFeatureStatisticsList):
raise TypeError(
'stats is of type %s, should be a '
'DatasetFeatureStatisticsList proto.' % type(stats).__name__)
stats_proto_text = text_format.MessageToString(stats)
io_util.write_string_to_file(output_path, stats_proto_text)
def load_stats_text(
input_path: Text) -> statistics_pb2.DatasetFeatureStatisticsList:
stats_proto = statistics_pb2.DatasetFeatureStatisticsList()
stats_text = io_util.read_file_to_string(input_path)
text_format.Parse(stats_text, stats_proto)
return stats_proto | Apache License 2.0 |
numan/py-analytics | analytics/backends/base.py | BaseAnalyticsBackend.get_metrics | python | def get_metrics(self, metric_identifiers, from_date, limit=10, group_by="week", **kwargs):
raise NotImplementedError() | Retrieves a multiple metrics as efficiently as possible.
:param metric_identifiers: a list of tuples of the form `(unique_identifier, metric_name`) identifying which metrics to retrieve.
For example [('user:1', 'people_invited',), ('user:2', 'people_invited',), ('user:1', 'comments_posted',), ('user:2', 'comments_posted',)]
:param from_date: A python date object
:param limit: The total number of months to retrive starting from ``from_date``
:param group_by: The type of aggregation to perform on the metric. Choices are: ``day``, ``week`` or ``month`` | https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/base.py#L91-L101 | class BaseAnalyticsBackend(object):
_analytics_backend = None
_prefix = "_analytics"
def __init__(self, settings, **kwargs):
if "prefix" in kwargs:
self._prefix = kwargs.get("prefix")
def track_count(self, unique_identifier, metric, inc_amt=1, **kwargs):
return NotImplementedError()
def track_metric(self, unique_identifier, metric, date, inc_amt=1, **kwargs):
raise NotImplementedError()
def get_metric_by_day(self, unique_identifier, metric, from_date, limit=10, **kwargs):
raise NotImplementedError()
def get_metric_by_week(self, unique_identifier, metric, from_date, limit=10, **kwargs):
raise NotImplementedError()
def get_metric_by_month(self, unique_identifier, metric, from_date, limit=10, **kwargs):
raise NotImplementedError() | Apache License 2.0 |
imicknl/ha-tahoma | custom_components/tahoma/climate_devices/somfy_thermostat.py | SomfyThermostat.async_set_hvac_mode | python | async def async_set_hvac_mode(self, hvac_mode: str) -> None:
if hvac_mode == self.hvac_mode:
return
if hvac_mode == HVAC_MODE_AUTO:
self._saved_target_temp = self.target_temperature
await self.executor.async_execute_command(COMMAND_EXIT_DEROGATION)
await self.executor.async_execute_command(COMMAND_REFRESH_STATE)
elif hvac_mode == HVAC_MODE_HEAT:
await self.async_set_preset_mode(PRESET_NONE) | Set new target hvac mode. | https://github.com/imicknl/ha-tahoma/blob/a0490949f7f416a59019582459aa70c1de108258/custom_components/tahoma/climate_devices/somfy_thermostat.py#L223-L232 | import logging
from typing import Optional
from homeassistant.components.climate import ClimateEntity
from homeassistant.components.climate.const import (
CURRENT_HVAC_HEAT,
CURRENT_HVAC_IDLE,
HVAC_MODE_AUTO,
HVAC_MODE_HEAT,
PRESET_AWAY,
PRESET_HOME,
PRESET_NONE,
SUPPORT_PRESET_MODE,
SUPPORT_TARGET_TEMPERATURE,
)
from homeassistant.const import (
ATTR_TEMPERATURE,
EVENT_HOMEASSISTANT_START,
STATE_UNAVAILABLE,
STATE_UNKNOWN,
TEMP_CELSIUS,
)
from homeassistant.core import callback
from homeassistant.helpers.event import async_track_state_change
from ..coordinator import OverkizDataUpdateCoordinator
from ..entity import OverkizEntity
_LOGGER = logging.getLogger(__name__)
COMMAND_EXIT_DEROGATION = "exitDerogation"
COMMAND_REFRESH_STATE = "refreshState"
COMMAND_SET_DEROGATION = "setDerogation"
COMMAND_SET_MODE_TEMPERATURE = "setModeTemperature"
CORE_DEROGATED_TARGET_TEMPERATURE_STATE = "core:DerogatedTargetTemperatureState"
CORE_DEROGATION_ACTIVATION_STATE = "core:DerogationActivationState"
PRESET_FREEZE = "Freeze"
PRESET_NIGHT = "Night"
ST_HEATING_MODE_STATE = "somfythermostat:HeatingModeState"
ST_DEROGATION_HEATING_MODE_STATE = "somfythermostat:DerogationHeatingModeState"
STATE_DEROGATION_FURTHER_NOTICE = "further_notice"
STATE_DEROGATION_ACTIVE = "active"
STATE_DEROGATION_INACTIVE = "inactive"
STATE_PRESET_AT_HOME = "atHomeMode"
STATE_PRESET_AWAY = "awayMode"
STATE_PRESET_FREEZE = "freezeMode"
STATE_PRESET_MANUAL = "manualMode"
STATE_PRESET_SLEEPING_MODE = "sleepingMode"
STATE_PRESET_SUDDEN_DROP_MODE = "suddenDropMode"
MAP_HVAC_MODES = {
STATE_DEROGATION_ACTIVE: HVAC_MODE_HEAT,
STATE_DEROGATION_INACTIVE: HVAC_MODE_AUTO,
}
MAP_PRESET_MODES = {
STATE_PRESET_AT_HOME: PRESET_HOME,
STATE_PRESET_AWAY: PRESET_AWAY,
STATE_PRESET_FREEZE: PRESET_FREEZE,
STATE_PRESET_MANUAL: PRESET_NONE,
STATE_PRESET_SLEEPING_MODE: PRESET_NIGHT,
STATE_PRESET_SUDDEN_DROP_MODE: PRESET_NONE,
}
MAP_REVERSE_PRESET_MODES = {v: k for k, v in MAP_PRESET_MODES.items()}
MAP_PRESET_TEMPERATURES = {
PRESET_HOME: "somfythermostat:AtHomeTargetTemperatureState",
PRESET_AWAY: "somfythermostat:AwayModeTargetTemperatureState",
PRESET_FREEZE: "somfythermostat:FreezeModeTargetTemperatureState",
PRESET_NIGHT: "somfythermostat:SleepingModeTargetTemperatureState",
}
class SomfyThermostat(OverkizEntity, ClimateEntity):
_attr_temperature_unit = TEMP_CELSIUS
_attr_supported_features = SUPPORT_PRESET_MODE | SUPPORT_TARGET_TEMPERATURE
_attr_hvac_modes = [HVAC_MODE_AUTO, HVAC_MODE_HEAT]
_attr_preset_modes = [
PRESET_NONE,
PRESET_FREEZE,
PRESET_NIGHT,
PRESET_AWAY,
PRESET_HOME,
]
_attr_min_temp = 15.0
_attr_max_temp = 26.0
def __init__(self, device_url: str, coordinator: OverkizDataUpdateCoordinator):
super().__init__(device_url, coordinator)
self._temp_sensor_entity_id = None
if self.hvac_mode == HVAC_MODE_AUTO:
if self.preset_mode == PRESET_NONE:
self._saved_target_temp = None
else:
self._saved_target_temp = self.executor.select_state(
MAP_PRESET_TEMPERATURES[self.preset_mode]
)
else:
self._saved_target_temp = self.executor.select_state(
CORE_DEROGATED_TARGET_TEMPERATURE_STATE
)
self._current_temperature = None
async def async_added_to_hass(self):
await super().async_added_to_hass()
entity_registry = await self.hass.helpers.entity_registry.async_get_registry()
self._temp_sensor_entity_id = next(
(
entity_id
for entity_id, entry in entity_registry.entities.items()
if entry.unique_id == f"{self.base_device_url}#2-core:TemperatureState"
),
None,
)
if self._temp_sensor_entity_id:
async_track_state_change(
self.hass, self._temp_sensor_entity_id, self._async_temp_sensor_changed
)
else:
_LOGGER.warning(
"Temperature sensor could not be found for entity %s", self.name
)
@callback
def _async_startup(event):
if self._temp_sensor_entity_id:
temp_sensor_state = self.hass.states.get(self._temp_sensor_entity_id)
if temp_sensor_state and temp_sensor_state.state != STATE_UNKNOWN:
self.update_temp(temp_sensor_state)
self.hass.bus.async_listen_once(EVENT_HOMEASSISTANT_START, _async_startup)
self.schedule_update_ha_state(True)
async def _async_temp_sensor_changed(self, entity_id, old_state, new_state) -> None:
if new_state is None or old_state == new_state:
return
self.update_temp(new_state)
self.schedule_update_ha_state()
@callback
def update_temp(self, state):
if state is None or state.state in [STATE_UNKNOWN, STATE_UNAVAILABLE]:
return
try:
self._current_temperature = float(state.state)
except ValueError as ex:
_LOGGER.error("Unable to update from sensor: %s", ex)
@property
def hvac_mode(self) -> str:
return MAP_HVAC_MODES[
self.executor.select_state(CORE_DEROGATION_ACTIVATION_STATE)
]
@property
def hvac_action(self) -> str:
if not self.current_temperature or not self.target_temperature:
return CURRENT_HVAC_IDLE
if self.current_temperature < self.target_temperature:
return CURRENT_HVAC_HEAT
return CURRENT_HVAC_IDLE
@property
def preset_mode(self) -> Optional[str]:
if self.hvac_mode == HVAC_MODE_AUTO:
return MAP_PRESET_MODES[self.executor.select_state(ST_HEATING_MODE_STATE)]
return MAP_PRESET_MODES[
self.executor.select_state(ST_DEROGATION_HEATING_MODE_STATE)
]
@property
def current_temperature(self) -> Optional[float]:
return self._current_temperature
@property
def target_temperature(self):
if self.hvac_mode == HVAC_MODE_AUTO:
if self.preset_mode == PRESET_NONE:
return None
return self.executor.select_state(MAP_PRESET_TEMPERATURES[self.preset_mode])
return self.executor.select_state(CORE_DEROGATED_TARGET_TEMPERATURE_STATE)
async def async_set_temperature(self, **kwargs) -> None:
temperature = kwargs.get(ATTR_TEMPERATURE)
if temperature is None:
return
if temperature < self.min_temp:
temperature = self.min_temp
elif temperature > self.max_temp:
temperature = self.max_temp
await self.executor.async_execute_command(
COMMAND_SET_DEROGATION, temperature, STATE_DEROGATION_FURTHER_NOTICE
)
await self.executor.async_execute_command(
COMMAND_SET_MODE_TEMPERATURE, STATE_PRESET_MANUAL, temperature
)
await self.executor.async_execute_command(COMMAND_REFRESH_STATE) | MIT License |
ganeti/ganeti | lib/mcpu.py | Processor._AcquireLocks | python | def _AcquireLocks(self, level, names, shared, opportunistic, timeout,
opportunistic_count=1, request_only=False):
self._CheckLocksEnabled()
if self._cbs:
priority = self._cbs.CurrentPriority()
else:
priority = None
if priority is None:
priority = constants.OP_PRIO_DEFAULT
if names == locking.ALL_SET:
if opportunistic:
expand_fns = {
locking.LEVEL_CLUSTER: (lambda: [locking.BGL]),
locking.LEVEL_INSTANCE: self.cfg.GetInstanceList,
locking.LEVEL_NODEGROUP: self.cfg.GetNodeGroupList,
locking.LEVEL_NODE: self.cfg.GetNodeList,
locking.LEVEL_NODE_RES: self.cfg.GetNodeList,
locking.LEVEL_NETWORK: self.cfg.GetNetworkList,
}
names = expand_fns[level]()
else:
names = locking.LOCKSET_NAME
names = _LockList(names)
names.sort()
levelname = locking.LEVEL_NAMES[level]
locks = ["%s/%s" % (levelname, lock) for lock in list(names)]
if not names:
logging.debug("Acquiring no locks for (%s) at level %s",
self._wconfdcontext, levelname)
return []
if shared:
request = [[lock, "shared"] for lock in locks]
else:
request = [[lock, "exclusive"] for lock in locks]
if request_only:
logging.debug("Lock request for level %s is %s", level, request)
return request
self.cfg.OutDate()
if timeout is None:
logging.info("Definitely requesting %s for %s",
request, self._wconfdcontext)
for r in request:
logging.debug("Definite request %s for %s", r, self._wconfdcontext)
self.wconfd.Client().UpdateLocksWaiting(self._wconfdcontext, priority,
[r])
while True:
pending = self.wconfd.Client().HasPendingRequest(self._wconfdcontext)
if not pending:
break
time.sleep(10.0 * random.random())
elif opportunistic:
logging.debug("For %ss trying to opportunistically acquire"
" at least %d of %s for %s.",
timeout, opportunistic_count, locks, self._wconfdcontext)
locks = utils.SimpleRetry(
lambda l: l != [], self.wconfd.Client().GuardedOpportunisticLockUnion,
2.0, timeout, args=[opportunistic_count, self._wconfdcontext, request])
logging.debug("Managed to get the following locks: %s", locks)
if locks == []:
raise LockAcquireTimeout()
else:
self._RequestAndWait(request, timeout)
return locks | Acquires locks via the Ganeti lock manager.
@type level: int
@param level: Lock level
@type names: list or string
@param names: Lock names
@type shared: bool
@param shared: Whether the locks should be acquired in shared mode
@type opportunistic: bool
@param opportunistic: Whether to acquire opportunistically
@type timeout: None or float
@param timeout: Timeout for acquiring the locks
@type request_only: bool
@param request_only: do not acquire the locks, just return the request
@raise LockAcquireTimeout: In case locks couldn't be acquired in specified
amount of time; in this case, locks still might be acquired or a request
pending. | https://github.com/ganeti/ganeti/blob/4d21019c72cba4d746f5d17ca22098f4c7682e9c/lib/mcpu.py#L374-L475 | import sys
import logging
import random
import time
import itertools
import traceback
from ganeti import opcodes
from ganeti import opcodes_base
from ganeti import constants
from ganeti import errors
from ganeti import hooksmaster
from ganeti import cmdlib
from ganeti import locking
from ganeti import utils
from ganeti import wconfd
sighupReceived = [False]
lusExecuting = [0]
_OP_PREFIX = "Op"
_LU_PREFIX = "LU"
class LockAcquireTimeout(Exception):
def _CalculateLockAttemptTimeouts():
result = [constants.LOCK_ATTEMPTS_MINWAIT]
running_sum = result[0]
while running_sum < constants.LOCK_ATTEMPTS_TIMEOUT:
timeout = (result[-1] * 1.05) ** 1.25
timeout = min(timeout, constants.LOCK_ATTEMPTS_MAXWAIT)
timeout = max(timeout, constants.LOCK_ATTEMPTS_MINWAIT)
result.append(timeout)
running_sum += timeout
return result
class LockAttemptTimeoutStrategy(object):
__slots__ = [
"_timeouts",
"_random_fn",
"_time_fn",
]
_TIMEOUT_PER_ATTEMPT = _CalculateLockAttemptTimeouts()
def __init__(self, _time_fn=time.time, _random_fn=random.random):
object.__init__(self)
self._timeouts = iter(self._TIMEOUT_PER_ATTEMPT)
self._time_fn = _time_fn
self._random_fn = _random_fn
def NextAttempt(self):
try:
timeout = next(self._timeouts)
except StopIteration:
timeout = None
if timeout is not None:
variation_range = timeout * 0.1
timeout += ((self._random_fn() * variation_range) -
(variation_range * 0.5))
return timeout
class OpExecCbBase(object):
def NotifyStart(self):
def NotifyRetry(self):
def Feedback(self, *args):
def CurrentPriority(self):
return None
def SubmitManyJobs(self, jobs):
raise NotImplementedError
def _LUNameForOpName(opname):
assert opname.startswith(_OP_PREFIX), "Invalid OpCode name, doesn't start with %s: %s" % (_OP_PREFIX, opname)
return _LU_PREFIX + opname[len(_OP_PREFIX):]
def _ComputeDispatchTable():
return dict((op, getattr(cmdlib, _LUNameForOpName(op.__name__)))
for op in opcodes.OP_MAPPING.values()
if op.WITH_LU)
def _SetBaseOpParams(src, defcomment, dst):
if hasattr(src, "debug_level"):
dst.debug_level = src.debug_level
if (getattr(dst, "priority", None) is None and
hasattr(src, "priority")):
dst.priority = src.priority
if not getattr(dst, opcodes_base.COMMENT_ATTR, None):
dst.comment = defcomment
if hasattr(src, constants.OPCODE_REASON):
dst.reason = list(getattr(dst, constants.OPCODE_REASON, []))
dst.reason.extend(getattr(src, constants.OPCODE_REASON, []))
def _ProcessResult(submit_fn, op, result):
if isinstance(result, cmdlib.ResultWithJobs):
for op2 in itertools.chain(*result.jobs):
_SetBaseOpParams(op, "Submitted by %s" % op.OP_ID, op2)
job_submission = submit_fn(result.jobs)
result = result.other
assert constants.JOB_IDS_KEY not in result, "Key '%s' found in additional return values" % constants.JOB_IDS_KEY
result[constants.JOB_IDS_KEY] = job_submission
return result
def _FailingSubmitManyJobs(_):
raise errors.ProgrammerError("Opcodes processed without callbacks (e.g."
" queries) can not submit jobs")
def _LockList(names):
if names == locking.ALL_SET:
return names
elif isinstance(names, str):
return [names]
else:
return list(names)
def _CheckSecretParameters(op):
if hasattr(op, "osparams_secret") and op.osparams_secret:
for secret_param in op.osparams_secret:
if op.osparams_secret[secret_param].Get() == constants.REDACTED:
raise errors.OpPrereqError("Please re-submit secret parameters to job.",
errors.ECODE_INVAL)
class Processor(object):
DISPATCH_TABLE = _ComputeDispatchTable()
def __init__(self, context, ec_id, enable_locks=True):
self._ec_id = ec_id
self._cbs = None
self.cfg = context.GetConfig(ec_id)
self.rpc = context.GetRpc(self.cfg)
self.hmclass = hooksmaster.HooksMaster
self._enable_locks = enable_locks
self.wconfd = wconfd
self._wconfdcontext = context.GetWConfdContext(ec_id)
def _CheckLocksEnabled(self):
if not self._enable_locks:
raise errors.ProgrammerError("Attempted to use disabled locks")
def _RequestAndWait(self, request, timeout):
logging.debug("Trying %ss to request %s for %s",
timeout, request, self._wconfdcontext)
if self._cbs:
priority = self._cbs.CurrentPriority()
else:
priority = None
if priority is None:
priority = constants.OP_PRIO_DEFAULT
if sighupReceived[0]:
logging.warning("Ignoring unexpected SIGHUP")
sighupReceived[0] = False
self.wconfd.Client().UpdateLocksWaiting(self._wconfdcontext, priority,
request)
pending = self.wconfd.Client().HasPendingRequest(self._wconfdcontext)
if pending:
def _HasPending():
if sighupReceived[0]:
return self.wconfd.Client().HasPendingRequest(self._wconfdcontext)
else:
return True
pending = utils.SimpleRetry(False, _HasPending, 0.05, timeout)
signal = sighupReceived[0]
if pending:
pending = self.wconfd.Client().HasPendingRequest(self._wconfdcontext)
if pending and signal:
logging.warning("Ignoring unexpected SIGHUP")
sighupReceived[0] = False
logging.debug("Finished trying. Pending: %s", pending)
if pending:
raise LockAcquireTimeout() | BSD 2-Clause Simplified License |
fxihub/hummingbird | src/backend/euxfel.py | EUxfelTrainTranslator._tr_event_id_sqs_pnccd | python | def _tr_event_id_sqs_pnccd(self, values, obj):
timestamp = numpy.array(obj['timestamp.tid'], dtype='int')
rec = Record('Timestamp', timestamp, ureg.s)
rec.timestamp = [timestamp]
values[rec.name] = rec | Translates euxfel train event ID from data source into a hummingbird one | https://github.com/fxihub/hummingbird/blob/0b1bdf5023b92090f31d9bc857e0854a805cf2cd/src/backend/euxfel.py#L326-L333 | from __future__ import print_function
import os
import numpy
import datetime, time
from pytz import timezone
from backend.event_translator import EventTranslator
from backend.record import Record, add_record
from backend import Worker
from . import ureg
import logging
import ipc
import karabo_bridge
import numpy
from hummingbird import parse_cmdline_args
_argparser = None
def add_cmdline_args():
global _argparser
from utils.cmdline_args import argparser
_argparser = argparser
MAX_TRAIN_LENGTH = 352
class EUxfelTranslator(object):
def __init__(self, state):
self.timestamps = None
self.library = 'karabo_bridge'
cmdline_args = _argparser.parse_args()
if 'EuXFEL/DataSource' in state:
dsrc = state['EuXFEL/DataSource']
elif('EuXFEL' in state and 'DataSource' in state['EuXFEL']):
dsrc = state['EuXFEL']['DataSource']
else:
raise ValueError("You need to set the '[EuXFEL][DataSource]'"
" in the configuration")
self._data_format = "Calib"
if 'EuXFEL/DataFormat' in state:
self._data_format = state["EuXFEL/DataFormat"]
if not self._data_format in ["Calib", "Raw"]:
raise ValueError("You need to set the 'EuXFEL/DataFormat'"
" in the configuration as 'Calib' or 'Raw'")
self._sel_module = None
if 'EuXFEL/SelModule' in state:
self._sel_module = state['EuXFEL/SelModule']
self._max_train_age = 5
if 'EuXFEL/MaxTrainAge' in state:
self._max_train_age = state['EuXFEL/MaxTrainAge']
first_cell = 1
if 'EuXFEL/FirstCell' in state:
first_cell = state['EuXFEL/FirstCell']
last_cell = -1
if 'EuXFEL/LastCell' in state:
last_cell = state['EuXFEL/LastCell'] + 1
bad_cells = []
if 'EuXFEL/BadCells' in state:
bad_cells = list(state['EuXFEL/BadCells'])
if 'EuXFEL/SlowSource' in state:
slsrc = state['EuXFEL/SlowSource']
else:
slsrc = None
self._slow_keys = None
if 'EuXFEL/SlowKeys' in state:
self._slow_keys = list(state['EuXFEL/SlowKeys'])
self._slow_update_rate = 1
if 'EuXFEL/SlowUpdate' in state:
self._slow_update_rate = int(state['EuXFEL/SlowUpdate'])
self._cell_filter = numpy.zeros(MAX_TRAIN_LENGTH, dtype='bool')
self._cell_filter[first_cell:last_cell] = True
for cell in bad_cells:
self._cell_filter[cell] = False
self._data_client = karabo_bridge.Client(dsrc)
self._slow_cache = None
self._slow_last_time = 0
self._slow_client = None
if slsrc is not None:
self._slow_client = karabo_bridge.Client(slsrc)
self._n2c = {}
if self._sel_module is None:
self._n2c["SPB_DET_AGIPD1M-1/CAL/APPEND_CORRECTED"] = ['photonPixelDetectors', 'eventID']
self._n2c["SPB_DET_AGIPD1M-1/CAL/APPEND_RAW"] = ['photonPixelDetectors', 'eventID']
else:
self._n2c["SPB_DET_AGIPD1M-1/DET/%dCH0:xtdf"%self._sel_module] = ['photonPixelDetectors', 'eventID']
self._n2c["SQS_NQS_PNCCD1MP/CAL/PNCCD_FMT-0:output"] = ['photonPixelDetectors', 'eventID']
self._n2c["SA3_XTD10_XGM/XGM/DOOCS:output"] = ['GMD', 'eventID']
self._n2c["SQS_DIGITIZER_UTC1/ADC/1:network"] = ["trace"]
self._c2n = {}
for k, v in self._n2c.items():
if type(v) is not list:
v = [v]
for v2 in v:
self._c2n[v2] = self._c2n.get(v2, [])
self._c2n[v2].append(k)
self._s2c = {}
if self._sel_module is None:
self._s2c["SPB_DET_AGIPD1M-1/CAL/APPEND_CORRECTED"] = "AGIPD"
self._s2c["SPB_DET_AGIPD1M-1/CAL/APPEND_RAW"] = "AGIPD"
else:
self._s2c["SPB_DET_AGIPD1M-1/DET/%dCH0:xtdf"%self._sel_module] = "AGIPD"
self._s2c["SQS_NQS_PNCCD1MP/CAL/PNCCD_FMT-0:output"] = "pnCCD"
self._s2c["SA3_XTD10_XGM/XGM/DOOCS:output"] = "GMD"
def append_slow_data(self, buf, meta):
do_update = (time.time() - self._slow_last_time) > self._slow_update_rate
if do_update or self._slow_cache is None:
self._slow_cache = self._slow_client.next()
self._slow_last_time = time.time()
if self._slow_keys is not None:
for k in self._slow_keys:
buf[k] = self._slow_cache[0][k]
meta[k] = self._slow_cache[1][k]
else:
for k,v in self._slow_cache[0].items():
buf[k] = v
for k,v in self._slow_cache[1].items():
meta[k] = v
return buf, meta
def next_train(self):
buf, meta = self._data_client.next()
if(self._slow_client is not None):
buf, meta = self.append_slow_data(buf, meta)
age = numpy.floor(time.time()) - int(meta[list(meta.keys())[0]]['timestamp.tid'])
if age < self._max_train_age:
return buf, meta
else:
return self.next_train()
def event_keys(self, evt):
native_keys = evt.keys()
common_keys = set()
for k in native_keys:
for c in self._native_to_common(k):
common_keys.add(c)
return list(common_keys)+['analysis']
def _native_to_common(self, key):
if(key in self._n2c):
val = self._n2c[key]
if type(val) is not list:
val = [val]
return val
else:
return []
def event_native_keys(self, evt):
return evt.keys()
def translate(self, evt, key):
values = {}
if(key in self._c2n):
return self.translate_core(evt, key)
elif(key == 'analysis'):
return {}
elif(key == 'stream'):
return {}
else:
event_keys = evt.keys()
values = {}
found = False
if key in event_keys:
obj = evt[key]
for subkey in obj.keys():
add_record(values, 'native', '%s[%s]' % (self._s2c[key], subkey),
obj[subkey], ureg.ADU)
return values
else:
print('%s not found in event' % (key))
def translate_core(self, evt, key):
values = {}
for k in self._c2n[key]:
if k in evt:
if key == 'eventID':
self._tr_event_id_sqs_pnccd(values, evt[k])
elif key == 'photonPixelDetectors':
self._tr_photon_detector_sqs_pnccd(values, evt[k], k)
elif key == 'GMD':
self._tr_gmd_sqs_pnccd(values, evt[k], k)
elif key == "trace":
self._tr_trace_sqs_pnccd(values, evt[k], k)
else:
raise RuntimeError('%s not yet supported with key %s' % (k, key))
return values
class EUxfelTrainTranslator(EUxfelTranslator):
def __init__(self, state):
EUxfelTranslator.__init__(self, state)
def next_event(self):
train, metadata = self.next_train()
for source, d in metadata.items():
for k,v in d.items():
train[source][k] = v
return EventTranslator(train, self)
def event_id(self, evt):
return self.translate(evt, 'eventID')['Timestamp'].timestamp[0]
def train_id(self, evt):
return self.translate(evt, 'eventID')['Timestamp'].timestamp
def _tr_photon_detector_spb(self, values, obj, evt_key):
train_length = numpy.array(obj["image.pulseId"]).shape[-1]
cells = self._cell_filter[:train_length]
img = obj['image.data'][..., cells]
gain = obj['image.gain'][..., cells]
if self._sel_module is not None:
img = img[numpy.newaxis]
assert img.ndim == 4
if self._sel_module is not None:
gain = gain[numpy.newaxis]
if self._data_format == 'Raw':
assert gain.ndim == 4
img = numpy.concatenate((img, gain), axis=0)
elif self._data_format == 'Calib':
pass
else:
raise NotImplementedError("DataFormat should be 'Calib' or 'Raw''")
add_record(values, 'photonPixelDetectors', self._s2c[evt_key], img, ureg.ADU)
def _tr_photon_detector_sqs_pnccd(self, values, obj, evt_key):
img = obj['data.image'][...].squeeze()
add_record(values, 'photonPixelDetectors', self._s2c[evt_key], img, ureg.ADU)
def _tr_event_id_spb(self, values, obj):
train_length = numpy.array(obj["image.pulseId"]).shape[-1]
cells = self._cell_filter[:train_length]
pulseid = numpy.array(obj["image.pulseId"][..., cells], dtype='int')
tsec = numpy.array(obj['timestamp.sec'], dtype='int')
tfrac = numpy.array(obj['timestamp.frac'], dtype='int') * 1e-18
timestamp = tsec + tfrac + (pulseid / 760.)
time = numpy.array([datetime.datetime.fromtimestamp(t, tz=timezone('utc')) for t in timestamp])
rec = Record('Timestamp', time, ureg.s)
rec.pulseId = pulseid
rec.cellId = numpy.array(obj['image.cellId'][..., cells], dtype='int')
rec.badCells = numpy.array(obj['image.cellId'][..., ~cells], dtype='int')
rec.timestamp = timestamp
values[rec.name] = rec | BSD 2-Clause Simplified License |
skype4py/skype4py | Skype4Py/client.py | Client.OpenSearchDialog | python | def OpenSearchDialog(self):
self.OpenDialog('SEARCH') | Opens search dialog. | https://github.com/skype4py/skype4py/blob/c48d83f7034109fe46315d45a066126002c6e0d4/Skype4Py/client.py#L222-L225 | __docformat__ = 'restructuredtext en'
import weakref
from enums import *
from errors import SkypeError
from utils import *
class Client(object):
def __init__(self, Skype):
self._SkypeRef = weakref.ref(Skype)
def ButtonPressed(self, Key):
self._Skype._DoCommand('BTN_PRESSED %s' % Key)
def ButtonReleased(self, Key):
self._Skype._DoCommand('BTN_RELEASED %s' % Key)
def CreateEvent(self, EventId, Caption, Hint):
self._Skype._DoCommand('CREATE EVENT %s CAPTION %s HINT %s' % (tounicode(EventId),
quote(tounicode(Caption)), quote(tounicode(Hint))))
return PluginEvent(self._Skype, EventId)
def CreateMenuItem(self, MenuItemId, PluginContext, CaptionText, HintText=u'', IconPath='', Enabled=True,
ContactType=pluginContactTypeAll, MultipleContacts=False):
cmd = 'CREATE MENU_ITEM %s CONTEXT %s CAPTION %s ENABLED %s' % (tounicode(MenuItemId), PluginContext,
quote(tounicode(CaptionText)), cndexp(Enabled, 'true', 'false'))
if HintText:
cmd += ' HINT %s' % quote(tounicode(HintText))
if IconPath:
cmd += ' ICON %s' % quote(path2unicode(IconPath))
if MultipleContacts:
cmd += ' ENABLE_MULTIPLE_CONTACTS true'
if PluginContext == pluginContextContact:
cmd += ' CONTACT_TYPE_FILTER %s' % ContactType
self._Skype._DoCommand(cmd)
return PluginMenuItem(self._Skype, MenuItemId, CaptionText, HintText, Enabled)
def Focus(self):
self._Skype._Api.allow_focus(self._Skype.Timeout)
self._Skype._DoCommand('FOCUS')
def Minimize(self):
self._Skype._DoCommand('MINIMIZE')
def OpenAddContactDialog(self, Username=''):
self.OpenDialog('ADDAFRIEND', Username)
def OpenAuthorizationDialog(self, Username):
self.OpenDialog('AUTHORIZATION', Username)
def OpenBlockedUsersDialog(self):
self.OpenDialog('BLOCKEDUSERS')
def OpenCallHistoryTab(self):
self.OpenDialog('CALLHISTORY')
def OpenConferenceDialog(self):
self.OpenDialog('CONFERENCE')
def OpenContactsTab(self):
self.OpenDialog('CONTACTS')
def OpenDialog(self, Name, *Params):
self._Skype._Api.allow_focus(self._Skype.Timeout)
params = filter(None, (str(Name),) + Params)
self._Skype._DoCommand('OPEN %s' % tounicode(' '.join(params)))
def OpenDialpadTab(self):
self.OpenDialog('DIALPAD')
def OpenFileTransferDialog(self, Username, Folder):
self.OpenDialog('FILETRANSFER', Username, 'IN', path2unicode(Folder))
def OpenGettingStartedWizard(self):
self.OpenDialog('GETTINGSTARTED')
def OpenImportContactsWizard(self):
self.OpenDialog('IMPORTCONTACTS')
def OpenLiveTab(self):
self.OpenDialog('LIVETAB')
def OpenMessageDialog(self, Username, Text=u''):
self.OpenDialog('IM', Username, tounicode(Text))
def OpenOptionsDialog(self, Page=''):
self.OpenDialog('OPTIONS', Page)
def OpenProfileDialog(self):
self.OpenDialog('PROFILE') | BSD 3-Clause New or Revised License |
googleapis/python-compute | google/cloud/compute_v1/services/url_maps/transports/rest.py | UrlMapsRestTransport.patch | python | def patch(
self,
request: compute.PatchUrlMapRequest,
*,
metadata: Sequence[Tuple[str, str]] = (),
) -> compute.Operation:
body = compute.UrlMap.to_json(
request.url_map_resource,
including_default_value_fields=False,
use_integers_for_enums=False,
)
url = "https://{host}/compute/v1/projects/{project}/global/urlMaps/{url_map}".format(
host=self._host, project=request.project, url_map=request.url_map,
)
query_params = {}
if compute.PatchUrlMapRequest.request_id in request:
query_params["requestId"] = request.request_id
headers = dict(metadata)
headers["Content-Type"] = "application/json"
response = self._session.patch(
url, headers=headers, params=query_params, data=body,
)
if response.status_code >= 400:
raise core_exceptions.from_http_response(response)
return compute.Operation.from_json(response.content, ignore_unknown_fields=True) | r"""Call the patch method over HTTP.
Args:
request (~.compute.PatchUrlMapRequest):
The request object. A request message for UrlMaps.Patch.
See the method description for details.
metadata (Sequence[Tuple[str, str]]): Strings which should be
sent along with the request as metadata.
Returns:
~.compute.Operation:
Represents an Operation resource.
Google Compute Engine has three Operation resources:
- `Global </compute/docs/reference/rest/{$api_version}/globalOperations>`__
\*
`Regional </compute/docs/reference/rest/{$api_version}/regionOperations>`__
\*
`Zonal </compute/docs/reference/rest/{$api_version}/zoneOperations>`__
You can use an operation resource to manage asynchronous
API requests. For more information, read Handling API
responses.
Operations can be global, regional or zonal.
- For global operations, use the ``globalOperations``
resource.
- For regional operations, use the ``regionOperations``
resource.
- For zonal operations, use the ``zonalOperations``
resource.
For more information, read Global, Regional, and Zonal
Resources. (== resource_for
{$api_version}.globalOperations ==) (== resource_for
{$api_version}.regionOperations ==) (== resource_for
{$api_version}.zoneOperations ==) | https://github.com/googleapis/python-compute/blob/703ac1703bc159dcd81e96759606ad896f125996/google/cloud/compute_v1/services/url_maps/transports/rest.py#L533-L614 | import warnings
from typing import Callable, Dict, Optional, Sequence, Tuple
from google.api_core import gapic_v1
from google.api_core import exceptions as core_exceptions
from google.auth import credentials as ga_credentials
from google.auth.transport.grpc import SslCredentials
import grpc
from google.auth.transport.requests import AuthorizedSession
from google.cloud.compute_v1.types import compute
from .base import UrlMapsTransport, DEFAULT_CLIENT_INFO
class UrlMapsRestTransport(UrlMapsTransport):
def __init__(
self,
*,
host: str = "compute.googleapis.com",
credentials: ga_credentials.Credentials = None,
credentials_file: str = None,
scopes: Sequence[str] = None,
client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None,
quota_project_id: Optional[str] = None,
client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO,
always_use_jwt_access: Optional[bool] = False,
) -> None:
super().__init__(
host=host,
credentials=credentials,
client_info=client_info,
always_use_jwt_access=always_use_jwt_access,
)
self._session = AuthorizedSession(
self._credentials, default_host=self.DEFAULT_HOST
)
if client_cert_source_for_mtls:
self._session.configure_mtls_channel(client_cert_source_for_mtls)
self._prep_wrapped_messages(client_info)
def aggregated_list(
self,
request: compute.AggregatedListUrlMapsRequest,
*,
metadata: Sequence[Tuple[str, str]] = (),
) -> compute.UrlMapsAggregatedList:
url = "https://{host}/compute/v1/projects/{project}/aggregated/urlMaps".format(
host=self._host, project=request.project,
)
query_params = {}
if compute.AggregatedListUrlMapsRequest.filter in request:
query_params["filter"] = request.filter
if compute.AggregatedListUrlMapsRequest.include_all_scopes in request:
query_params["includeAllScopes"] = request.include_all_scopes
if compute.AggregatedListUrlMapsRequest.max_results in request:
query_params["maxResults"] = request.max_results
if compute.AggregatedListUrlMapsRequest.order_by in request:
query_params["orderBy"] = request.order_by
if compute.AggregatedListUrlMapsRequest.page_token in request:
query_params["pageToken"] = request.page_token
if compute.AggregatedListUrlMapsRequest.return_partial_success in request:
query_params["returnPartialSuccess"] = request.return_partial_success
headers = dict(metadata)
headers["Content-Type"] = "application/json"
response = self._session.get(url, headers=headers, params=query_params,)
if response.status_code >= 400:
raise core_exceptions.from_http_response(response)
return compute.UrlMapsAggregatedList.from_json(
response.content, ignore_unknown_fields=True
)
def delete(
self,
request: compute.DeleteUrlMapRequest,
*,
metadata: Sequence[Tuple[str, str]] = (),
) -> compute.Operation:
url = "https://{host}/compute/v1/projects/{project}/global/urlMaps/{url_map}".format(
host=self._host, project=request.project, url_map=request.url_map,
)
query_params = {}
if compute.DeleteUrlMapRequest.request_id in request:
query_params["requestId"] = request.request_id
headers = dict(metadata)
headers["Content-Type"] = "application/json"
response = self._session.delete(url, headers=headers, params=query_params,)
if response.status_code >= 400:
raise core_exceptions.from_http_response(response)
return compute.Operation.from_json(response.content, ignore_unknown_fields=True)
def get(
self,
request: compute.GetUrlMapRequest,
*,
metadata: Sequence[Tuple[str, str]] = (),
) -> compute.UrlMap:
url = "https://{host}/compute/v1/projects/{project}/global/urlMaps/{url_map}".format(
host=self._host, project=request.project, url_map=request.url_map,
)
query_params = {}
headers = dict(metadata)
headers["Content-Type"] = "application/json"
response = self._session.get(url, headers=headers, params=query_params,)
if response.status_code >= 400:
raise core_exceptions.from_http_response(response)
return compute.UrlMap.from_json(response.content, ignore_unknown_fields=True)
def insert(
self,
request: compute.InsertUrlMapRequest,
*,
metadata: Sequence[Tuple[str, str]] = (),
) -> compute.Operation:
body = compute.UrlMap.to_json(
request.url_map_resource,
including_default_value_fields=False,
use_integers_for_enums=False,
)
url = "https://{host}/compute/v1/projects/{project}/global/urlMaps".format(
host=self._host, project=request.project,
)
query_params = {}
if compute.InsertUrlMapRequest.request_id in request:
query_params["requestId"] = request.request_id
headers = dict(metadata)
headers["Content-Type"] = "application/json"
response = self._session.post(
url, headers=headers, params=query_params, data=body,
)
if response.status_code >= 400:
raise core_exceptions.from_http_response(response)
return compute.Operation.from_json(response.content, ignore_unknown_fields=True)
def invalidate_cache(
self,
request: compute.InvalidateCacheUrlMapRequest,
*,
metadata: Sequence[Tuple[str, str]] = (),
) -> compute.Operation:
body = compute.CacheInvalidationRule.to_json(
request.cache_invalidation_rule_resource,
including_default_value_fields=False,
use_integers_for_enums=False,
)
url = "https://{host}/compute/v1/projects/{project}/global/urlMaps/{url_map}/invalidateCache".format(
host=self._host, project=request.project, url_map=request.url_map,
)
query_params = {}
if compute.InvalidateCacheUrlMapRequest.request_id in request:
query_params["requestId"] = request.request_id
headers = dict(metadata)
headers["Content-Type"] = "application/json"
response = self._session.post(
url, headers=headers, params=query_params, data=body,
)
if response.status_code >= 400:
raise core_exceptions.from_http_response(response)
return compute.Operation.from_json(response.content, ignore_unknown_fields=True)
def list(
self,
request: compute.ListUrlMapsRequest,
*,
metadata: Sequence[Tuple[str, str]] = (),
) -> compute.UrlMapList:
url = "https://{host}/compute/v1/projects/{project}/global/urlMaps".format(
host=self._host, project=request.project,
)
query_params = {}
if compute.ListUrlMapsRequest.filter in request:
query_params["filter"] = request.filter
if compute.ListUrlMapsRequest.max_results in request:
query_params["maxResults"] = request.max_results
if compute.ListUrlMapsRequest.order_by in request:
query_params["orderBy"] = request.order_by
if compute.ListUrlMapsRequest.page_token in request:
query_params["pageToken"] = request.page_token
if compute.ListUrlMapsRequest.return_partial_success in request:
query_params["returnPartialSuccess"] = request.return_partial_success
headers = dict(metadata)
headers["Content-Type"] = "application/json"
response = self._session.get(url, headers=headers, params=query_params,)
if response.status_code >= 400:
raise core_exceptions.from_http_response(response)
return compute.UrlMapList.from_json(
response.content, ignore_unknown_fields=True
) | Apache License 2.0 |
autonomousvision/data_aggregation | configs/coil_global.py | set_type_of_process | python | def set_type_of_process(process_type, param=None):
if _g_conf.PROCESS_NAME == "default":
raise RuntimeError(" You should merge with some exp file before setting the type")
if process_type == 'train':
_g_conf.PROCESS_NAME = process_type
elif process_type == "validation":
_g_conf.PROCESS_NAME = process_type + '_' + param
if process_type == "drive":
_g_conf.CITY_NAME = param.split('_')[-1]
_g_conf.PROCESS_NAME = process_type + '_' + param
create_log(_g_conf.EXPERIMENT_BATCH_NAME,
_g_conf.EXPERIMENT_NAME,
_g_conf.PROCESS_NAME,
_g_conf.LOG_SCALAR_WRITING_FREQUENCY,
_g_conf.LOG_IMAGE_WRITING_FREQUENCY)
if process_type == "train":
if not os.path.exists(os.path.join('_logs', _g_conf.EXPERIMENT_BATCH_NAME,
_g_conf.EXPERIMENT_NAME,
'checkpoints') ):
os.mkdir(os.path.join('_logs', _g_conf.EXPERIMENT_BATCH_NAME,
_g_conf.EXPERIMENT_NAME,
'checkpoints'))
if process_type == "validation" or process_type == 'drive':
if not os.path.exists(os.path.join('_logs', _g_conf.EXPERIMENT_BATCH_NAME,
_g_conf.EXPERIMENT_NAME,
_g_conf.PROCESS_NAME + '_csv')):
os.mkdir(os.path.join('_logs', _g_conf.EXPERIMENT_BATCH_NAME,
_g_conf.EXPERIMENT_NAME,
_g_conf.PROCESS_NAME + '_csv'))
add_message('Loading', {'ProcessName': _g_conf.EXPERIMENT_GENERATED_NAME,
'FullConfiguration': _g_conf.TRAIN_DATASET_NAME + 'dict'})
_g_conf.immutable(True) | This function is used to set which is the type of the current process, test, train or val
and also the details of each since there could be many vals and tests for a single
experiment.
NOTE: AFTER CALLING THIS FUNCTION, THE CONFIGURATION CLOSES
Args:
type:
Returns: | https://github.com/autonomousvision/data_aggregation/blob/76777156a465cbb77d6d5ab88da8f1812e7ff043/configs/coil_global.py#L151-L208 | from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from ast import literal_eval
from coilutils import AttributeDict
import copy
import numpy as np
import os
import yaml
from configs.namer import generate_name
from logger.coil_logger import create_log, add_message
_g_conf = AttributeDict()
_g_conf.immutable(False)
_g_conf.NUMBER_OF_LOADING_WORKERS = 12
_g_conf.FINISH_ON_VALIDATION_STALE = None
_g_conf.SENSORS = {'rgb': (3, 88, 200)}
_g_conf.MEASUREMENTS = {'float_data': (31)}
_g_conf.TARGETS = ['steer', 'throttle', 'brake']
_g_conf.INPUTS = ['speed_module']
_g_conf.INTENTIONS = []
_g_conf.BALANCE_DATA = True
_g_conf.STEERING_DIVISION = [0.05, 0.05, 0.1, 0.3, 0.3, 0.1, 0.05, 0.05]
_g_conf.PEDESTRIAN_PERCENTAGE = 0
_g_conf.SPEED_DIVISION = []
_g_conf.LABELS_DIVISION = [[0, 2, 5], [3], [4]]
_g_conf.BATCH_SIZE = 120
_g_conf.SPLIT = None
_g_conf.REMOVE = None
_g_conf.AUGMENTATION = None
_g_conf.DATA_USED = 'all'
_g_conf.USE_NOISE_DATA = True
_g_conf.TRAIN_DATASET_NAME = '1HoursW1-3-6-8'
_g_conf.LOG_SCALAR_WRITING_FREQUENCY = 2
_g_conf.LOG_IMAGE_WRITING_FREQUENCY = 1000
_g_conf.EXPERIMENT_BATCH_NAME = "eccv"
_g_conf.EXPERIMENT_NAME = "default"
_g_conf.EXPERIMENT_GENERATED_NAME = None
_g_conf.PROCESS_NAME = "None"
_g_conf.NUMBER_ITERATIONS = 20000
_g_conf.SAVE_SCHEDULE = range(0, 2000, 200)
_g_conf.NUMBER_FRAMES_FUSION = 1
_g_conf.NUMBER_IMAGES_SEQUENCE = 1
_g_conf.SEQUENCE_STRIDE = 1
_g_conf.TEST_SCHEDULE = range(0, 2000, 200)
_g_conf.SPEED_FACTOR = 12.0
_g_conf.AUGMENT_LATERAL_STEERINGS = 6
_g_conf.NUMBER_OF_HOURS = 1
_g_conf.WEATHERS = [1, 3, 6, 8]
_g_conf.PRELOAD_MODEL_BATCH = None
_g_conf.PRELOAD_MODEL_ALIAS = None
_g_conf.PRELOAD_MODEL_CHECKPOINT = None
_g_conf.TRAIN_SET_EPISODE_LIMIT = 350
_g_conf.SAMPLE = None
_g_conf.DART_COVMAT_DATA = ""
_g_conf.DART_MODEL_CHECKPOINT = ""
_g_conf.PRE_TRAINED_DIRECTORY = ""
_g_conf.COIL_DATASET_PATH = ""
_g_conf.COVARIANCE_MATRIX_PATH = ""
_g_conf.VALIDATION_CHECKPOINT_PATH = ""
_g_conf.VALIDATION_CHECKPOINT_ITERATION = ""
_g_conf.MODEL_TYPE = 'coil_icra'
_g_conf.MODEL_CONFIGURATION = {}
_g_conf.PRE_TRAINED = False
_g_conf.MAGICAL_SEED = 42
_g_conf.LEARNING_RATE_DECAY_INTERVAL = 50000
_g_conf.LEARNING_RATE_DECAY_LEVEL = 0.5
_g_conf.LEARNING_RATE_THRESHOLD = 1000
_g_conf.LEARNING_RATE = 0.0002
_g_conf.BRANCH_LOSS_WEIGHT = [0.95, 0.95, 0.95, 0.95, 0.05]
_g_conf.VARIABLE_WEIGHT = {'Steer': 0.5, 'Gas': 0.45, 'Brake': 0.05}
_g_conf.USED_LAYERS_ATT = []
_g_conf.LOSS_FUNCTION = 'L2'
_g_conf.IMAGE_CUT = [115, 510]
_g_conf.USE_ORACLE = False
_g_conf.USE_FULL_ORACLE = False
_g_conf.AVOID_STOPPING = False
def merge_with_yaml(yaml_filename):
global _g_conf
with open(yaml_filename, 'r') as f:
yaml_file = yaml.load(f)
yaml_cfg = AttributeDict(yaml_file)
_merge_a_into_b(yaml_cfg, _g_conf)
path_parts = os.path.split(yaml_filename)
_g_conf.EXPERIMENT_BATCH_NAME = os.path.split(path_parts[-2])[-1]
_g_conf.EXPERIMENT_NAME = path_parts[-1].split('.')[-2]
_g_conf.EXPERIMENT_GENERATED_NAME = generate_name(_g_conf)
def get_names(folder):
alias_in_folder = os.listdir(os.path.join('configs', folder))
experiments_in_folder = {}
for experiment_alias in alias_in_folder:
g_conf.immutable(False)
merge_with_yaml(os.path.join('configs', folder, experiment_alias))
experiments_in_folder.update({experiment_alias: g_conf.EXPERIMENT_GENERATED_NAME})
return experiments_in_folder | MIT License |
pyglet/pyglet | pyglet/text/runlist.py | AbstractRunIterator.__getitem__ | python | def __getitem__(self, index): | Get the value at a given index.
See the class documentation for examples of valid usage.
:Parameters:
`index` : int
Document position to query.
:rtype: object | https://github.com/pyglet/pyglet/blob/b9a63ea179735c8f252ac31d51751bdf8a741c9d/pyglet/text/runlist.py#L262-L272 | class _Run:
def __init__(self, value, count):
self.value = value
self.count = count
def __repr__(self):
return 'Run(%r, %d)' % (self.value, self.count)
class RunList:
def __init__(self, size, initial):
self.runs = [_Run(initial, size)]
def insert(self, pos, length):
i = 0
for run in self.runs:
if i <= pos <= i + run.count:
run.count += length
i += run.count
def delete(self, start, end):
i = 0
for run in self.runs:
if end - start == 0:
break
if i <= start <= i + run.count:
trim = min(end - start, i + run.count - start)
run.count -= trim
end -= trim
i += run.count
self.runs = [r for r in self.runs if r.count > 0]
if not self.runs:
self.runs = [_Run(run.value, 0)]
def set_run(self, start, end, value):
if end - start <= 0:
return
i = 0
start_i = None
start_trim = 0
end_i = None
end_trim = 0
for run_i, run in enumerate(self.runs):
count = run.count
if i < start < i + count:
start_i = run_i
start_trim = start - i
if i < end < i + count:
end_i = run_i
end_trim = end - i
i += count
if start_i is not None:
run = self.runs[start_i]
self.runs.insert(start_i, _Run(run.value, start_trim))
run.count -= start_trim
if end_i is not None:
if end_i == start_i:
end_trim -= start_trim
end_i += 1
if end_i is not None:
run = self.runs[end_i]
self.runs.insert(end_i, _Run(run.value, end_trim))
run.count -= end_trim
i = 0
for run in self.runs:
if start <= i and i + run.count <= end:
run.value = value
i += run.count
last_run = self.runs[0]
for run in self.runs[1:]:
if run.value == last_run.value:
run.count += last_run.count
last_run.count = 0
last_run = run
self.runs = [r for r in self.runs if r.count > 0]
def __iter__(self):
i = 0
for run in self.runs:
yield i, i + run.count, run.value
i += run.count
def get_run_iterator(self):
return RunIterator(self)
def __getitem__(self, index):
i = 0
for run in self.runs:
if i <= index < i + run.count:
return run.value
i += run.count
if index == i:
return self.runs[-1].value
raise IndexError
def __repr__(self):
return str(list(self))
class AbstractRunIterator: | BSD 3-Clause New or Revised License |
maralla/completor.vim | pythonx/completor/__init__.py | Completor.gen_request | python | def gen_request(self, action=b'complete', args=None):
req = self.prepare_request(action=action)
if req and req[-1] != '\n':
req += '\n'
return req | Internal wrapper for preparing a request. | https://github.com/maralla/completor.vim/blob/6ca5f498afe5fe9c659751aef54ef7f2fdc62414/pythonx/completor/__init__.py#L373-L379 | import importlib
import json
import logging
import os
import re
import shlex
import threading
from os.path import expanduser
from ._vim import vim_obj as vim
from ._vim import vim_expand, vim_tempname, vim_support_popup, vim_action_trigger, vim_in_comment_or_string, vim_daemon_send
from ._vim import vim_exists
from .compat import integer_types, to_bytes, to_unicode
from ._log import config_logging
LIMIT = 50
COMMON_LIMIT = 10
_arg_cache = {}
_ctx = threading.local()
class LogFilter(object):
def filter(self, record):
return bool(Completor.get_option('debug'))
config_logging('completor.LogFilter')
logger = logging.getLogger('completor')
def get_encoding():
return to_unicode(
vim.current.buffer.options['fileencoding'] or vim.options['encoding']
or 'utf-8', 'utf-8')
def _unicode(text):
encoding = get_encoding()
try:
return to_unicode(text, encoding)
except Exception:
return text
def _read_args(path):
try:
with open(path) as f:
args = shlex.split(f.read(), comments=True, posix=True)
return [os.path.expandvars(a) for a in args]
except Exception:
return []
class Meta(type):
registry = {}
def __new__(mcls, name, bases, attrs):
cls = type.__new__(mcls, name, bases, attrs)
if name not in ('Completor', 'Base'):
mcls.registry[to_unicode(cls.filetype, 'utf-8')] = cls()
return cls
Base = Meta('Base', (object, ), {})
class Unusable(object):
def __get__(self, inst, owner):
raise RuntimeError('unusable')
class Completor(Base):
filetype = Unusable()
daemon = False
sync = False
trigger = None
ident = re.compile(r'\w+', re.U)
meta = None
_exited = False
def __init__(self):
self.input_data = ''
self.ft = ''
self.ft_orig = ''
self.ft_args = {}
self.stream_buf = []
def copy_to(self, comp):
comp.ft = self.ft
comp.ft_orig = self.ft_orig
comp.ft_args = self.ft_args
comp.input_data = self.input_data
@property
def current_directory(self):
return to_unicode(vim_expand('%:p:h'), 'utf-8')
@property
def tempname(self):
return to_unicode(vim_tempname(), 'utf-8')
@property
def support_popup(self):
return vim_support_popup() == 1
@property
def filename(self):
return vim.current.buffer.name
@property
def cursor_word(self):
try:
return to_unicode(vim_expand('<cword>'), get_encoding())
except vim.error:
pass
@property
def cursor_line(self):
try:
line, _ = vim.current.window.cursor
return to_unicode(vim.current.buffer[line - 1], get_encoding())
except vim.error:
pass
@property
def cursor(self):
return vim.current.window.cursor
@cursor.setter
def cursor(self, value):
vim.current.window.cursor = value
@staticmethod
def get_option(key):
option = vim.vars.get('completor_{}'.format(key))
if option and key.endswith('_binary'):
option = expanduser(option)
return option
@property
def disabled(self):
enable_types = self.get_option('enable_{}'.format(self.filetype))
if isinstance(enable_types, (list, vim.List)):
return to_bytes(self.ft) not in enable_types
else:
disable_types = self.get_option('disable_{}'.format(self.filetype))
if isinstance(disable_types, integer_types):
return bool(disable_types)
if isinstance(disable_types, (list, vim.List)):
return to_bytes(self.ft) in disable_types
return False
@staticmethod
def daemon_send(data):
return vim_daemon_send(data)
def match(self, input_data):
if self.trigger is None:
return True
if isinstance(self.trigger, str):
self.trigger = re.compile(self.trigger, re.X | re.U)
return bool(self.trigger.search(input_data))
def format_cmd(self):
return ''
def get_cmd_info(self, action):
if action == b'complete':
return vim.Dictionary(
cmd=self.format_cmd(),
ftype=self.filetype,
is_daemon=self.daemon,
is_sync=self.sync)
return vim.Dictionary()
def _do_complete(self, data):
ret = []
if callable(getattr(self, 'parse', None)):
ret.extend(self.parse(data))
else:
ret.extend(self.on_complete(data))
if ret and not isinstance(ret[0], (dict, vim.Dictionary)):
offset = self.start_column()
for i, e in enumerate(ret):
ret[i] = {'word': e, 'offset': offset}
common = get('common')
if not common.is_common(self):
if ret and 'offset' not in ret[0]:
offset = self.start_column()
for item in ret:
item['offset'] = offset
if len(ret) < LIMIT/2:
self.copy_to(common)
ret.extend(common.parse(self.input_data)[:COMMON_LIMIT])
if not self.support_popup and ret:
offset = ret[0]['offset']
for i, item in enumerate(ret):
if item['offset'] != offset:
ret = ret[:i]
break
return ret
def on_stream(self, action, msg):
for line in msg.split(b'\n'):
if not line:
continue
self.stream_buf.append(line)
if self.is_message_end(line):
data = self.stream_buf
self.stream_buf = []
return self.on_data(action, data)
def handle_stream(self, name, action, msg):
c = get_current_completer()
logger.info("%s %s", c.filetype, name)
if c and c.filetype != name:
self.stream_buf = []
return
res = self.on_stream(action, msg)
if res is None:
return
try:
vim_action_trigger(res)
except vim.error as e:
logger.exception(e)
def on_data(self, action, data):
action = action.decode('ascii')
if not isinstance(data, (list, vim.List)):
data = _unicode(data)
if action == 'complete':
return self._do_complete(data)
try:
return getattr(self, 'on_' + action)(data)
except AttributeError:
return []
@staticmethod
def find_config_file(file):
cwd = os.getcwd()
while True:
path = os.path.join(cwd, file)
if os.path.exists(path):
return path
dirname = os.path.dirname(cwd)
if dirname == cwd:
break
cwd = dirname
def parse_config(self, files):
if not isinstance(files, (list, tuple)):
files = [files]
for f in files:
key = '{}-{}'.format(self.filetype, f)
arg = _arg_cache.get(key)
if arg:
return arg
if arg is not None:
continue
path = self.find_config_file(f)
arg = [] if path is None else _read_args(path)
_arg_cache[key] = arg
if arg:
return arg
return []
def ident_match(self, pat):
if not self.input_data:
return -1
data = self.input_data
index = len(self.input_data)
for i in range(index):
text = self.input_data[i:]
matched = pat.match(text)
if matched and matched.end() == len(text):
data = self.input_data[:i]
break
return len(to_bytes(data, get_encoding()))
def start_column(self):
if not self.ident:
return -1
if isinstance(self.ident, str):
self.ident = re.compile(self.ident, re.U | re.X)
return self.ident_match(self.ident)
def request(self):
line, _ = self.cursor
col = len(self.input_data)
return json.dumps({
'line': line - 1,
'col': col,
'filename': self.filename,
'content': '\n'.join(vim.current.buffer[:])
})
def prepare_request(self, action=b'complete'):
if action == b'complete':
return self.request()
return '' | MIT License |
crypto-toolbox/btfxwss | btfxwss/client.py | BtfxWss.trades | python | def trades(self, pair):
key = ('trades', pair)
return self.queue_processor.trades[key] | Return a queue containing all received trades data.
:param pair:
:return: Queue() | https://github.com/crypto-toolbox/btfxwss/blob/16827fa6aacb2c0e289aa852bf61a18df6905835/btfxwss/client.py#L122-L129 | import logging
import time
from btfxwss.connection import WebSocketConnection
from btfxwss.queue_processor import QueueProcessor
log = logging.getLogger(__name__)
def is_connected(func):
def wrapped(self, *args, **kwargs):
if self.conn and self.conn.connected.is_set():
return func(self, *args, **kwargs)
else:
log.error("Cannot call %s() on unestablished connection!",
func.__name__)
return None
return wrapped
class BtfxWss:
def __init__(self, key=None, secret=None, log_level=None, **wss_kwargs):
self.key = key if key else ''
self.secret = secret if secret else ''
self.conn = WebSocketConnection(log_level=log_level,
**wss_kwargs)
self.queue_processor = QueueProcessor(self.conn.q,
log_level=log_level)
@property
def channel_configs(self):
return self.conn.channel_configs
@property
def account(self):
return self.queue_processor.account
def start(self):
self.conn.start()
self.queue_processor.start()
def stop(self):
self.conn.disconnect()
self.queue_processor.join()
def reset(self):
self.conn.reconnect()
while not self.conn.connected.is_set():
log.info("reset(): Waiting for connection to be set up..")
time.sleep(1)
for key in self.channel_configs:
self.conn.send(**self.channel_configs[key])
def tickers(self, pair):
key = ('ticker', pair)
return self.queue_processor.tickers[key]
def books(self, pair):
key = ('book', pair)
return self.queue_processor.books[key]
def raw_books(self, pair):
key = ('raw_book', pair)
return self.queue_processor.raw_books[key] | MIT License |
griquelme/tidyms | tidyms/lcms.py | _build_roi | python | def _build_roi(roi: _TemporaryRoi, rt: np.ndarray, valid_scan: np.ndarray,
start: int, mode: str) -> Roi:
first_scan = roi.scan[0]
last_scan = roi.scan[-1]
size = last_scan + 1 - first_scan
mz_tmp = np.ones(size) * np.nan
spint_tmp = mz_tmp.copy()
scan_index = np.array(roi.scan) - roi.scan[0]
mz_tmp[scan_index] = roi.mz
spint_tmp[scan_index] = roi.sp
start_ind, end_ind = np.searchsorted(valid_scan,
[first_scan, last_scan + 1])
scan_tmp = valid_scan[start_ind:end_ind].copy()
valid_index = scan_tmp - first_scan
mz_tmp = mz_tmp[valid_index]
spint_tmp = spint_tmp[valid_index]
rt_tmp = rt[scan_tmp - start].copy()
assert rt_tmp.size == mz_tmp.size
assert rt_tmp.size == spint_tmp.size
assert rt_tmp.size == scan_tmp.size
roi = Roi(spint_tmp, mz_tmp, rt_tmp, scan_tmp, mode=mode)
return roi | Convert to a ROI object
Parameters
----------
rt: array
array of retention times associated to each scan
valid_scan : array
array of scans associated used to build the Rois.
start : int first scan used to create ROI
mode : mode to pass to ROI creation.
Returns
------- | https://github.com/griquelme/tidyms/blob/dd8e6f3ea60dea8efca0fb6bac73362b2a2457be/tidyms/lcms.py#L904-L956 | import bokeh.plotting
import numpy as np
import pyopenms
from collections import deque
from collections import namedtuple
from scipy.interpolate import interp1d
from scipy.ndimage import gaussian_filter1d
from typing import Optional, Iterable, Tuple, Union, List, Callable
from . import peaks
from . import _plot_bokeh
from .utils import find_closest
ms_experiment_type = Union[pyopenms.MSExperiment, pyopenms.OnDiscMSExperiment]
class MSSpectrum:
def __init__(self, mz: np.ndarray, spint: np.ndarray,
instrument: Optional[str] = None):
self.mz = mz
self.spint = spint
if instrument is None:
instrument = "qtof"
self.instrument = instrument
@property
def instrument(self) -> str:
return self._instrument
@instrument.setter
def instrument(self, value):
valid_values = ["qtof", "orbitrap"]
if value in valid_values:
self._instrument = value
else:
msg = "instrument must be one of {}".format(valid_values)
raise ValueError(msg)
def find_centroids(self, min_snr: Optional[float] = None,
min_distance: Optional[float] = None
) -> Tuple[np.ndarray, np.ndarray]:
params = get_find_centroid_params(self.instrument)
if min_distance is not None:
params["min_distance"] = min_distance
if min_snr is not None:
params["min_snr"] = min_snr
centroids, area = peaks.find_centroids(self.mz, self.spint, **params)
return centroids, area
def plot(self, draw: bool = True, fig_params: Optional[dict] = None,
line_params: Optional[dict] = None) -> bokeh.plotting.Figure:
return _plot_bokeh.plot_ms_spectrum(self.mz, self.spint, draw=draw,
fig_params=fig_params,
line_params=line_params)
class Chromatogram:
def __init__(self, rt: np.ndarray, spint: np.ndarray,
mode: str = "uplc"):
self.mode = mode
self.rt = rt
self.spint = spint
self.peaks = None
@property
def mode(self):
return self._mode
@mode.setter
def mode(self, value):
valid_values = ["uplc", "hplc"]
if value in valid_values:
self._mode = value
else:
msg = "mode must be one of {}".format(valid_values)
raise ValueError(msg)
def find_peaks(self, smoothing_strength: Optional[float] = 1.0,
descriptors: Optional[dict] = None,
filters: Optional[dict] = None,
noise_params: Optional[dict] = None,
baseline_params: Optional[dict] = None,
find_peaks_params: Optional[dict] = None,
return_signal_estimators: bool = False) -> List[dict]:
if noise_params is None:
noise_params = dict()
if baseline_params is None:
baseline_params = dict()
if find_peaks_params is None:
find_peaks_params = dict()
if filters is None:
filters = get_lc_filter_peak_params(self.mode)
noise = peaks.estimate_noise(self.spint, **noise_params)
if smoothing_strength is None:
x = self.spint
else:
x = gaussian_filter1d(self.spint, smoothing_strength)
baseline = peaks.estimate_baseline(x, noise, **baseline_params)
peak_list = peaks.detect_peaks(x, noise, baseline, **find_peaks_params)
peak_list, peak_descriptors = peaks.get_peak_descriptors(self.rt, self.spint, noise, baseline,
peak_list, descriptors=descriptors,
filters=filters)
self.peaks = peak_list
if return_signal_estimators:
estimators = {"smoothed": x, "noise": noise, "baseline": baseline}
res = peak_descriptors, estimators
else:
res = peak_descriptors
return res
def plot(self, draw: bool = True, fig_params: Optional[dict] = None,
line_params: Optional[dict] = None) -> bokeh.plotting.Figure:
return _plot_bokeh.plot_chromatogram(self.rt, self.spint, self.peaks,
draw=draw, fig_params=fig_params,
line_params=line_params)
class Roi(Chromatogram):
def __init__(self, spint: np.ndarray, mz: np.ndarray, rt: np.ndarray,
scan: np.ndarray, mode: str = "uplc"):
super(Roi, self).__init__(rt, spint, mode=mode)
self.mz = mz
self.scan = scan
def fill_nan(self, fill_value: Optional[float] = None):
if np.isnan(self.spint[0]):
self.spint[0] = 0
if np.isnan(self.spint[-1]):
self.spint[-1] = 0
missing = np.isnan(self.spint)
mz_mean = np.nanmean(self.mz)
if fill_value is None:
interpolator = interp1d(self.rt[~missing], self.spint[~missing])
self.mz[missing] = mz_mean
self.spint[missing] = interpolator(self.rt[missing])
else:
self.mz[missing] = mz_mean
self.spint[missing] = fill_value
def get_peaks_mz(self):
mz_std = np.zeros(len(self.peaks))
mz_mean = np.zeros(len(self.peaks))
for k, peak in enumerate(self.peaks):
mz_std[k] = self.mz[peak.start:peak.end].std()
mz_mean[k] = peak.get_loc(self.mz, self.spint)
return mz_mean, mz_std
def make_tic(ms_experiment: ms_experiment_type, kind: str, mode: str,
ms_level: int):
if kind == "tic":
reduce = np.sum
elif kind == "bpi":
reduce = np.max
else:
msg = "valid modes are tic or bpi"
raise ValueError(msg)
n_scan = ms_experiment.getNrSpectra()
rt = np.zeros(n_scan)
tic = np.zeros(n_scan)
valid_index = list()
for k, sp in _get_spectra_iterator(ms_experiment, ms_level, 0, n_scan):
valid_index.append(k)
rt[k] = sp.getRT()
_, spint = sp.get_peaks()
tic[k] = reduce(spint)
tic = tic[valid_index]
rt = rt[valid_index]
return Chromatogram(rt, tic, mode)
def make_chromatograms(ms_experiment: ms_experiment_type, mz: Iterable[float],
window: float = 0.05, start: int = 0,
end: Optional[int] = None, accumulator: str = "sum",
chromatogram_mode: str = "uplc", ms_level: int = 1
) -> List[Chromatogram]:
nsp = ms_experiment.getNrSpectra()
if not isinstance(mz, np.ndarray):
mz = np.array(mz)
if end is None:
end = nsp
mz_intervals = (np.vstack((mz - window, mz + window))
.T.reshape(mz.size * 2))
eic = np.zeros((mz.size, end - start))
rt = np.zeros(end - start)
valid_index = list()
for ksp, sp in _get_spectra_iterator(ms_experiment, ms_level, start, end):
valid_index.append(ksp - start)
rt[ksp - start] = sp.getRT()
mz_sp, int_sp = sp.get_peaks()
ind_sp = np.searchsorted(mz_sp, mz_intervals)
has_mz = (ind_sp[1::2] - ind_sp[::2]) > 0
ind_sp[ind_sp >= int_sp.size] = int_sp.size - 1
tmp_eic = np.where(has_mz, np.add.reduceat(int_sp, ind_sp)[::2], 0)
if accumulator == "mean":
norm = ind_sp[1::2] - ind_sp[::2]
norm[norm == 0] = 1
tmp_eic = tmp_eic / norm
eic[:, ksp - start] = tmp_eic
valid_index = np.array(valid_index)
rt = rt[valid_index]
eic = eic[:, valid_index]
chromatograms = list()
for row in eic:
chromatogram = Chromatogram(rt.copy(), row, mode=chromatogram_mode)
chromatograms.append(chromatogram)
return chromatograms
def make_roi(ms_experiment: ms_experiment_type, tolerance: float,
max_missing: int, min_length: int, min_intensity: float,
start: int = 0, end: Optional[int] = None, pad: int = 0,
multiple_match: str = "reduce",
mz_reduce: Union[str, Callable] = None,
sp_reduce: Union[str, Callable] = "sum",
targeted_mz: Optional[np.ndarray] = None,
mode: str = "uplc", ms_level: int = 1
) -> List[Roi]:
if end is None:
end = ms_experiment.getNrSpectra()
if targeted_mz is None:
mz_seed, _ = ms_experiment.getSpectrum(start).get_peaks()
targeted = False
else:
mz_seed = targeted_mz
targeted = True
size = end - start
rt = np.zeros(size)
processor = _RoiMaker(mz_seed, max_missing=max_missing,
min_length=min_length,
min_intensity=min_intensity, tolerance=tolerance,
multiple_match=multiple_match,
mz_reduce=mz_reduce, sp_reduce=sp_reduce,
targeted=targeted)
valid_scan = list()
for k, sp in _get_spectra_iterator(ms_experiment, ms_level, start, end):
rt[k - start] = sp.getRT()
mz, spint = sp.get_peaks()
valid_scan.append(k)
processor.extend_roi(mz, spint, k)
processor.store_completed_roi()
processor.flag_as_completed()
processor.store_completed_roi()
valid_scan = np.array(valid_scan)
roi_list = list()
for r in processor.roi:
r = _TemporaryRoi(deque(r.mz), deque(r.sp), deque(r.scan))
_pad_roi(r, pad, valid_scan)
r = _build_roi(r, rt, valid_scan, start, mode)
roi_list.append(r)
return roi_list
def accumulate_spectra_profile(ms_experiment: ms_experiment_type,
start: int, end: int,
subtract_left: Optional[int] = None,
subtract_right: Optional[int] = None,
ms_level: int = 1, instrument: str = "qtof"
) -> MSSpectrum:
if subtract_left is None:
subtract_left = start
if subtract_right is None:
subtract_right = end
mz, _ = ms_experiment.getSpectrum(start).get_peaks()
accumulated_mz = _get_uniform_mz(mz)
accumulated_sp = np.zeros_like(accumulated_mz)
for scan, sp in _get_spectra_iterator(ms_experiment, ms_level,
subtract_left, subtract_right):
mz_scan, int_scan = sp.get_peaks()
mz_min, mz_max = mz_scan.min(), mz_scan.max()
min_ind, max_ind = np.searchsorted(accumulated_mz, [mz_min, mz_max])
interpolator = interp1d(mz_scan, int_scan, kind="linear")
tmp_sp = interpolator(accumulated_mz[min_ind:max_ind])
if (scan < start) or (scan > end):
accumulated_sp[min_ind:max_ind] -= tmp_sp
else:
accumulated_sp[min_ind:max_ind] += tmp_sp
is_positive_sp = accumulated_sp > 0
accumulated_mz = accumulated_mz[is_positive_sp]
accumulated_sp = accumulated_sp[is_positive_sp]
return MSSpectrum(accumulated_mz, accumulated_sp, instrument=instrument)
def accumulate_spectra_centroid(ms_experiment: ms_experiment_type,
start: int, end: int,
subtract_left: Optional[int] = None,
subtract_right: Optional[int] = None,
tolerance: Optional[float] = None,
ms_level: int = 1) -> MSSpectrum:
if subtract_left is None:
subtract_left = start
if subtract_right is None:
subtract_right = end
max_missing = subtract_right - subtract_left
roi = make_roi(ms_experiment, tolerance, max_missing=max_missing,
min_length=1, min_intensity=0.0, multiple_match="reduce",
start=subtract_left, end=subtract_right, mz_reduce=None,
sp_reduce="sum", mode="uplc", ms_level=ms_level)
mz = np.zeros(len(roi))
spint = mz.copy()
for k, r in enumerate(roi):
accum_mask = - np.ones(r.scan.size)
accum_start, accum_end = np.searchsorted(r.scan, [start, end])
accum_mask[accum_start:accum_end] = 1
mz[k] = np.nanmean(r.mz)
spint[k] = np.nansum(r.spint * accum_mask)
pos_values = spint > 0
mz = mz[pos_values]
spint = spint[pos_values]
sorted_index = np.argsort(mz)
mz = mz[sorted_index]
spint = spint[sorted_index]
return MSSpectrum(mz, spint)
def get_lc_filter_peak_params(lc_mode: str) -> dict:
if lc_mode == "hplc":
filters = {"width": (10, 90), "snr": (5, None)}
elif lc_mode == "uplc":
filters = {"width": (4, 60), "snr": (5, None)}
else:
msg = "`mode` must be `hplc` or `uplc`"
raise ValueError(msg)
return filters
def get_roi_params(separation: str = "uplc", instrument: str = "qtof"):
roi_params = {"min_intensity": 500, "multiple_match": "reduce"}
if separation == "uplc":
roi_params.update({"max_missing": 1, "min_length": 10, "pad": 2})
elif separation == "hplc":
roi_params.update({"max_missing": 1, "min_length": 20, "pad": 2})
else:
msg = "valid `separation` are uplc and hplc"
raise ValueError(msg)
if instrument == "qtof":
roi_params.update({"tolerance": 0.01})
elif instrument == "orbitrap":
roi_params.update({"tolerance": 0.005})
else:
msg = "valid `instrument` are qtof and orbitrap"
raise ValueError(msg)
roi_params["mode"] = separation
return roi_params
def get_find_centroid_params(instrument: str):
params = {"min_snr": 10}
if instrument == "qtof":
md = 0.01
else:
md = 0.005
params["min_distance"] = md
return params
_TemporaryRoi = namedtuple("TemporaryRoi", ["mz", "sp", "scan"])
def _make_temporary_roi():
return _TemporaryRoi([], [], [])
def _append_to__roi(roi: _TemporaryRoi, mz: float, sp: float,
scan: int):
roi.mz.append(mz)
roi.sp.append(sp)
roi.scan.append(scan)
def _pad_roi(roi: _TemporaryRoi, n: int, valid_scan: np.ndarray):
first_scan = roi.scan[0]
last_scan = roi.scan[-1]
start, end = np.searchsorted(valid_scan, [first_scan, last_scan + 1])
l_pad_index = max(0, start - n)
nl = start - l_pad_index
r_pad_index = min(valid_scan.size, end + n)
nr = r_pad_index - end
sp_max = max(roi.sp)
sp_min = min(roi.sp)
mz_fill = np.mean(roi.mz)
sp_threshold = 0.75 * sp_max
sp_fill_left = sp_max if (roi.sp[0] > sp_threshold) else sp_min
roi.mz.extendleft([mz_fill] * nl)
roi.sp.extendleft([sp_fill_left] * nl)
roi.scan.extendleft(valid_scan[l_pad_index:start][::-1])
sp_fill_right = sp_max if (roi.sp[-1] > sp_threshold) else sp_min
roi.mz.extend([mz_fill] * nr)
roi.sp.extend([sp_fill_right] * nr)
roi.scan.extend(valid_scan[end:r_pad_index]) | BSD 3-Clause New or Revised License |
vitruvianscience/opendeep | opendeep/utils/midi/MidiOutFile.py | MidiOutFile.sequencer_specific | python | def sequencer_specific(self, data):
self.meta_slice(SEQUENCER_SPECIFIC, data) | data: The data as byte values | https://github.com/vitruvianscience/opendeep/blob/e96efc449101094354b615cf15afe6d03644fc36/opendeep/utils/midi/MidiOutFile.py#L313-L317 | from __future__ import absolute_import
from .MidiOutStream import MidiOutStream
from .RawOutstreamFile import RawOutstreamFile
from .constants import *
from .DataTypeConverters import fromBytes, writeVar
class MidiOutFile(MidiOutStream):
def __init__(self, raw_out=''):
self.raw_out = RawOutstreamFile(raw_out)
MidiOutStream.__init__(self)
def write(self):
self.raw_out.write()
def event_slice(self, slc):
trk = self._current_track_buffer
trk.writeVarLen(self.rel_time())
trk.writeSlice(slc)
def note_on(self, channel=0, note=0x40, velocity=0x40):
slc = fromBytes([NOTE_ON + channel, note, velocity])
self.event_slice(slc)
def note_off(self, channel=0, note=0x40, velocity=0x40):
slc = fromBytes([NOTE_OFF + channel, note, velocity])
self.event_slice(slc)
def aftertouch(self, channel=0, note=0x40, velocity=0x40):
slc = fromBytes([AFTERTOUCH + channel, note, velocity])
self.event_slice(slc)
def continuous_controller(self, channel, controller, value):
slc = fromBytes([CONTINUOUS_CONTROLLER + channel, controller, value])
self.event_slice(slc)
def patch_change(self, channel, patch):
slc = fromBytes([PATCH_CHANGE + channel, patch])
self.event_slice(slc)
def channel_pressure(self, channel, pressure):
slc = fromBytes([CHANNEL_PRESSURE + channel, pressure])
self.event_slice(slc)
def pitch_bend(self, channel, value):
msb = (value>>7) & 0xFF
lsb = value & 0xFF
slc = fromBytes([PITCH_BEND + channel, msb, lsb])
self.event_slice(slc)
def system_exclusive(self, data):
sysex_len = writeVar(len(data)+1)
self.event_slice(chr(SYSTEM_EXCLUSIVE) + sysex_len + data + chr(END_OFF_EXCLUSIVE))
def midi_time_code(self, msg_type, values):
value = (msg_type<<4) + values
self.event_slice(fromBytes([MIDI_TIME_CODE, value]))
def song_position_pointer(self, value):
lsb = (value & 0x7F)
msb = (value >> 7) & 0x7F
self.event_slice(fromBytes([SONG_POSITION_POINTER, lsb, msb]))
def song_select(self, songNumber):
self.event_slice(fromBytes([SONG_SELECT, songNumber]))
def tuning_request(self):
self.event_slice(chr(TUNING_REQUEST))
def header(self, format=0, nTracks=1, division=96):
raw = self.raw_out
raw.writeSlice('MThd')
bew = raw.writeBew
bew(6, 4)
bew(format, 2)
bew(nTracks, 2)
bew(division, 2)
def eof(self):
self.write()
def meta_slice(self, meta_type, data_slice):
slc = fromBytes([META_EVENT, meta_type]) + writeVar(len(data_slice)) + data_slice
self.event_slice(slc)
def meta_event(self, meta_type, data):
self.meta_slice(meta_type, fromBytes(data))
def start_of_track(self, n_track=0):
self._current_track_buffer = RawOutstreamFile()
self.reset_time()
self._current_track += 1
def end_of_track(self):
raw = self.raw_out
raw.writeSlice(TRACK_HEADER)
track_data = self._current_track_buffer.getvalue()
eot_slice = writeVar(self.rel_time()) + fromBytes([META_EVENT, END_OF_TRACK, 0])
raw.writeBew(len(track_data)+len(eot_slice), 4)
raw.writeSlice(track_data)
raw.writeSlice(eot_slice)
def sequence_number(self, value):
self.meta_slice(meta_type, writeBew(value, 2))
def text(self, text):
self.meta_slice(TEXT, text)
def copyright(self, text):
self.meta_slice(COPYRIGHT, text)
def sequence_name(self, text):
self.meta_slice(SEQUENCE_NAME, text)
def instrument_name(self, text):
self.meta_slice(INSTRUMENT_NAME, text)
def lyric(self, text):
self.meta_slice(LYRIC, text)
def marker(self, text):
self.meta_slice(MARKER, text)
def cuepoint(self, text):
self.meta_slice(CUEPOINT, text)
def midi_ch_prefix(self, channel):
self.meta_slice(MIDI_CH_PREFIX, chr(channel))
def midi_port(self, value):
self.meta_slice(MIDI_CH_PREFIX, chr(value))
def tempo(self, value):
hb, mb, lb = (value>>16 & 0xff), (value>>8 & 0xff), (value & 0xff)
self.meta_slice(TEMPO, fromBytes([hb, mb, lb]))
def smtp_offset(self, hour, minute, second, frame, framePart):
self.meta_slice(SMTP_OFFSET, fromBytes([hour, minute, second, frame, framePart]))
def time_signature(self, nn, dd, cc, bb):
self.meta_slice(TIME_SIGNATURE, fromBytes([nn, dd, cc, bb]))
def key_signature(self, sf, mi):
self.meta_slice(KEY_SIGNATURE, fromBytes([sf, mi])) | Apache License 2.0 |
inmanta/inmanta-core | src/inmanta/parser/plyInmantaParser.py | p_entity_body_outer_1 | python | def p_entity_body_outer_1(p: YaccProduction) -> None:
p[0] = (None, p[1]) | entity_body_outer : entity_body END | https://github.com/inmanta/inmanta-core/blob/7e57295314e30276204b74ddcb8e2402c0a50b19/src/inmanta/parser/plyInmantaParser.py#L257-L259 | import logging
import re
from typing import List, Optional, Union
import ply.yacc as yacc
from ply.yacc import YaccProduction
import inmanta.warnings as inmanta_warnings
from inmanta.ast import LocatableString, Location, Namespace, Range
from inmanta.ast.blocks import BasicBlock
from inmanta.ast.constraint.expression import IsDefined, Not, Operator
from inmanta.ast.statements import Literal, Statement
from inmanta.ast.statements.assign import CreateDict, CreateList, IndexLookup, MapLookup, ShortIndexLookup, StringFormat
from inmanta.ast.statements.call import FunctionCall
from inmanta.ast.statements.define import (
DefineAttribute,
DefineEntity,
DefineImplement,
DefineImplementation,
DefineImport,
DefineIndex,
DefineRelation,
DefineTypeConstraint,
DefineTypeDefault,
TypeDeclaration,
)
from inmanta.ast.statements.generator import ConditionalExpression, Constructor, For, If, WrappedKwargs
from inmanta.ast.variables import AttributeReference, Reference
from inmanta.execute.util import NoneValue
from inmanta.parser import ParserException, SyntaxDeprecationWarning, plyInmantaLex
from inmanta.parser.cache import CacheManager
from inmanta.parser.plyInmantaLex import reserved, tokens
LOGGER = logging.getLogger()
file = "NOFILE"
namespace = None
precedence = (
("right", ","),
("nonassoc", ":"),
("nonassoc", "?"),
("left", "OR"),
("left", "AND"),
("left", "CMP_OP"),
("nonassoc", "NOT"),
("left", "IN"),
("right", "MLS"),
("right", "MLS_END"),
)
def attach_lnr(p: YaccProduction, token: int = 1) -> None:
v = p[0]
v.location = Location(file, p.lineno(token))
v.namespace = namespace
v.lexpos = p.lexpos(token)
def merge_lnr_to_string(p: YaccProduction, starttoken: int = 1, endtoken: int = 2) -> None:
v = p[0]
et = p[endtoken]
endline = et.elnr
endchar = et.end
st = p[starttoken]
if isinstance(st, LocatableString):
startline = st.lnr
startchar = st.start
else:
startline = et.lnr
startchar = et.start
p[0] = LocatableString(v, Range(file, startline, startchar, endline, endchar), endchar, namespace)
def attach_from_string(p: YaccProduction, token: int = 1) -> None:
v = p[0]
v.location = p[token].location
v.namespace = p[token].namespace
def make_none(p: YaccProduction, token: int) -> Literal:
none = Literal(NoneValue())
none.location = Location(file, p.lineno(token))
none.namespace = namespace
none.lexpos = p.lexpos(token)
return none
def p_main_collect(p: YaccProduction) -> None:
v = p[2]
v.insert(0, p[1])
p[0] = v
def p_main_term(p: YaccProduction) -> None:
p[0] = []
def p_top_stmt(p: YaccProduction) -> None:
p[0] = p[1]
def p_empty(p: YaccProduction) -> None:
pass
def p_import(p: YaccProduction) -> None:
p[0] = DefineImport(str(p[2]), str(p[2]))
attach_lnr(p, 1)
def p_import_1(p: YaccProduction) -> None:
p[0] = DefineImport(str(p[2]), p[4])
attach_lnr(p, 1)
def p_stmt(p: YaccProduction) -> None:
p[0] = p[1]
def p_stmt_list_collect(p: YaccProduction) -> None:
v = p[2]
v.append(p[1])
p[0] = v
def p_stmt_list_empty(p: YaccProduction) -> None:
p[0] = []
def p_assign(p: YaccProduction) -> None:
p[0] = p[1].as_assign(p[3])
attach_lnr(p, 2)
def p_assign_extend(p: YaccProduction) -> None:
p[0] = p[1].as_assign(p[3], list_only=True)
attach_lnr(p, 2)
def p_for(p: YaccProduction) -> None:
p[0] = For(p[4], p[2], BasicBlock(namespace, p[6]))
attach_lnr(p, 1)
def p_if(p: YaccProduction) -> None:
p[0] = If(p[2], BasicBlock(namespace, p[4]), BasicBlock(namespace, []))
attach_lnr(p, 1)
def p_if_else(p: YaccProduction) -> None:
p[0] = If(p[2], BasicBlock(namespace, p[4]), BasicBlock(namespace, p[7]))
attach_lnr(p, 1)
def p_entity(p: YaccProduction) -> None:
p[0] = DefineEntity(namespace, p[2], p[4][0], [], p[4][1])
attach_lnr(p)
def p_entity_err_1(p: YaccProduction) -> None:
raise ParserException(p[2].location, str(p[2]), "Invalid identifier: Entity names must start with a capital")
def p_entity_extends(p: YaccProduction) -> None:
p[0] = DefineEntity(namespace, p[2], p[6][0], p[4], p[6][1])
attach_lnr(p)
def p_entity_extends_err(p: YaccProduction) -> None:
raise ParserException(p[2].location, str(p[2]), "Invalid identifier: Entity names must start with a capital")
def p_entity_body_outer(p: YaccProduction) -> None:
p[0] = (p[1], p[2]) | Apache License 2.0 |
openstack/cinder | cinder/backup/chunkeddriver.py | ChunkedBackupDriver._calculate_sha | python | def _calculate_sha(self, data):
chunk = memoryview(data)
shalist = []
off = 0
datalen = len(chunk)
while off < datalen:
chunk_end = min(datalen, off + self.sha_block_size_bytes)
block = chunk[off:chunk_end]
sha = hashlib.sha256(block).hexdigest()
shalist.append(sha)
off += self.sha_block_size_bytes
return shalist | Calculate SHA256 of a data chunk.
This method cannot log anything as it is called on a native thread. | https://github.com/openstack/cinder/blob/4558e4b53a7e41dc1263417a4824f39bb6fd30e1/cinder/backup/chunkeddriver.py#L484-L501 | import abc
import hashlib
import json
import os
import sys
import eventlet
from oslo_config import cfg
from oslo_log import log as logging
from oslo_service import loopingcall
from oslo_utils import excutils
from oslo_utils import secretutils
from oslo_utils import units
from cinder.backup import driver
from cinder import exception
from cinder.i18n import _
from cinder import objects
from cinder.objects import fields
from cinder.volume import volume_utils
if sys.platform == 'win32':
from os_win import utilsfactory as os_win_utilsfactory
LOG = logging.getLogger(__name__)
backup_opts = [
cfg.StrOpt('backup_compression_algorithm',
default='zlib',
ignore_case=True,
choices=[('none', 'Do not use compression'),
('off', "Same as 'none'"),
('no', "Same as 'none'"),
('zlib', 'Use the Deflate compression algorithm'),
('gzip', "Same as 'zlib'"),
('bz2', 'Use Burrows-Wheeler transform compression'),
('bzip2', "Same as 'bz2'"),
('zstd', 'Use the Zstandard compression algorithm')],
help="Compression algorithm for backups ('none' to disable)"),
]
CONF = cfg.CONF
CONF.register_opts(backup_opts)
class ChunkedBackupDriver(driver.BackupDriver, metaclass=abc.ABCMeta):
DRIVER_VERSION = '1.0.0'
DRIVER_VERSION_MAPPING = {'1.0.0': '_restore_v1'}
def _get_compressor(self, algorithm):
try:
if algorithm.lower() in ('none', 'off', 'no'):
return None
if algorithm.lower() in ('zlib', 'gzip'):
import zlib as compressor
result = compressor
elif algorithm.lower() in ('bz2', 'bzip2'):
import bz2 as compressor
result = compressor
elif algorithm.lower() == 'zstd':
import zstd as compressor
result = compressor
else:
result = None
if result:
return eventlet.tpool.Proxy(result)
except ImportError:
pass
err = _('unsupported compression algorithm: %s') % algorithm
raise ValueError(err)
def __init__(
self, context, chunk_size_bytes, sha_block_size_bytes,
backup_default_container, enable_progress_timer,
):
super(ChunkedBackupDriver, self).__init__(context)
self.chunk_size_bytes = chunk_size_bytes
self.sha_block_size_bytes = sha_block_size_bytes
self.backup_default_container = backup_default_container
self.enable_progress_timer = enable_progress_timer
self.backup_timer_interval = CONF.backup_timer_interval
self.data_block_num = CONF.backup_object_number_per_notification
self.az = CONF.storage_availability_zone
self.backup_compression_algorithm = CONF.backup_compression_algorithm
self.compressor = self._get_compressor(CONF.backup_compression_algorithm)
self.support_force_delete = True
if sys.platform == 'win32' and self.chunk_size_bytes % 4096:
err = _("Invalid chunk size. It must be a multiple of 4096.")
raise exception.InvalidConfigurationValue(message=err)
def _get_object_writer(self, container, object_name, extra_metadata=None):
writer = self.get_object_writer(container, object_name, extra_metadata)
return eventlet.tpool.Proxy(writer)
def _get_object_reader(self, container, object_name, extra_metadata=None):
reader = self.get_object_reader(container, object_name, extra_metadata)
return eventlet.tpool.Proxy(reader)
@abc.abstractmethod
def put_container(self, container):
return
@abc.abstractmethod
def get_container_entries(self, container, prefix):
return
@abc.abstractmethod
def get_object_writer(self, container, object_name, extra_metadata=None):
return
@abc.abstractmethod
def get_object_reader(self, container, object_name, extra_metadata=None):
return
@abc.abstractmethod
def delete_object(self, container, object_name):
return
@abc.abstractmethod
def _generate_object_name_prefix(self, backup):
return
@abc.abstractmethod
def update_container_name(self, backup, container):
return
@abc.abstractmethod
def get_extra_metadata(self, backup, volume):
return
def _create_container(self, backup):
new_container = self.update_container_name(backup, backup.container)
if new_container:
if new_container != backup.container:
backup.container = new_container
elif backup.container is None:
backup.container = self.backup_default_container
LOG.debug('_create_container started, container: %(container)s,'
'backup: %(backup_id)s.',
{'container': backup.container, 'backup_id': backup.id})
backup.save()
self.put_container(backup.container)
return backup.container
def _generate_object_names(self, backup):
prefix = backup['service_metadata']
object_names = self.get_container_entries(backup['container'], prefix)
LOG.debug('generated object list: %s.', object_names)
return object_names
def _metadata_filename(self, backup):
object_name = backup['service_metadata']
filename = '%s_metadata' % object_name
return filename
def _sha256_filename(self, backup):
object_name = backup['service_metadata']
filename = '%s_sha256file' % object_name
return filename
def _write_metadata(self, backup, volume_id, container, object_list,
volume_meta, extra_metadata=None):
filename = self._metadata_filename(backup)
LOG.debug('_write_metadata started, container name: %(container)s,'
' metadata filename: %(filename)s.',
{'container': container, 'filename': filename})
metadata = {}
metadata['version'] = self.DRIVER_VERSION
metadata['backup_id'] = backup['id']
metadata['volume_id'] = volume_id
metadata['backup_name'] = backup['display_name']
metadata['backup_description'] = backup['display_description']
metadata['created_at'] = str(backup['created_at'])
metadata['objects'] = object_list
metadata['parent_id'] = backup['parent_id']
metadata['volume_meta'] = volume_meta
if extra_metadata:
metadata['extra_metadata'] = extra_metadata
metadata_json = json.dumps(metadata, sort_keys=True, indent=2)
metadata_json = metadata_json.encode('utf-8')
with self._get_object_writer(container, filename) as writer:
writer.write(metadata_json)
LOG.debug('_write_metadata finished. Metadata: %s.', metadata_json)
def _write_sha256file(self, backup, volume_id, container, sha256_list):
filename = self._sha256_filename(backup)
LOG.debug('_write_sha256file started, container name: %(container)s,'
' sha256file filename: %(filename)s.',
{'container': container, 'filename': filename})
sha256file = {}
sha256file['version'] = self.DRIVER_VERSION
sha256file['backup_id'] = backup['id']
sha256file['volume_id'] = volume_id
sha256file['backup_name'] = backup['display_name']
sha256file['backup_description'] = backup['display_description']
sha256file['created_at'] = str(backup['created_at'])
sha256file['chunk_size'] = self.sha_block_size_bytes
sha256file['sha256s'] = sha256_list
sha256file_json = json.dumps(sha256file, sort_keys=True, indent=2)
sha256file_json = sha256file_json.encode('utf-8')
with self._get_object_writer(container, filename) as writer:
writer.write(sha256file_json)
LOG.debug('_write_sha256file finished.')
def _read_metadata(self, backup):
container = backup['container']
filename = self._metadata_filename(backup)
LOG.debug('_read_metadata started, container name: %(container)s, '
'metadata filename: %(filename)s.',
{'container': container, 'filename': filename})
with self._get_object_reader(container, filename) as reader:
metadata_json = reader.read()
metadata_json = metadata_json.decode('utf-8')
metadata = json.loads(metadata_json)
LOG.debug('_read_metadata finished. Metadata: %s.', metadata_json)
return metadata
def _read_sha256file(self, backup):
container = backup['container']
filename = self._sha256_filename(backup)
LOG.debug('_read_sha256file started, container name: %(container)s, '
'sha256 filename: %(filename)s.',
{'container': container, 'filename': filename})
with self._get_object_reader(container, filename) as reader:
sha256file_json = reader.read()
sha256file_json = sha256file_json.decode('utf-8')
sha256file = json.loads(sha256file_json)
LOG.debug('_read_sha256file finished.')
return sha256file
def _prepare_backup(self, backup):
volume = self.db.volume_get(self.context, backup.volume_id)
if volume['size'] <= 0:
err = _('volume size %d is invalid.') % volume['size']
raise exception.InvalidVolume(reason=err)
container = self._create_container(backup)
object_prefix = self._generate_object_name_prefix(backup)
backup.service_metadata = object_prefix
backup.save()
volume_size_bytes = volume['size'] * units.Gi
availability_zone = self.az
LOG.debug('starting backup of volume: %(volume_id)s,'
' volume size: %(volume_size_bytes)d, object names'
' prefix %(object_prefix)s, availability zone:'
' %(availability_zone)s',
{
'volume_id': backup.volume_id,
'volume_size_bytes': volume_size_bytes,
'object_prefix': object_prefix,
'availability_zone': availability_zone,
})
object_meta = {'id': 1, 'list': [], 'prefix': object_prefix,
'volume_meta': None}
object_sha256 = {'id': 1, 'sha256s': [], 'prefix': object_prefix}
extra_metadata = self.get_extra_metadata(backup, volume)
if extra_metadata is not None:
object_meta['extra_metadata'] = extra_metadata
return (object_meta, object_sha256, extra_metadata, container,
volume_size_bytes)
def _backup_chunk(self, backup, container, data, data_offset,
object_meta, extra_metadata):
object_prefix = object_meta['prefix']
object_list = object_meta['list']
object_id = object_meta['id']
object_name = '%s-%05d' % (object_prefix, object_id)
obj = {}
obj[object_name] = {}
obj[object_name]['offset'] = data_offset
obj[object_name]['length'] = len(data)
LOG.debug('Backing up chunk of data from volume.')
algorithm, output_data = self._prepare_output_data(data)
obj[object_name]['compression'] = algorithm
LOG.debug('About to put_object')
with self._get_object_writer(
container, object_name, extra_metadata=extra_metadata
) as writer:
writer.write(output_data)
md5 = eventlet.tpool.execute(
secretutils.md5, data, usedforsecurity=False).hexdigest()
obj[object_name]['md5'] = md5
LOG.debug('backup MD5 for %(object_name)s: %(md5)s',
{'object_name': object_name, 'md5': md5})
object_list.append(obj)
object_id += 1
object_meta['list'] = object_list
object_meta['id'] = object_id
LOG.debug('Calling eventlet.sleep(0)')
eventlet.sleep(0)
def _prepare_output_data(self, data):
if self.compressor is None:
return 'none', data
data_size_bytes = len(data)
compressed_data = self.compressor.compress(data)
comp_size_bytes = len(compressed_data)
algorithm = CONF.backup_compression_algorithm.lower()
if comp_size_bytes >= data_size_bytes:
LOG.debug('Compression of this chunk was ineffective: '
'original length: %(data_size_bytes)d, '
'compressed length: %(compressed_size_bytes)d. '
'Using original data for this chunk.',
{'data_size_bytes': data_size_bytes,
'compressed_size_bytes': comp_size_bytes,
})
return 'none', data
LOG.debug('Compressed %(data_size_bytes)d bytes of data '
'to %(comp_size_bytes)d bytes using %(algorithm)s.',
{'data_size_bytes': data_size_bytes,
'comp_size_bytes': comp_size_bytes,
'algorithm': algorithm,
})
return algorithm, compressed_data
def _finalize_backup(self, backup, container, object_meta, object_sha256):
object_list = object_meta['list']
object_id = object_meta['id']
volume_meta = object_meta['volume_meta']
sha256_list = object_sha256['sha256s']
extra_metadata = object_meta.get('extra_metadata')
self._write_sha256file(backup,
backup.volume_id,
container,
sha256_list)
self._write_metadata(backup,
backup.volume_id,
container,
object_list,
volume_meta,
extra_metadata)
backup.object_count = object_id - 1
backup.save()
LOG.debug('backup %s finished.', backup['id'])
def _backup_metadata(self, backup, object_meta):
json_meta = self.get_metadata(backup['volume_id'])
if not json_meta:
LOG.debug("No volume metadata to backup.")
return
object_meta["volume_meta"] = json_meta
def _send_progress_end(self, context, backup, object_meta):
object_meta['backup_percent'] = 100
volume_utils.notify_about_backup_usage(context,
backup,
"createprogress",
extra_usage_info=
object_meta)
def _send_progress_notification(self, context, backup, object_meta,
total_block_sent_num, total_volume_size):
backup_percent = total_block_sent_num * 100 / total_volume_size
object_meta['backup_percent'] = backup_percent
volume_utils.notify_about_backup_usage(context,
backup,
"createprogress",
extra_usage_info=
object_meta)
def _get_win32_phys_disk_size(self, disk_path):
win32_diskutils = os_win_utilsfactory.get_diskutils()
disk_number = win32_diskutils.get_device_number_from_device_name(
disk_path)
return win32_diskutils.get_disk_size(disk_number) | Apache License 2.0 |
autonomousvision/convolutional_occupancy_networks | src/common.py | get_nearest_neighbors_indices_batch | python | def get_nearest_neighbors_indices_batch(points_src, points_tgt, k=1):
indices = []
distances = []
for (p1, p2) in zip(points_src, points_tgt):
kdtree = KDTree(p2)
dist, idx = kdtree.query(p1, k=k)
indices.append(idx)
distances.append(dist)
return indices, distances | Returns the nearest neighbors for point sets batchwise.
Args:
points_src (numpy array): source points
points_tgt (numpy array): target points
k (int): number of nearest neighbors to return | https://github.com/autonomousvision/convolutional_occupancy_networks/blob/f44d413f8d455657a44c24d06163934c69141a09/src/common.py#L125-L142 | import torch
from src.utils.libkdtree import KDTree
import numpy as np
import math
def compute_iou(occ1, occ2):
occ1 = np.asarray(occ1)
occ2 = np.asarray(occ2)
if occ1.ndim >= 2:
occ1 = occ1.reshape(occ1.shape[0], -1)
if occ2.ndim >= 2:
occ2 = occ2.reshape(occ2.shape[0], -1)
occ1 = (occ1 >= 0.5)
occ2 = (occ2 >= 0.5)
area_union = (occ1 | occ2).astype(np.float32).sum(axis=-1)
area_intersect = (occ1 & occ2).astype(np.float32).sum(axis=-1)
iou = (area_intersect / area_union)
return iou
def chamfer_distance(points1, points2, use_kdtree=True, give_id=False):
if use_kdtree:
return chamfer_distance_kdtree(points1, points2, give_id=give_id)
else:
return chamfer_distance_naive(points1, points2)
def chamfer_distance_naive(points1, points2):
assert(points1.size() == points2.size())
batch_size, T, _ = points1.size()
points1 = points1.view(batch_size, T, 1, 3)
points2 = points2.view(batch_size, 1, T, 3)
distances = (points1 - points2).pow(2).sum(-1)
chamfer1 = distances.min(dim=1)[0].mean(dim=1)
chamfer2 = distances.min(dim=2)[0].mean(dim=1)
chamfer = chamfer1 + chamfer2
return chamfer
def chamfer_distance_kdtree(points1, points2, give_id=False):
batch_size = points1.size(0)
points1_np = points1.detach().cpu().numpy()
points2_np = points2.detach().cpu().numpy()
idx_nn_12, _ = get_nearest_neighbors_indices_batch(points1_np, points2_np)
idx_nn_12 = torch.LongTensor(idx_nn_12).to(points1.device)
idx_nn_12_expand = idx_nn_12.view(batch_size, -1, 1).expand_as(points1)
idx_nn_21, _ = get_nearest_neighbors_indices_batch(points2_np, points1_np)
idx_nn_21 = torch.LongTensor(idx_nn_21).to(points1.device)
idx_nn_21_expand = idx_nn_21.view(batch_size, -1, 1).expand_as(points2)
points_12 = torch.gather(points2, dim=1, index=idx_nn_12_expand)
points_21 = torch.gather(points1, dim=1, index=idx_nn_21_expand)
chamfer1 = (points1 - points_12).pow(2).sum(2).mean(1)
chamfer2 = (points2 - points_21).pow(2).sum(2).mean(1)
chamfer = chamfer1 + chamfer2
if give_id:
return chamfer1, chamfer2, idx_nn_12, idx_nn_21
return chamfer | MIT License |
tongchangd/text_data_enhancement_with_lasertagger | transformer_decoder.py | DecoderStack.call | python | def call(self, decoder_inputs, encoder_outputs, decoder_self_attention_bias,
attention_bias=None, cache=None):
for n, layer in enumerate(self.layers):
self_attention_layer = layer[0]
feed_forward_network = layer[1]
proj_layer = layer[2]
decoder_inputs = tf.concat([decoder_inputs, encoder_outputs], axis=-1)
decoder_inputs = proj_layer(decoder_inputs)
layer_name = "layer_%d" % n
layer_cache = cache[layer_name] if cache is not None else None
with tf.variable_scope(layer_name):
with tf.variable_scope("self_attention"):
decoder_inputs = self_attention_layer(
decoder_inputs, decoder_self_attention_bias, cache=layer_cache)
with tf.variable_scope("ffn"):
decoder_inputs = feed_forward_network(decoder_inputs)
return self.output_normalization(decoder_inputs) | Returns the output of the decoder layer stacks.
Args:
decoder_inputs: tensor with shape [batch_size, target_length, hidden_size]
encoder_outputs: tensor with shape [batch_size, input_length, hidden_size]
decoder_self_attention_bias: bias for decoder self-attention layer.
[1, 1, target_len, target_length]
attention_bias: bias for encoder-decoder attention layer.
[batch_size, 1, 1, input_length]
cache: (Used for fast decoding) A nested dictionary storing previous
decoder self-attention values. The items are:
{layer_n: {"k": tensor with shape [batch_size, i, key_channels],
"v": tensor with shape [batch_size, i, value_channels]},
...}
Returns:
Output of decoder layer stack.
float32 tensor with shape [batch_size, target_length, hidden_size] | https://github.com/tongchangd/text_data_enhancement_with_lasertagger/blob/b8286196e2f0e1decf73da79c665f25bf8a0ff45/transformer_decoder.py#L173-L212 | from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Any, Mapping, Text
import tensorflow as tf
from official_transformer import attention_layer
from official_transformer import embedding_layer
from official_transformer import ffn_layer
from official_transformer import model_utils
from official_transformer import transformer
class TransformerDecoder(transformer.Transformer):
def __init__(self, params, train):
self.train = train
self.params = params
self.embedding_softmax_layer = embedding_layer.EmbeddingSharedWeights(
params["vocab_size"], params["hidden_size"],
method="matmul" if params["use_tpu"] else "gather")
if self.params["use_full_attention"]:
self.decoder_stack = transformer.DecoderStack(params, train)
else:
self.decoder_stack = DecoderStack(params, train)
def __call__(self, inputs, encoder_outputs, targets=None):
initializer = tf.variance_scaling_initializer(
self.params["initializer_gain"], mode="fan_avg", distribution="uniform")
with tf.variable_scope("Transformer", initializer=initializer):
attention_bias = model_utils.get_padding_bias(inputs)
if targets is None:
return self.predict(encoder_outputs, attention_bias)
else:
logits = self.decode(targets, encoder_outputs, attention_bias)
return logits
def _get_symbols_to_logits_fn(self, max_decode_length):
timing_signal = model_utils.get_position_encoding(
max_decode_length + 1, self.params["hidden_size"])
decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias(
max_decode_length)
def symbols_to_logits_fn(ids, i, cache):
decoder_input = ids[:, -1:]
decoder_input = self.embedding_softmax_layer(decoder_input)
decoder_input += timing_signal[i:i + 1]
self_attention_bias = decoder_self_attention_bias[:, :, i:i + 1, :i + 1]
if self.params["use_full_attention"]:
encoder_outputs = cache.get("encoder_outputs")
else:
encoder_outputs = cache.get("encoder_outputs")[:, i:i+1]
decoder_outputs = self.decoder_stack(
decoder_input, encoder_outputs, self_attention_bias,
cache.get("encoder_decoder_attention_bias"), cache)
logits = self.embedding_softmax_layer.linear(decoder_outputs)
logits = tf.squeeze(logits, axis=[1])
return logits, cache
return symbols_to_logits_fn
class DecoderStack(tf.layers.Layer):
def __init__(self, params, train):
super(DecoderStack, self).__init__()
self.layers = []
for _ in range(params["num_hidden_layers"]):
self_attention_layer = attention_layer.SelfAttention(
params["hidden_size"], params["num_heads"],
params["attention_dropout"], train)
feed_forward_network = ffn_layer.FeedFowardNetwork(
params["hidden_size"], params["filter_size"],
params["relu_dropout"], train, params["allow_ffn_pad"])
proj_layer = tf.layers.Dense(
params["hidden_size"], use_bias=True, name="proj_layer")
self.layers.append([
transformer.PrePostProcessingWrapper(
self_attention_layer, params, train),
transformer.PrePostProcessingWrapper(
feed_forward_network, params, train),
proj_layer])
self.output_normalization = transformer.LayerNormalization(
params["hidden_size"]) | Apache License 2.0 |
googleads/google-ads-python | google/ads/googleads/v7/services/services/ad_group_audience_view_service/client.py | AdGroupAudienceViewServiceClientMeta.get_transport_class | python | def get_transport_class(
cls, label: str = None,
) -> Type[AdGroupAudienceViewServiceTransport]:
if label:
return cls._transport_registry[label]
return next(iter(cls._transport_registry.values())) | Return an appropriate transport class.
Args:
label: The name of the desired transport. If none is
provided, then the first transport in the registry is used.
Returns:
The transport class to use. | https://github.com/googleads/google-ads-python/blob/6794993e146abcfe21292677144c66cb546446bc/google/ads/googleads/v7/services/services/ad_group_audience_view_service/client.py#L56-L74 | from collections import OrderedDict
from distutils import util
import os
import re
from typing import Dict, Optional, Sequence, Tuple, Type, Union
from google.api_core import client_options as client_options_lib
from google.api_core import exceptions
from google.api_core import gapic_v1
from google.api_core import retry as retries
from google.auth import credentials
from google.auth.transport import mtls
from google.auth.transport.grpc import SslCredentials
from google.auth.exceptions import MutualTLSChannelError
from google.oauth2 import service_account
from google.ads.googleads.v7.resources.types import ad_group_audience_view
from google.ads.googleads.v7.services.types import (
ad_group_audience_view_service,
)
from .transports.base import (
AdGroupAudienceViewServiceTransport,
DEFAULT_CLIENT_INFO,
)
from .transports.grpc import AdGroupAudienceViewServiceGrpcTransport
class AdGroupAudienceViewServiceClientMeta(type):
_transport_registry = (
OrderedDict()
)
_transport_registry["grpc"] = AdGroupAudienceViewServiceGrpcTransport | Apache License 2.0 |
ibm/superglue-mtl | scripts/rewritting_utils.py | ConstituencyRule.gen_neg_output | python | def gen_neg_output(self, fmt_args, ans, entity_mentions):
neg_output = []
ans_type = None
for ent, ne_type in entity_mentions:
if ans == ent:
ans_type = ne_type
break
if ans_type is None: return []
possible_alternatives = []
for ent, ne_type in entity_mentions:
if ne_type != ans_type:continue
if ent.lower() in PRON_LIST: continue
if ent in possible_alternatives:continue
if ent == ans: continue
if ent in fmt_args:continue
possible_alternatives.append(ent)
if len(possible_alternatives) == 0: return []
pattern_toks = self.out_pattern.split()
for i in range(len(pattern_toks)):
cur_tok = pattern_toks[i]
if cur_tok in ["at", "in", "on"]:
next_p = fmt_args[int(pattern_toks[i + 1][1:-1])]
next_p_toks = next_p.split()
if cur_tok in next_p_toks:
next_p_toks.remove(cur_tok)
fmt_args[int(pattern_toks[i + 1][1:-1])] = " ".join(next_p_toks)
for alt in possible_alternatives:
cur_formatted_output = self.out_pattern.format(*fmt_args).replace(ans, alt)
neg_output.append(cur_formatted_output)
return neg_output | switch the NE in ans with another entity of the same type | https://github.com/ibm/superglue-mtl/blob/1eb3e581c0ef3b4c261e0256ec26116d2b657c40/scripts/rewritting_utils.py#L216-L259 | from nltk.corpus import wordnet as wn
import corenlp_utils as corenlp
import sys
MODULE = "../resources/pattern-2.6/"
sys.path.append(MODULE)
from pattern import en as patten
POS_TO_WORDNET = {
'NN': wn.NOUN,
'JJ': wn.ADJ,
'JJR': wn.ADJ,
'JJS': wn.ADJ,
}
POS_TO_PATTERN = {
'vb': 'inf',
'vbp': '1sg',
'vbz': '3sg',
'vbg': 'part',
'vbd': 'p',
'vbn': 'ppart',
}
PATTERN_TENSES = ['inf', '3sg', 'p', 'part', 'ppart', '1sg']
PRON_LIST = ["she", "he", "her", "him", "his", "you", "we", "it", "our"]
def read_const_parse(parse_str):
tree = corenlp.ConstituencyParse.from_corenlp(parse_str)
new_tree = compress_whnp(tree)
return new_tree
def fix_style(s):
s = s.replace('?', '')
s = s.strip(' .')
if s[0] == s[0].lower():
s = s[0].upper() + s[1:]
return s + '.'
CONST_PARSE_MACROS = {
'$Noun': '$NP/$NN/$NNS/$NNP/$NNPS',
'$Verb': '$VB/$VBD/$VBP/$VBZ',
'$Part': '$VBN/$VG',
'$Be': 'is/are/was/were',
'$Do': "do/did/does/don't/didn't/doesn't",
'$WHP': '$WHADJP/$WHADVP/$WHNP/$WHPP',
}
def _check_match(node, pattern_tok):
if pattern_tok in CONST_PARSE_MACROS:
pattern_tok = CONST_PARSE_MACROS[pattern_tok]
if ':' in pattern_tok:
lhs, rhs = pattern_tok.split(':')
match_lhs = _check_match(node, lhs)
if not match_lhs: return False
phrase = node.get_phrase().lower()
retval = any(phrase.startswith(w) for w in rhs.split('/'))
return retval
elif '/' in pattern_tok:
return any(_check_match(node, t) for t in pattern_tok.split('/'))
return ((pattern_tok.startswith('$') and pattern_tok[1:] == node.tag) or
(node.word and pattern_tok.lower() == node.word.lower()))
def _recursive_match_pattern(pattern_toks, stack, matches):
if len(matches) == len(pattern_toks):
return len(stack) == 0
if len(stack) == 0: return False
cur_tok = pattern_toks[len(matches)]
node = stack.pop()
is_match = _check_match(node, cur_tok)
if is_match:
cur_num_matches = len(matches)
matches.append(node)
new_stack = list(stack)
success = _recursive_match_pattern(pattern_toks, new_stack, matches)
if success: return True
while len(matches) > cur_num_matches:
matches.pop()
if not node.children: return False
stack.extend(node.children[::-1])
return _recursive_match_pattern(pattern_toks, stack, matches)
def match_pattern(pattern, const_parse):
pattern_toks = pattern.split(' ')
whole_phrase = const_parse.get_phrase()
if whole_phrase.endswith('?') or whole_phrase.endswith('.'):
pattern_toks.append(whole_phrase[-1])
matches = []
success = _recursive_match_pattern(pattern_toks, [const_parse], matches)
if success:
return matches
else:
return None
def compress_whnp(tree, inside_whnp=False):
if not tree.children: return tree
for i, c in enumerate(tree.children):
tree.children[i] = compress_whnp(c, inside_whnp=inside_whnp or tree.tag == 'WHNP')
if tree.tag != 'WHNP':
if inside_whnp:
return corenlp.ConstituencyParse('NP', children=[tree])
return tree
wh_word = None
new_np_children = []
new_siblings = []
for i, c in enumerate(tree.children):
if i == 0:
if c.tag in ('WHNP', 'WHADJP', 'WHAVP', 'WHPP'):
wh_word = c.children[0]
new_np_children.extend(c.children[1:])
elif c.tag in ('WDT', 'WP', 'WP$', 'WRB'):
wh_word = c
else:
return tree
else:
if c.tag == 'SQ':
new_siblings = tree.children[i:]
break
new_np_children.append(corenlp.ConstituencyParse('NP', children=[c]))
if new_np_children:
new_np = corenlp.ConstituencyParse('NP', children=new_np_children)
new_tree = corenlp.ConstituencyParse('WHNP', children=[wh_word, new_np])
else:
new_tree = tree
if new_siblings:
new_tree = corenlp.ConstituencyParse('SBARQ', children=[new_tree] + new_siblings)
return new_tree
def convert_whp(node, q, a, tokens):
if node.tag in ('WHNP', 'WHADJP', 'WHADVP', 'WHPP'):
cur_phrase = node.get_phrase()
cur_tokens = tokens[node.get_start_index():node.get_end_index()]
for r in WHP_RULES:
phrase, _ = r.convert(cur_phrase, a, cur_tokens, node, [], run_fix_style=False)
if phrase:
return phrase
return None
class ConversionRule(object):
def convert(self, q, a, tokens, const_parse, entity_mentions, run_fix_style=True):
raise NotImplementedError
class ConstituencyRule(ConversionRule):
def __init__(self, in_pattern, out_pattern, postproc=None):
self.in_pattern = in_pattern
self.out_pattern = unicode(out_pattern)
self.name = in_pattern
if postproc:
self.postproc = postproc
else:
self.postproc = {}
def convert(self, q, a, tokens, const_parse, entity_mentions, run_fix_style=True):
pattern_toks = self.in_pattern.split(' ')
match = match_pattern(self.in_pattern, const_parse)
appended_clause = False
if not match:
appended_clause = True
new_pattern = '$PP , ' + self.in_pattern
pattern_toks = new_pattern.split(' ')
match = match_pattern(new_pattern, const_parse)
if not match:
new_pattern = '$SBAR , ' + self.in_pattern
pattern_toks = new_pattern.split(' ')
match = match_pattern(new_pattern, const_parse)
if not match: return None, None
appended_clause_match = None
fmt_args = [a]
for t, m in zip(pattern_toks, match):
if t.startswith('$') or '/' in t:
phrase = convert_whp(m, q, a, tokens)
if not phrase:
phrase = m.get_phrase()
fmt_args.append(phrase)
if appended_clause:
appended_clause_match = fmt_args[1]
fmt_args = [a] + fmt_args[2:]
for i in range(len(fmt_args)):
if i in self.postproc:
fmt_args[i] = run_postprocessing(fmt_args[i], self.postproc[i], fmt_args)
output = self.gen_output(fmt_args)
neg_output_list = self.gen_neg_output(fmt_args, a, entity_mentions)
if appended_clause:
output = appended_clause_match + ', ' + output
if run_fix_style:
output = fix_style(output)
return output, neg_output_list | Apache License 2.0 |
balanced/status.balancedpayments.com | venv/lib/python2.7/site-packages/twilio/rest/resources/phone_numbers.py | PhoneNumber.transfer | python | def transfer(self, account_sid):
a = self.parent.transfer(self.name, account_sid)
self.load(a.__dict__) | Transfer the phone number with sid from the current account to another
identified by account_sid | https://github.com/balanced/status.balancedpayments.com/blob/e51a371079a8fa215732be3cfa57497a9d113d35/venv/lib/python2.7/site-packages/twilio/rest/resources/phone_numbers.py#L74-L80 | import re
from twilio import TwilioException
from twilio.rest.resources.util import change_dict_key, transform_params
from twilio.rest.resources import InstanceResource, ListResource
class AvailablePhoneNumber(InstanceResource):
def __init__(self, parent):
super(AvailablePhoneNumber, self).__init__(parent, "")
self.name = ""
def purchase(self, **kwargs):
return self.parent.purchase(phone_number=self.phone_number,
**kwargs)
class AvailablePhoneNumbers(ListResource):
name = "AvailablePhoneNumbers"
key = "available_phone_numbers"
instance = AvailablePhoneNumber
types = {"local": "Local", "tollfree": "TollFree"}
def __init__(self, base_uri, auth, phone_numbers):
super(AvailablePhoneNumbers, self).__init__(base_uri, auth)
self.phone_numbers = phone_numbers
def get(self, sid):
raise TwilioException("Individual AvailablePhoneNumbers have no sid")
def list(self, type="local", country="US", region=None, postal_code=None,
lata=None, rate_center=None, **kwargs):
kwargs["in_region"] = kwargs.get("in_region", region)
kwargs["in_postal_code"] = kwargs.get("in_postal_code", postal_code)
kwargs["in_lata"] = kwargs.get("in_lata", lata)
kwargs["in_rate_center"] = kwargs.get("in_rate_center", rate_center)
params = transform_params(kwargs)
uri = "%s/%s/%s" % (self.uri, country, self.types[type])
resp, page = self.request("GET", uri, params=params)
return [self.load_instance(i) for i in page[self.key]]
def load_instance(self, data):
instance = self.instance(self.phone_numbers)
instance.load(data)
instance.load_subresources()
return instance
class PhoneNumber(InstanceResource):
def load(self, entries):
if "account_sid" in entries:
uri = re.sub(r'AC(.*)', entries["account_sid"],
self.parent.base_uri)
self.parent = PhoneNumbers(uri, self.parent.auth)
self.base_uri = self.parent.uri
super(PhoneNumber, self).load(entries) | MIT License |
bdtinc/maskcam | server/backend/app/db/cruds/crud_device.py | get_devices | python | def get_devices(db_session: Session) -> List[DeviceModel]:
return db_session.query(DeviceModel).all() | Get all devices.
Arguments:
db_session {Session} -- Database session.
Returns:
List[DeviceModel] -- All device instances present in the database. | https://github.com/bdtinc/maskcam/blob/4841c2c49235844765e8c2164f5dd03a7d28bdad/server/backend/app/db/cruds/crud_device.py#L83-L93 | from typing import List, Union, Dict
from app.db.schema import DeviceModel
from sqlalchemy.exc import IntegrityError
from sqlalchemy.orm import Session
from sqlalchemy.orm.exc import NoResultFound
def create_device(
db_session: Session, device_information: Dict = {}
) -> Union[DeviceModel, IntegrityError]:
try:
device_information["id"] = device_information["id"].replace(" ", "_")
device = DeviceModel(**device_information)
db_session.add(device)
db_session.commit()
db_session.refresh(device)
return device
except IntegrityError:
db_session.rollback()
raise
def get_device(
db_session: Session, device_id: str
) -> Union[DeviceModel, NoResultFound]:
try:
return get_device_by_id(db_session, device_id)
except NoResultFound:
raise | MIT License |
opennetworkingfoundation/tapi | RI/flask_server/tapi_server/models/tapi_topology_validation_mechanism.py | TapiTopologyValidationMechanism.validation_mechanism | python | def validation_mechanism(self):
return self._validation_mechanism | Gets the validation_mechanism of this TapiTopologyValidationMechanism.
Name of mechanism used to validate adjacency # noqa: E501
:return: The validation_mechanism of this TapiTopologyValidationMechanism.
:rtype: str | https://github.com/opennetworkingfoundation/tapi/blob/1f3fd9483d5674552c5a31206c97399c8c151897/RI/flask_server/tapi_server/models/tapi_topology_validation_mechanism.py#L79-L87 | from __future__ import absolute_import
from datetime import date, datetime
from typing import List, Dict
from tapi_server.models.base_model_ import Model
from tapi_server import util
class TapiTopologyValidationMechanism(Model):
def __init__(self, layer_protocol_adjacency_validated=None, validation_mechanism=None, validation_robustness=None):
self.openapi_types = {
'layer_protocol_adjacency_validated': str,
'validation_mechanism': str,
'validation_robustness': str
}
self.attribute_map = {
'layer_protocol_adjacency_validated': 'layer-protocol-adjacency-validated',
'validation_mechanism': 'validation-mechanism',
'validation_robustness': 'validation-robustness'
}
self._layer_protocol_adjacency_validated = layer_protocol_adjacency_validated
self._validation_mechanism = validation_mechanism
self._validation_robustness = validation_robustness
@classmethod
def from_dict(cls, dikt) -> 'TapiTopologyValidationMechanism':
return util.deserialize_model(dikt, cls)
@property
def layer_protocol_adjacency_validated(self):
return self._layer_protocol_adjacency_validated
@layer_protocol_adjacency_validated.setter
def layer_protocol_adjacency_validated(self, layer_protocol_adjacency_validated):
self._layer_protocol_adjacency_validated = layer_protocol_adjacency_validated
@property | Apache License 2.0 |
alephdata/followthemoney | followthemoney/graph.py | Graph.add | python | def add(self, proxy: EntityProxy) -> None:
if proxy is None:
return
self.queue(proxy.id, proxy)
if proxy.schema.edge:
for (source, target) in proxy.edgepairs():
self._add_edge(proxy, source, target)
else:
self._add_node(proxy) | Add an :class:`~followthemoney.proxy.EntityProxy` to the graph and make
it either a :class:`~followthemoney.graph.Node` or an
:class:`~followthemoney.graph.Edge`. | https://github.com/alephdata/followthemoney/blob/e7e1480aeac64c6284aaeb058a825587b8ff332e/followthemoney/graph.py#L245-L256 | import logging
from typing import Any, Dict, Generator, Iterable, List, Optional, Sequence
from followthemoney.types import registry
from followthemoney.types.common import PropertyType
from followthemoney.schema import Schema
from followthemoney.proxy import EntityProxy
from followthemoney.property import Property
from followthemoney.exc import InvalidData, InvalidModel
log = logging.getLogger(__name__)
class Node(object):
__slots__ = ["type", "value", "id", "proxy", "schema"]
def __init__(
self,
type_: PropertyType,
value: str,
proxy: Optional[EntityProxy] = None,
schema: Optional[Schema] = None,
) -> None:
self.type = type_
self.value = value
_id = type_.node_id_safe(value)
if _id is None:
raise InvalidData("No ID for node")
self.id = _id
self.proxy = proxy
self.schema = schema if proxy is None else proxy.schema
@property
def is_entity(self) -> bool:
return self.type == registry.entity
@property
def caption(self) -> str:
if self.type == registry.entity and self.proxy is not None:
return self.proxy.caption
caption = self.type.caption(self.value)
return caption or self.value
def to_dict(self) -> Dict[str, Any]:
return {
"id": self.id,
"type": self.type.name,
"value": self.value,
"caption": self.caption,
}
@classmethod
def from_proxy(cls, proxy: EntityProxy) -> "Node":
return cls(registry.entity, proxy.id, proxy=proxy)
def __str__(self) -> str:
return self.caption
def __repr__(self) -> str:
return "<Node(%r, %r, %r)>" % (self.id, self.type, self.caption)
def __hash__(self) -> int:
return hash(self.id)
def __eq__(self, other: Any) -> bool:
return bool(self.id == other.id)
class Edge(object):
__slots__ = [
"id",
"weight",
"source_id",
"target_id",
"prop",
"proxy",
"schema",
"graph",
]
def __init__(
self,
graph: "Graph",
source: Node,
target: Node,
proxy: Optional[EntityProxy] = None,
prop: Optional[Property] = None,
value: Optional[str] = None,
):
self.graph = graph
self.id = f"{source.id}<>{target.id}"
self.source_id = source.id
self.target_id = target.id
self.weight = 1.0
self.prop = prop
self.proxy = proxy
self.schema: Optional[Schema] = None
if prop is not None and value is not None:
self.weight = prop.specificity(value)
if proxy is not None:
self.id = f"{source.id}<{proxy.id}>{target.id}"
self.schema = proxy.schema
@property
def source(self) -> Optional[Node]:
return self.graph.nodes.get(self.source_id)
@property
def source_prop(self) -> Property:
if self.schema is not None and self.schema.source_prop is not None:
if self.schema.source_prop.reverse is not None:
return self.schema.source_prop.reverse
if self.prop is None:
raise InvalidModel("Contradiction: %r" % self)
return self.prop
@property
def target(self) -> Optional[Node]:
return self.graph.nodes.get(self.target_id)
@property
def target_prop(self) -> Optional[Property]:
if self.schema is not None and self.schema.target_prop is not None:
return self.schema.target_prop.reverse
if self.prop is not None:
return self.prop.reverse
return None
@property
def type_name(self) -> str:
if self.schema is not None:
return self.schema.name
if self.prop is None:
raise InvalidModel("Invalid edge: %r" % self)
return self.prop.name
def to_dict(self) -> Dict[str, str]:
return {
"id": self.id,
"source_id": self.source_id,
"target_id": self.target_id,
"type_name": self.type_name,
}
def __repr__(self) -> str:
return "<Edge(%r)>" % self.id
def __hash__(self) -> int:
return hash(self.id)
def __eq__(self, other: Any) -> bool:
return bool(self.id == other.id)
class Graph(object):
def __init__(self, edge_types: Iterable[PropertyType] = registry.pivots) -> None:
types = registry.get_types(edge_types)
self.edge_types = [t for t in types if t.matchable]
self.flush()
def flush(self) -> None:
self.edges: Dict[str, Edge] = {}
self.nodes: Dict[str, Node] = {}
self.proxies: Dict[str, Optional[EntityProxy]] = {}
def queue(self, id_: str, proxy: Optional[EntityProxy] = None) -> None:
if id_ not in self.proxies or proxy is not None:
self.proxies[id_] = proxy
@property
def queued(self) -> List[str]:
return [i for (i, p) in self.proxies.items() if p is None]
def _get_node_stub(self, prop: Property, value: str) -> Node:
if prop.type == registry.entity:
self.queue(value)
node = Node(prop.type, value, schema=prop.range)
if node.id not in self.nodes:
self.nodes[node.id] = node
return self.nodes[node.id]
def _add_edge(self, proxy: EntityProxy, source: str, target: str) -> None:
if proxy.schema.source_prop is None:
raise InvalidModel("Invalid edge entity: %r" % proxy)
source_node = self._get_node_stub(proxy.schema.source_prop, source)
if proxy.schema.target_prop is None:
raise InvalidModel("Invalid edge entity: %r" % proxy)
target_node = self._get_node_stub(proxy.schema.target_prop, target)
edge = Edge(self, source_node, target_node, proxy=proxy)
self.edges[edge.id] = edge
def _add_node(self, proxy: EntityProxy) -> None:
entity = Node.from_proxy(proxy)
self.nodes[entity.id] = entity
for prop, value in proxy.itervalues():
if prop.type not in self.edge_types:
continue
node = self._get_node_stub(prop, value)
edge = Edge(self, entity, node, prop=prop, value=value)
if edge.weight > 0:
self.edges[edge.id] = edge | MIT License |
johnpdowling/custom_components | forked-daapd/media_player.py | ForkedDaapd.play | python | def play(self):
return self._command('play') | Set playback to play and returns the current state. | https://github.com/johnpdowling/custom_components/blob/6019dc02d62ae0f0a16ffeda09438d54b94127e9/forked-daapd/media_player.py#L120-L122 | import logging
import requests
import voluptuous as vol
import os
from homeassistant.components.media_player import (
MediaPlayerDevice, PLATFORM_SCHEMA)
from homeassistant.components.media_player.const import (
MEDIA_TYPE_MUSIC, MEDIA_TYPE_PLAYLIST, SUPPORT_NEXT_TRACK,
SUPPORT_PAUSE, SUPPORT_PLAY, SUPPORT_PLAY_MEDIA, SUPPORT_PREVIOUS_TRACK,
SUPPORT_SEEK, SUPPORT_TURN_OFF, SUPPORT_TURN_ON, SUPPORT_VOLUME_MUTE,
SUPPORT_VOLUME_SET)
from homeassistant.const import (
CONF_HOST, CONF_NAME, CONF_PORT, CONF_SSL, STATE_IDLE, STATE_OFF, STATE_ON,
STATE_PAUSED, STATE_PLAYING)
import homeassistant.helpers.config_validation as cv
_LOGGER = logging.getLogger(__name__)
DEFAULT_NAME = 'forked-daapd'
DEFAULT_PORT = 3689
DEFAULT_SSL = False
DEFAULT_TIMEOUT = 10
DOMAIN = 'forked-daapd'
SUPPORT_FORKEDDAAPD = SUPPORT_VOLUME_SET | SUPPORT_VOLUME_MUTE | SUPPORT_PLAY_MEDIA | SUPPORT_TURN_OFF | SUPPORT_TURN_ON
SUPPORT_AIRPLAY = SUPPORT_VOLUME_SET | SUPPORT_VOLUME_MUTE | SUPPORT_TURN_ON | SUPPORT_TURN_OFF
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Required(CONF_HOST): cv.string,
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string,
vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port,
vol.Optional(CONF_SSL, default=DEFAULT_SSL): cv.boolean,
})
class ForkedDaapd:
def __init__(self, host, port, use_ssl):
self.host = host
self.port = port
self.use_ssl = use_ssl
os.system("apk add --no-cache mpg123")
@property
def _base_url(self):
if self.use_ssl:
uri_scheme = 'https://'
else:
uri_scheme = 'http://'
if self.port:
return '{}{}:{}'.format(uri_scheme, self.host, self.port)
return '{}{}'.format(uri_scheme, self.host)
def _request(self, method, path, params=None):
url = '{}{}'.format(self._base_url, path)
try:
if method == 'GET':
response = requests.get(url, timeout=DEFAULT_TIMEOUT)
elif method == 'PUT_EMPTY':
response = requests.put(url, timeout=DEFAULT_TIMEOUT)
elif method == 'PUT':
response = requests.put(url, json=dict(params) if params else None, timeout=DEFAULT_TIMEOUT)
elif method == 'DELETE':
response = requests.delete(url, timeout=DEFAULT_TIMEOUT)
try:
return response.json()
except:
return {}
except requests.exceptions.HTTPError:
return {'player_state': 'error'}
except requests.exceptions.RequestException:
return {'player_state': 'offline'}
def _command(self, named_command):
return self._request('PUT', '/api/player/' + named_command)
def player(self):
return self._request('GET', '/api/player')
def queue(self, item_id = None):
if item_id is None:
return self._request('GET', '/api/queue')
else:
return self._request('GET', "/api/queue?id=" + str(item_id))
def set_volume(self, level):
return self._request('PUT', '/api/player/volume?volume=' + str(int(level * 100)))
def set_muted(self, muted):
if muted is True:
self.set_volume(0)
else:
self.set_volume(0.5) | Apache License 2.0 |
pedrolamas/home-assistant-config | config/custom_components/hacs/tasks/manager.py | HacsTaskManager.__init__ | python | def __init__(self, hacs: HacsBase, hass: HomeAssistant) -> None:
self.hacs = hacs
self.hass = hass
self.__tasks: dict[str, HacsTask] = {} | Initialize the setup manager class. | https://github.com/pedrolamas/home-assistant-config/blob/66f1fb80e12468a6fe97ae5dfef64d2691754a41/config/custom_components/hacs/tasks/manager.py#L18-L22 | from __future__ import annotations
import asyncio
from importlib import import_module
from pathlib import Path
from homeassistant.core import HomeAssistant
from ..base import HacsBase
from ..mixin import LogMixin
from .base import HacsTask
class HacsTaskManager(LogMixin): | MIT License |
robertwayne/dpymenus | dpymenus/poll.py | Poll._finish_poll | python | async def _finish_poll(self):
cheaters = await self._get_cheaters()
for voters in self.data.values():
voters -= cheaters
await self.output.clear_reactions()
await self.page.on_next_event(self) | Removes multi-votes and calls the Page on_next function when finished. | https://github.com/robertwayne/dpymenus/blob/35cf9e3e9e6306cc6e6a5266688a56ae1edfa49e/dpymenus/poll.py#L125-L132 | import asyncio
import logging
from typing import Any, Dict, List, Set
from warnings import warn
from discord import RawReactionActionEvent, User
from discord.ext.commands import Context
from dpymenus import ButtonMenu, ButtonsError, EventError, PagesError, SessionError
from dpymenus.hooks import call_hook
class Poll(ButtonMenu):
def __init__(self, ctx: Context):
super().__init__(ctx)
self.voted: Set[User] = set()
def __repr__(self):
return f'Poll(pages={[p.__str__() for p in self.pages]}, page={self.page.index}, timeout={self.timeout}, data={self.data})'
async def results(self) -> Dict[str, int]:
return {choice: len(voters) for choice, voters in self.data.items()}
async def add_results_fields(self):
for choice, voters in self.data.items():
next_page = self.pages[self.page.index + 1]
next_page.add_field(name=choice, value=str(len(voters)))
async def generate_results_page(self):
next_page = self.pages[self.page.index + 1]
await self.add_results_fields()
highest_value = max(self.data.values())
winning_key = {choice for choice, voters in self.data.items() if voters == highest_value}
if len(highest_value) == 0:
next_page.description = ' '.join([next_page.description, f'It\'s a draw!'])
else:
next_page.description = ' '.join([next_page.description, f'{str(next(iter(winning_key)))} wins!'])
async def open(self):
try:
self._validate_callbacks()
await super()._open()
except SessionError as exc:
logging.info(exc.message)
else:
await self._set_data()
await self._add_buttons()
await call_hook(self, '_hook_after_open')
pending = set()
while self.active:
try:
_, pending = await asyncio.wait(
[
asyncio.create_task(self._get_vote_add()),
asyncio.create_task(self._get_vote_remove()),
asyncio.create_task(self._poll_timer()),
],
return_when=asyncio.FIRST_COMPLETED,
)
finally:
for task in pending:
task.cancel()
await self._finish_poll()
async def _get_vote_add(self):
while True:
try:
reaction_event = await self.ctx.bot.wait_for(
'raw_reaction_add', timeout=self.timeout, check=self._check_reaction
)
except asyncio.TimeoutError:
return
else:
if reaction_event.emoji.name in self.page.buttons_list:
self.data[reaction_event.emoji.name].add(reaction_event.user_id)
async def _get_vote_remove(self):
while True:
try:
reaction_event = await self.ctx.bot.wait_for(
'raw_reaction_remove',
timeout=self.timeout,
check=self._check_reaction,
)
except asyncio.TimeoutError:
return
else:
if reaction_event.emoji.name in self.page.buttons_list:
self.data[reaction_event.emoji.name].remove(reaction_event.user_id)
def _check_reaction(self, event: RawReactionActionEvent) -> bool:
return event.member is not None and event.member.bot is False
async def _poll_timer(self):
await asyncio.sleep(self.timeout) | MIT License |
ulule/django-linguist | linguist/utils.py | get_language_fields | python | def get_language_fields(fields):
return [
"%s_%s" % (field, lang)
for field in fields
for lang in get_supported_languages()
] | Takes a list of fields and returns related language fields. | https://github.com/ulule/django-linguist/blob/dad1ccacb02ab9aa3b05da3bcfbade6e1da70ddb/linguist/utils.py#L77-L85 | import copy
import itertools
import collections
from importlib import import_module
from django.db.models import QuerySet
from django.core import exceptions
from django.utils.encoding import force_text
from django.utils.functional import lazy
from django.utils.translation import get_language as _get_language
from . import settings
collections_abc = getattr(collections, 'abc', collections)
CLASS_PATH_ERROR = (
"django-linguist is unable to interpret settings value for %s. "
"%s should be in the form of a tupple: "
"('path.to.models.Class', 'app_label')."
)
def get_language_name(code):
languages = dict(
(lang_code, lang_name) for lang_code, lang_name in settings.SUPPORTED_LANGUAGES
)
return languages.get(code)
def get_language():
lang = _get_language()
if not lang:
return get_fallback_language()
langs = [l[0] for l in settings.SUPPORTED_LANGUAGES]
if lang not in langs and "-" in lang:
lang = lang.split("-")[0]
if lang in langs:
return lang
return settings.DEFAULT_LANGUAGE
def get_fallback_language():
return settings.DEFAULT_LANGUAGE
def get_real_field_name(field, lang=None):
if lang is None:
lang = get_language()
return str("%s_%s" % (field, lang.replace("-", "_")))
def get_fallback_field_name(field):
return get_real_field_name(field, lang=get_fallback_language())
def get_supported_languages():
return [code.replace("-", "_") for code, name in settings.SUPPORTED_LANGUAGES] | MIT License |
microsoft/restler-fuzzer | restler/engine/fuzzing_parameters/request_params.py | ParamObject.check_type_mismatch | python | def check_type_mismatch(self, check_value):
if not isinstance(check_value, dict):
return self.tag
for member in self._members:
tag = member.check_type_mismatch(check_value)
if tag:
return tag
return None | Checks to see if the check_value param is a dict object and then
checks each object member for its correct type. If any of the param
types are a mismatch, returns that param's tag.
@param check_value: The body string that is used to compare with this param
@type check_value: Str
@return: The tag of the mismatched param if a type mismatch was detected or None
@rtype : Str or None | https://github.com/microsoft/restler-fuzzer/blob/d74a267467a2d43fb37c8a16754d0b28e80b649a/restler/engine/fuzzing_parameters/request_params.py#L411-L430 | import sys
import json
from abc import ABCMeta, abstractmethod
import engine.primitives as primitives
import engine.dependencies as dependencies
from engine.fuzzing_parameters.fuzzing_config import *
TAG_SEPARATOR = '/'
FUZZABLE_GROUP_TAG = "fuzzable_group_tag"
class KeyValueParamBase():
__metaclass__ = ABCMeta
""" Abstract base class for parameters that are key-value pairs, such as query
and header parameters.
"""
def __init__(self, key, content):
self._key = key
self._content = content
@property
def key(self):
return self._key
@property
def content(self):
return self._content
@property
def is_required(self):
return self.content.is_required
@property
def is_dynamic_object(self):
return self.content.is_dynamic_object
def type(self):
return self._type
def __eq__(self, other):
if not isinstance(other, QueryParam):
return False
return self._content == other.content
def __hash__(self):
return hash(self._content)
class QueryParam(KeyValueParamBase):
def __init__(self, key, content):
KeyValueParamBase.__init__(self, key, content)
def get_blocks(self):
key = primitives.restler_static_string(f'{self._key}=')
return [key] + self._content.get_blocks(FuzzingConfig())
class HeaderParam(KeyValueParamBase):
def __init__(self, key, content):
KeyValueParamBase.__init__(self, key, content)
def get_blocks(self):
key = primitives.restler_static_string(f'{self._key}: ')
return [key] + self._content.get_blocks(FuzzingConfig())
class ParamBase():
def __init__(self, is_required=True, is_dynamic_object=False):
self._fuzzable = False
self._tag = ''
self._is_required = is_required
self._is_dynamic_object = is_dynamic_object
@property
def tag(self):
return self._tag
@tag.setter
def tag(self, tag):
self._tag = tag
@property
def is_required(self):
return self._is_required
@property
def is_dynamic_object(self):
return self._is_dynamic_object
def meta_copy(self, src):
self.set_fuzzable(src.is_fuzzable())
self._tag = src._tag
self._is_required = src._is_required
def set_fuzzable(self, is_fuzzable):
self._fuzzable = is_fuzzable
def is_fuzzable(self):
return self._fuzzable
class ParamValue(ParamBase):
def __init__(self, custom_payload_type=None, is_required=True, is_dynamic_object=False):
ParamBase.__init__(self, is_required, is_dynamic_object)
self._content = None
self._custom_payload_type = custom_payload_type
def __eq__(self, other):
if not isinstance(other, ParamValue):
return False
return self._content == other.content
def __hash__(self):
return hash((self._content, self._tag))
@property
def content(self):
return self._content
@content.setter
def content(self, content):
self._content = content
def count_nodes(self, config):
return 0
def get_signature(self, config):
return f'{TAG_SEPARATOR}{self.tag}_str'
def get_schema_tag_mapping(self, tags: dict, config):
tags.update({self.tag : self._content})
def get_blocks(self, config=None):
if self._custom_payload_type is not None:
if self._custom_payload_type == "String":
return [primitives.restler_custom_payload(self._content)]
elif self._custom_payload_type == "Query":
return [primitives.restler_custom_payload(self._content)]
elif self._custom_payload_type == "Header":
return [primitives.restler_custom_payload_header(self._content)]
else:
raise Exception(f"Unknown custom payload type: {self._custom_payload_type}")
content = self._content
if self.is_dynamic_object:
content = dependencies.RDELIM + self._content + dependencies.RDELIM
return [primitives.restler_static_string(content)]
def get_fuzzing_blocks(self, visitor):
return []
def check_type_mismatch(self, check_value):
if not isinstance(check_value, self.type):
return self.tag
return None
def check_struct_missing(self, check_value, visitor):
pass
class ParamObject(ParamBase):
def __init__(self, members, is_required=True, is_dynamic_object=False):
ParamBase.__init__(self, is_required, is_dynamic_object)
self._members = members
def __eq__(self, other):
if not isinstance(other, ParamObject):
return False
return self._members == other.members
def __hash__(self):
_hash = 0
for member in self._members:
_hash += hash(member)
return _hash
@property
def members(self):
if self._members:
return self._members
return []
def get_schema_tag_mapping(self, tags: dict, config):
if config.depth < config.max_depth:
config.depth += 1
for member in self._members:
member.get_schema_tag_mapping(tags, config)
config.depth -= 1
def get_signature(self, config):
return self._traverse(config, sys._getframe().f_code.co_name, f'{TAG_SEPARATOR}obj')
def count_nodes(self, config):
return self._traverse(config, sys._getframe().f_code.co_name, 1)
def get_blocks(self, config):
members_blocks = self._traverse(config, sys._getframe().f_code.co_name, [])
return self._get_blocks(members_blocks)
def get_fuzzing_pool(self, fuzzer, config):
fuzzed_members = []
if config.depth < config.max_depth:
config.depth += 1
for member in self._members:
fuzzed_members.append(member.get_fuzzing_pool(fuzzer, config))
config.depth -= 1
return fuzzer._fuzz_object(self, fuzzed_members)
def get_fuzzing_blocks(self, config):
members_blocks = self._traverse(config, sys._getframe().f_code.co_name, [])
return self._get_blocks(members_blocks) | MIT License |
finance-hub/financehub | webscrapers/CETIP/getcetipdata.py | CETIP._get_dates | python | def _get_dates(initial_date, end_date):
oldest_date = "2012-08-20"
if initial_date is None or (strptime(initial_date, '%Y-%m-%d') < strptime(initial_date, '%Y-%m-%d')):
initial_date = oldest_date
if end_date is None:
end_date = (datetime.today() - timedelta(1)).strftime('%Y-%m-%d')
df = pd.date_range(initial_date, end_date, freq='D')
return df | :param initial_date: initial date for the time interval. If None, uses the first available date on CETIP
:param end_date: end date for the time interval. If None, uses the previous day.
:return: pandas DataFrame with the time interval specified. | https://github.com/finance-hub/financehub/blob/3968d9965e8e2c3b5850f1852b56c485859a9c89/webscrapers/CETIP/getcetipdata.py#L75-L92 | import pandas as pd
from datetime import datetime, timedelta
from time import strptime
class CETIP(object):
def fetch(self, series_id, initial_date=None, end_date=None):
if type(series_id) is list:
df = pd.DataFrame()
for cod in series_id:
series = self._fetch_single_series(cod, initial_date, end_date)
df = pd.concat([df, series], axis=1)
df.sort_index(inplace=True)
else:
df = self._fetch_single_series(series_id, initial_date, end_date)
return df
def _fetch_single_series(self, series_id, initial_date, end_date):
dates = self._get_dates(initial_date, end_date)
df = pd.DataFrame()
for date in dates:
url = f'ftp://ftp.cetip.com.br/{series_id}/{date.strftime("%Y%m%d")}.txt'
try:
data = pd.read_csv(url, header=None).iloc[0, 0]
if series_id == 'MediaCDI':
data = data/100
df.loc[date, series_id] = data
except:
continue
return df
@staticmethod | MIT License |
bogdanvuk/pygears | pygears/hls/ast/visitor.py | visit_ast | python | def visit_ast(node, ctx):
if node is None:
return ir.ResExpr(None)
breakpoint()
raise SyntaxError(f"Unsupported language construct", node.lineno) | Used by default. Called if no explicit function exists for a node. | https://github.com/bogdanvuk/pygears/blob/a0b21d445e1d5c89ad66751447b8253536b835ee/pygears/hls/ast/visitor.py#L347-L353 | import inspect
import typing
from pygears.core.infer_ftypes import infer_ftypes
from pygears.core.gear import OutSig, InSig
from pygears.typing import Any, typeof
from functools import singledispatch
from dataclasses import dataclass
from .. import ir
from pygears import reg, Intf
from .utils import add_to_list, get_function_source, get_function_ast
from pygears.core.util import get_function_context_dict
from pygears.conf.trace import gear_definition_location
from pygears.conf.trace import make_traceback, TraceException
import sys
class HLSSyntaxError(TraceException):
pass
def form_hls_syntax_error(ctx, e, lineno=1):
msg = str(e)
for c in reversed(reg['hls/ctx']):
if isinstance(c, GearContext):
func, fn, ln, _ = gear_definition_location(c.gear.func)
msg += (f'\n - when compiling gear "{c.gear.name}" with'
f' parameters {c.gear.params}')
else:
func, fn, ln, _ = gear_definition_location(c.funcref.func)
msg += (f'\n - when compiling function "{c.funcref.func}" with'
f' signature {c.signature}')
err = HLSSyntaxError(msg, ln + lineno - 1, filename=fn)
traceback = make_traceback((HLSSyntaxError, err, sys.exc_info()[2]))
_, exc_value, tb = traceback.standard_exc_info
return exc_value, tb
@dataclass
class Submodule:
gear: typing.Any
in_ports: typing.List
out_ports: typing.List
def hashable(v):
try:
hash(v)
except TypeError:
return False
return True
class Function:
def __init__(self, func, args, kwds, uniqueid=None):
self.source = get_function_source(func)
self.func = func
self.ast = get_function_ast(func)
self.basename = ''.join(e for e in func.__name__ if e.isalnum() or e == '_')
self.uniqueid = uniqueid
hargs = tuple(arg.val if isinstance(arg, ir.ResExpr) else arg.dtype for arg in args)
hkwds = tuple((k, v) for k, v in kwds.items() if hashable(v))
if self.source:
self._hash = hash(self.source) ^ hash(hargs) ^ hash(hkwds)
else:
self._hash = hash(self.__qualname__) ^ hash(hargs) ^ hash(hkwds)
@property
def name(self):
if self.uniqueid is None:
return self.basename
return f'{self.basename}_{self.uniqueid}'
def __eq__(self, other):
return hash(self) == hash(other)
def __hash__(self):
return self._hash
class Context:
def __init__(self):
self.scope: typing.Dict = {}
self.methods = {}
self.local_namespace: typing.Dict = {'__builtins__': __builtins__}
self.ir_block_closure: typing.List = []
self.submodules: typing.List[Submodule] = []
self.reaching: typing.Dict = {}
self.ast_stmt_map: typing.Dict = {}
def ref(self, name, ctx='load'):
if name in self.scope:
return ir.Name(name, self.scope[name], ctx=ctx)
if name in self.local_namespace:
return ir.ResExpr(self.local_namespace[name])
raise KeyError
def find_unique_name(self, name):
res_name = name
i = 0
while res_name in self.scope:
i += 1
res_name = f'{name}_{i}'
return res_name
@property
def ir_parent_block(self):
return self.ir_block_closure[-1]
@property
def variables(self):
return {
name: obj
for name, obj in self.scope.items() if isinstance(obj, ir.Variable) and obj.val is None
}
class IntfProxy(Intf):
def __init__(self, port):
self.port = port
@property
def dtype(self):
return self.port.dtype
def __str__(self):
return self.port.basename
def __repr__(self):
return repr(self.port)
class GearContext(Context):
def __init__(self, gear):
super().__init__()
self.gear = gear
self.functions: typing.Mapping[Function, FuncContext] = {}
self.local_namespace = get_function_context_dict(self.gear.func).copy()
paramspec = inspect.getfullargspec(self.gear.func)
vararg = []
for p in self.gear.in_ports:
self.scope[p.basename] = ir.Variable(p.basename, ir.IntfType[p.dtype, ir.IntfType.iin])
if paramspec.varargs and p.basename.startswith(paramspec.varargs):
vararg.append(self.ref(p.basename))
if paramspec.varargs:
self.local_namespace[paramspec.varargs] = ir.ConcatExpr(vararg)
for p in self.gear.out_ports:
self.scope[p.basename] = ir.Variable(p.basename,
ir.IntfType[p.consumer.dtype, ir.IntfType.iout])
for k, v in self.gear.explicit_params.items():
self.scope[k] = ir.ResExpr(v)
@property
def intfs(self):
return {
name: obj
for name, obj in self.scope.items()
if isinstance(obj, ir.Variable) and typeof(obj.dtype, ir.IntfType)
}
@property
def signals(self):
return {
name: obj
for name, obj in self.scope.items()
if isinstance(obj, ir.Variable) and isinstance(obj.val, (OutSig, InSig))
}
@property
def regs(self):
return {
name: obj
for name, obj in self.scope.items() if isinstance(obj, ir.Variable) and obj.reg
}
@property
def in_ports(self):
return [
obj for obj in self.scope.values()
if (isinstance(obj, ir.Interface) and isinstance(obj.intf, Intf) and obj.intf.producer
and obj.intf.producer.gear is self.gear)
]
@property
def out_ports(self):
return [self.ref(p.basename) for p in self.gear.out_ports]
class FuncContext(Context):
def argdict(self, args, kwds):
paramspec = inspect.getfullargspec(self.funcref.func)
args = dict(zip(paramspec.args, args))
args.update(kwds)
for name in self.const_args:
if name not in args:
continue
del args[name]
return args
def __init__(self, funcref: Function, args, kwds):
super().__init__()
self.funcref = funcref
func = funcref.func
self.local_namespace = get_function_context_dict(func).copy()
paramspec = inspect.getfullargspec(funcref.func)
args = dict(zip(paramspec.args, args))
args.update(kwds)
self.ret_dtype = None
self.const_args = {}
kwddefaults = paramspec.kwonlydefaults or {}
if paramspec.defaults:
for name, val in zip(reversed(paramspec.args), reversed(paramspec.defaults)):
if name in args:
continue
args[name] = ir.ResExpr(val)
for k, v in kwddefaults.items():
if k not in args:
args[k] = ir.ResExpr(v)
if func.__annotations__:
params = {**func.__annotations__, **kwddefaults}
for a in paramspec.args:
if a not in params:
params[a] = Any
arg_types = {}
for name in paramspec.args:
if name not in args:
continue
arg_types[name] = args[name].dtype
for name, var in args.items():
if name in params:
continue
if isinstance(var, ir.ResExpr):
params[name] = var.val
else:
params[name] = var
res = infer_ftypes(params=params, args=arg_types, namespace=self.local_namespace)
for name, dtype in res.items():
if name not in args:
continue
if isinstance(args[name], ir.ResExpr):
self.local_namespace[name] = args[name].val
self.const_args[name] = args[name]
else:
self.scope[name] = ir.Variable(name, dtype)
else:
for name, arg in args.items():
if isinstance(arg, ir.ResExpr):
self.local_namespace[name] = arg.val
self.const_args[name] = arg
else:
self.scope[name] = ir.Variable(name, arg.dtype)
self.signature = {
name: self.scope.get(name, var).dtype
for name, var in args.items() if name not in self.const_args
}
def reraise(tp, value, tb=None):
if value.__traceback__ is not tb:
raise value.with_traceback(tb)
raise value
def node_visitor(ast_type):
def wrapper(f):
def func_wrapper(node, ctx):
if reg['trace/level'] == 0:
return f(node, ctx)
err = None
try:
return f(node, ctx)
except Exception as e:
if isinstance(e, HLSSyntaxError) and e.lineno is not None:
_, exc_value, tb = sys.exc_info()
elif hasattr(node, 'lineno'):
exc_value, tb = form_hls_syntax_error(ctx, e, node.lineno)
else:
err = e
tb = None
if err is not None:
raise err
else:
raise exc_value.with_traceback(tb)
if isinstance(ast_type, tuple):
f_ret = visit_ast.register(ast_type[0])(func_wrapper)
for t in ast_type[1:]:
f_ret = visit_ast.register(t)(f_ret)
else:
f_ret = visit_ast.register(ast_type)(func_wrapper)
return f_ret
return wrapper
@singledispatch | MIT License |
hallee/espresso-arm | remi/remi/gui.py | Widget.set_on_touchleave_listener | python | def set_on_touchleave_listener(self, listener, funcname):
self.attributes[self.EVENT_ONTOUCHLEAVE] = "sendCallback('%s','%s');" "event.stopPropagation();event.preventDefault();" "return false;" % (id(self), self.EVENT_ONTOUCHLEAVE)
self.eventManager.register_listener(self.EVENT_ONTOUCHLEAVE, listener, funcname) | Registers the listener for the Widget.ontouchleave event.
Note: the listener prototype have to be in the form on_widget_touchleave(self)
Args:
listener (App, Widget): Instance of the listener. It can be the App or a Widget.
funcname (str): Literal name of the listener function, member of the listener instance | https://github.com/hallee/espresso-arm/blob/d535cc7d8fa41043c6f27fcefa52f98168df4cd4/remi/remi/gui.py#L710-L722 | import os
import logging
from functools import cmp_to_key
import collections
from .server import runtimeInstances, update_event
log = logging.getLogger('remi.gui')
def decorate_set_on_listener(event_name, params):
def add_annotation(function):
function._event_listener = {}
function._event_listener['eventName'] = event_name
function._event_listener['prototype'] = params
return function
return add_annotation
def decorate_constructor_parameter_types(type_list):
def add_annotation(function):
function._constructor_types = type_list
return function
return add_annotation
def to_pix(x):
return str(x) + 'px'
def from_pix(x):
v = 0
try:
v = int(float(x.replace('px', '')))
except ValueError:
log.error('error parsing px', exc_info=True)
return v
def jsonize(d):
return ';'.join(map(lambda k, v: k + ':' + v + '', d.keys(), d.values()))
class _VersionedDictionary(dict):
def __init__(self, *args, **kwargs):
self.__version__ = 0
super(_VersionedDictionary, self).__init__(*args, **kwargs)
def __setitem__(self, key, value, version_increment=1):
if key in self:
if self[key] == value:
return
self.__version__ += version_increment
return super(_VersionedDictionary, self).__setitem__(key, value)
def __delitem__(self, key, version_increment=1):
if not key in self:
return
self.__version__ += version_increment
return super(_VersionedDictionary, self).__delitem__(key)
def pop(self, key, d=None, version_increment=1):
if not key in self:
return
self.__version__ += version_increment
return super(_VersionedDictionary, self).pop(key, d)
def clear(self, version_increment=1):
self.__version__ += version_increment
return super(_VersionedDictionary, self).clear()
class _EventManager(object):
def __init__(self):
self.listeners = {}
def propagate(self, eventname, params):
if eventname not in self.listeners:
return
listener = self.listeners[eventname]
return getattr(listener['instance'], listener['funcname'])(*params)
def register_listener(self, eventname, instance, funcname):
self.listeners[eventname] = {'instance': instance, 'funcname': funcname}
class Tag(object):
def __init__(self, **kwargs):
self.kwargs = kwargs
runtimeInstances[str(id(self))] = self
self._render_children_list = []
self.children = _VersionedDictionary()
self.attributes = _VersionedDictionary()
self.style = _VersionedDictionary()
self.type = kwargs.get('_type', '')
self.attributes['id'] = str(id(self))
cls = kwargs.get('_class', self.__class__.__name__)
if cls:
self._classes = [cls]
else:
self._classes = []
@property
def identifier(self):
return self.attributes['id']
def repr(self, client, include_children=True):
self.attributes['children_list'] = ','.join(map(lambda k, v: str(
id(v)), self.children.keys(), self.children.values()))
innerHTML = ''
for s in self._render_children_list:
if isinstance(s, type('')):
innerHTML = innerHTML + s
elif isinstance(s, type(u'')):
innerHTML = innerHTML + s.encode('utf-8')
elif include_children:
innerHTML = innerHTML + s.repr(client)
html = '<%s %s %s>%s</%s>' % (self.type,
' '.join('%s="%s"' % (k, v) if v is not None else k for k, v in
self.attributes.items()),
('class="%s"' % ' '.join(self._classes)) if self._classes else '',
innerHTML,
self.type)
return html
def add_class(self, cls):
self._classes.append(cls)
def remove_class(self, cls):
try:
self._classes.remove(cls)
except ValueError:
pass
def add_child(self, key, child):
if hasattr(child, 'attributes'):
child.attributes['parent_widget'] = str(id(self))
if key in self.children:
self._render_children_list.remove(self.children[key])
self._render_children_list.append(child)
self.children[key] = child
def get_child(self, key):
return self.children[key]
def empty(self):
for k in list(self.children.keys()):
self.remove_child(self.children[k])
def remove_child(self, child):
if child in self.children.values():
self._render_children_list.remove(child)
for k in self.children.keys():
if str(id(self.children[k])) == str(id(child)):
if k in self._render_children_list:
self._render_children_list.remove(self.children[k])
self.children.pop(k)
break
class Widget(Tag):
LAYOUT_HORIZONTAL = True
LAYOUT_VERTICAL = False
EVENT_ONCLICK = 'onclick'
EVENT_ONDBLCLICK = 'ondblclick'
EVENT_ONMOUSEDOWN = 'onmousedown'
EVENT_ONMOUSEMOVE = 'onmousemove'
EVENT_ONMOUSEOVER = 'onmouseover'
EVENT_ONMOUSEOUT = 'onmouseout'
EVENT_ONMOUSELEAVE = 'onmouseleave'
EVENT_ONMOUSEUP = 'onmouseup'
EVENT_ONTOUCHMOVE = 'ontouchmove'
EVENT_ONTOUCHSTART = 'ontouchstart'
EVENT_ONTOUCHEND = 'ontouchend'
EVENT_ONTOUCHENTER = 'ontouchenter'
EVENT_ONTOUCHLEAVE = 'ontouchleave'
EVENT_ONTOUCHCANCEL = 'ontouchcancel'
EVENT_ONKEYDOWN = 'onkeydown'
EVENT_ONKEYPRESS = 'onkeypress'
EVENT_ONKEYUP = 'onkeyup'
EVENT_ONCHANGE = 'onchange'
EVENT_ONFOCUS = 'onfocus'
EVENT_ONBLUR = 'onblur'
EVENT_ONCONTEXTMENU = "oncontextmenu"
EVENT_ONUPDATE = 'onupdate'
@decorate_constructor_parameter_types([])
def __init__(self, **kwargs):
if '_type' not in kwargs:
kwargs['_type'] = 'div'
super(Widget, self).__init__(**kwargs)
self.eventManager = _EventManager()
self.oldRootWidget = None
self.style['margin'] = kwargs.get('margin', '0px auto')
self.set_layout_orientation(kwargs.get('layout_orientation', Widget.LAYOUT_VERTICAL))
self.set_size(kwargs.get('width'), kwargs.get('height'))
def set_size(self, width, height):
if width is not None:
try:
width = to_pix(int(width))
except ValueError:
pass
self.style['width'] = width
if height is not None:
try:
height = to_pix(int(height))
except ValueError:
pass
self.style['height'] = height
def set_layout_orientation(self, layout_orientation):
self.layout_orientation = layout_orientation
def redraw(self):
update_event.set()
def repr(self, client, include_children=True):
self.attributes['style'] = jsonize(self.style)
return super(Widget, self).repr(client, include_children)
def append(self, value, key=''):
if not isinstance(value, Widget):
raise ValueError('value should be a Widget (otherwise use add_child(key,other)')
key = str(id(value)) if key == '' else key
self.add_child(key, value)
if self.layout_orientation == Widget.LAYOUT_HORIZONTAL:
if 'float' in self.children[key].style.keys():
if not (self.children[key].style['float'] == 'none'):
self.children[key].style['float'] = 'left'
else:
self.children[key].style['float'] = 'left'
return key
def onfocus(self):
return self.eventManager.propagate(self.EVENT_ONFOCUS, [])
@decorate_set_on_listener("onfocus", "(self)")
def set_on_focus_listener(self, listener, funcname):
self.attributes[self.EVENT_ONFOCUS] = "sendCallback('%s','%s');" "event.stopPropagation();event.preventDefault();" "return false;" % (id(self), self.EVENT_ONFOCUS)
self.eventManager.register_listener(self.EVENT_ONFOCUS, listener, funcname)
def onblur(self):
return self.eventManager.propagate(self.EVENT_ONBLUR, [])
@decorate_set_on_listener("onblur", "(self)")
def set_on_blur_listener(self, listener, funcname):
self.attributes[self.EVENT_ONBLUR] = "sendCallback('%s','%s');" "event.stopPropagation();event.preventDefault();" "return false;" % (id(self), self.EVENT_ONBLUR)
self.eventManager.register_listener(self.EVENT_ONBLUR, listener, funcname)
def show(self, baseAppInstance):
self.baseAppInstance = baseAppInstance
self.oldRootWidget = self.baseAppInstance.client.root
self.baseAppInstance.client.root = self
def hide(self):
if hasattr(self, 'baseAppInstance'):
self.baseAppInstance.client.root = self.oldRootWidget
def onclick(self):
return self.eventManager.propagate(self.EVENT_ONCLICK, [])
@decorate_set_on_listener("onclick", "(self)")
def set_on_click_listener(self, listener, funcname):
self.attributes[self.EVENT_ONCLICK] = "sendCallback('%s','%s');" "event.stopPropagation();event.preventDefault();" % (id(self), self.EVENT_ONCLICK)
self.eventManager.register_listener(self.EVENT_ONCLICK, listener, funcname)
def oncontextmenu(self):
return self.eventManager.propagate(self.EVENT_ONCONTEXTMENU, [])
@decorate_set_on_listener("oncontextmenu", "(self)")
def set_on_contextmenu_listener(self, listener, funcname):
self.attributes[self.EVENT_ONCONTEXTMENU] = "sendCallback('%s','%s');" "event.stopPropagation();event.preventDefault();" "return false;" % (id(self), self.EVENT_ONCONTEXTMENU)
self.eventManager.register_listener(self.EVENT_ONCONTEXTMENU, listener, funcname)
def onmousedown(self, x, y):
return self.eventManager.propagate(self.EVENT_ONMOUSEDOWN, [x, y])
@decorate_set_on_listener("onmousedown", "(self,x,y)")
def set_on_mousedown_listener(self, listener, funcname):
self.attributes[self.EVENT_ONMOUSEDOWN] = "var params={};" "params['x']=event.clientX-this.offsetLeft;" "params['y']=event.clientY-this.offsetTop;" "sendCallbackParam('%s','%s',params);" "event.stopPropagation();event.preventDefault();" "return false;" % (id(self), self.EVENT_ONMOUSEDOWN)
self.eventManager.register_listener(self.EVENT_ONMOUSEDOWN, listener, funcname)
def onmouseup(self, x, y):
return self.eventManager.propagate(self.EVENT_ONMOUSEUP, [x, y])
@decorate_set_on_listener("onmouseup", "(self,x,y)")
def set_on_mouseup_listener(self, listener, funcname):
self.attributes[self.EVENT_ONMOUSEUP] = "var params={};" "params['x']=event.clientX-this.offsetLeft;" "params['y']=event.clientY-this.offsetTop;" "sendCallbackParam('%s','%s',params);" "event.stopPropagation();event.preventDefault();" "return false;" % (id(self), self.EVENT_ONMOUSEUP)
self.eventManager.register_listener(self.EVENT_ONMOUSEUP, listener, funcname)
def onmouseout(self):
return self.eventManager.propagate(self.EVENT_ONMOUSEOUT, [])
@decorate_set_on_listener("onmouseout", "(self)")
def set_on_mouseout_listener(self, listener, funcname):
self.attributes[self.EVENT_ONMOUSEOUT] = "sendCallback('%s','%s');" "event.stopPropagation();event.preventDefault();" "return false;" % (id(self), self.EVENT_ONMOUSEOUT)
self.eventManager.register_listener(self.EVENT_ONMOUSEOUT, listener, funcname)
def onmouseleave(self):
return self.eventManager.propagate(self.EVENT_ONMOUSELEAVE, [])
@decorate_set_on_listener("onmouseleave", "(self)")
def set_on_mouseleave_listener(self, listener, funcname):
self.attributes[self.EVENT_ONMOUSELEAVE] = "sendCallback('%s','%s');" "event.stopPropagation();event.preventDefault();" "return false;" % (id(self), self.EVENT_ONMOUSELEAVE)
self.eventManager.register_listener(self.EVENT_ONMOUSELEAVE, listener, funcname)
def onmousemove(self, x, y):
return self.eventManager.propagate(self.EVENT_ONMOUSEMOVE, [x, y])
@decorate_set_on_listener("onmousemove", "(self,x,y)")
def set_on_mousemove_listener(self, listener, funcname):
self.attributes[self.EVENT_ONMOUSEMOVE] = "var params={};" "params['x']=event.clientX-this.offsetLeft;" "params['y']=event.clientY-this.offsetTop;" "sendCallbackParam('%s','%s',params);" "event.stopPropagation();event.preventDefault();" "return false;" % (id(self), self.EVENT_ONMOUSEMOVE)
self.eventManager.register_listener(self.EVENT_ONMOUSEMOVE, listener, funcname)
def ontouchmove(self, x, y):
return self.eventManager.propagate(self.EVENT_ONTOUCHMOVE, [x, y])
@decorate_set_on_listener("ontouchmove", "(self,x,y)")
def set_on_touchmove_listener(self, listener, funcname):
self.attributes[self.EVENT_ONTOUCHMOVE] = "var params={};" "params['x']=parseInt(event.changedTouches[0].clientX)-this.offsetLeft;" "params['y']=parseInt(event.changedTouches[0].clientY)-this.offsetTop;" "sendCallbackParam('%s','%s',params);" "event.stopPropagation();event.preventDefault();" "return false;" % (id(self), self.EVENT_ONTOUCHMOVE)
self.eventManager.register_listener(self.EVENT_ONTOUCHMOVE, listener, funcname)
def ontouchstart(self, x, y):
return self.eventManager.propagate(self.EVENT_ONTOUCHSTART, [x, y])
@decorate_set_on_listener("ontouchstart", "(self,x,y)")
def set_on_touchstart_listener(self, listener, funcname):
self.attributes[self.EVENT_ONTOUCHSTART] = "var params={};" "params['x']=parseInt(event.changedTouches[0].clientX)-this.offsetLeft;" "params['y']=parseInt(event.changedTouches[0].clientY)-this.offsetTop;" "sendCallbackParam('%s','%s',params);" "event.stopPropagation();event.preventDefault();" "return false;" % (id(self), self.EVENT_ONTOUCHSTART)
self.eventManager.register_listener(self.EVENT_ONTOUCHSTART, listener, funcname)
def ontouchend(self, x, y):
return self.eventManager.propagate(self.EVENT_ONTOUCHEND, [x, y])
@decorate_set_on_listener("ontouchend", "(self,x,y)")
def set_on_touchend_listener(self, listener, funcname):
self.attributes[self.EVENT_ONTOUCHEND] = "var params={};" "params['x']=parseInt(event.changedTouches[0].clientX)-this.offsetLeft;" "params['y']=parseInt(event.changedTouches[0].clientY)-this.offsetTop;" "sendCallbackParam('%s','%s',params);" "event.stopPropagation();event.preventDefault();" "return false;" % (id(self), self.EVENT_ONTOUCHEND)
self.eventManager.register_listener(self.EVENT_ONTOUCHEND, listener, funcname)
def ontouchenter(self, x, y):
return self.eventManager.propagate(self.EVENT_ONTOUCHENTER, [x, y])
@decorate_set_on_listener("ontouchenter", "(self,x,y)")
def set_on_touchenter_listener(self, listener, funcname):
self.attributes[self.EVENT_ONTOUCHENTER] = "var params={};" "params['x']=parseInt(event.changedTouches[0].clientX)-this.offsetLeft;" "params['y']=parseInt(event.changedTouches[0].clientY)-this.offsetTop;" "sendCallbackParam('%s','%s',params);" "event.stopPropagation();event.preventDefault();" "return false;" % (id(self), self.EVENT_ONTOUCHENTER)
self.eventManager.register_listener(self.EVENT_ONTOUCHENTER, listener, funcname)
def ontouchleave(self):
return self.eventManager.propagate(self.EVENT_ONTOUCHLEAVE, [])
@decorate_set_on_listener("ontouchleave", "(self)") | MIT License |
azure/azure-devops-cli-extension | azure-devops/azext_devops/devops_sdk/v5_0/client_factory.py | ClientFactoryV5_0.get_upack_packaging_client | python | def get_upack_packaging_client(self):
return self._connection.get_client('azure.devops.v5_0.upack_packaging.upack_packaging_client.UPackPackagingClient') | get_upack_packaging_client.
Gets the 5.0 version of the UPackPackagingClient
:rtype: :class:`<UPackPackagingClient> <azure.devops.v5_0.upack_packaging.upack_packaging_client.UPackPackagingClient>` | https://github.com/azure/azure-devops-cli-extension/blob/5f33f7d81a9c2d2990044fbd9ffa6b535cbda528/azure-devops/azext_devops/devops_sdk/v5_0/client_factory.py#L340-L345 |
class ClientFactoryV5_0(object):
def __init__(self, connection):
self._connection = connection
def get_accounts_client(self):
return self._connection.get_client('azure.devops.v5_0.accounts.accounts_client.AccountsClient')
def get_boards_client(self):
return self._connection.get_client('azure.devops.v5_0.boards.boards_client.BoardsClient')
def get_build_client(self):
return self._connection.get_client('azure.devops.v5_0.build.build_client.BuildClient')
def get_client_trace_client(self):
return self._connection.get_client('azure.devops.v5_0.client_trace.client_trace_client.ClientTraceClient')
def get_cloud_load_test_client(self):
return self._connection.get_client('azure.devops.v5_0.cloud_load_test.cloud_load_test_client.CloudLoadTestClient')
def get_contributions_client(self):
return self._connection.get_client('azure.devops.v5_0.contributions.contributions_client.ContributionsClient')
def get_core_client(self):
return self._connection.get_client('azure.devops.v5_0.core.core_client.CoreClient')
def get_customer_intelligence_client(self):
return self._connection.get_client('azure.devops.v5_0.customer_intelligence.customer_intelligence_client.CustomerIntelligenceClient')
def get_dashboard_client(self):
return self._connection.get_client('azure.devops.v5_0.dashboard.dashboard_client.DashboardClient')
def get_extension_management_client(self):
return self._connection.get_client('azure.devops.v5_0.extension_management.extension_management_client.ExtensionManagementClient')
def get_feature_availability_client(self):
return self._connection.get_client('azure.devops.v5_0.feature_availability.feature_availability_client.FeatureAvailabilityClient')
def get_feature_management_client(self):
return self._connection.get_client('azure.devops.v5_0.feature_management.feature_management_client.FeatureManagementClient')
def get_feed_client(self):
return self._connection.get_client('azure.devops.v5_0.feed.feed_client.FeedClient')
def get_feed_token_client(self):
return self._connection.get_client('azure.devops.v5_0.feed_token.feed_token_client.FeedTokenClient')
def get_file_container_client(self):
return self._connection.get_client('azure.devops.v5_0.file_container.file_container_client.FileContainerClient')
def get_gallery_client(self):
return self._connection.get_client('azure.devops.v5_0.gallery.gallery_client.GalleryClient')
def get_git_client(self):
return self._connection.get_client('azure.devops.v5_0.git.git_client.GitClient')
def get_graph_client(self):
return self._connection.get_client('azure.devops.v5_0.graph.graph_client.GraphClient')
def get_identity_client(self):
return self._connection.get_client('azure.devops.v5_0.identity.identity_client.IdentityClient')
def get_licensing_client(self):
return self._connection.get_client('azure.devops.v5_0.licensing.licensing_client.LicensingClient')
def get_location_client(self):
return self._connection.get_client('azure.devops.v5_0.location.location_client.LocationClient')
def get_maven_client(self):
return self._connection.get_client('azure.devops.v5_0.maven.maven_client.MavenClient')
def get_member_entitlement_management_client(self):
return self._connection.get_client('azure.devops.v5_0.member_entitlement_management.member_entitlement_management_client.MemberEntitlementManagementClient')
def get_notification_client(self):
return self._connection.get_client('azure.devops.v5_0.notification.notification_client.NotificationClient')
def get_npm_client(self):
return self._connection.get_client('azure.devops.v5_0.npm.npm_client.NpmClient')
def get_nuget_client(self):
return self._connection.get_client('azure.devops.v5_0.nuget.nuget_client.NuGetClient')
def get_operations_client(self):
return self._connection.get_client('azure.devops.v5_0.operations.operations_client.OperationsClient')
def get_policy_client(self):
return self._connection.get_client('azure.devops.v5_0.policy.policy_client.PolicyClient')
def get_profile_client(self):
return self._connection.get_client('azure.devops.v5_0.profile.profile_client.ProfileClient')
def get_project_analysis_client(self):
return self._connection.get_client('azure.devops.v5_0.project_analysis.project_analysis_client.ProjectAnalysisClient')
def get_provenance_client(self):
return self._connection.get_client('azure.devops.v5_0.provenance.provenance_client.ProvenanceClient')
def get_py_pi_api_client(self):
return self._connection.get_client('azure.devops.v5_0.py_pi_api.py_pi_api_client.PyPiApiClient')
def get_release_client(self):
return self._connection.get_client('azure.devops.v5_0.release.release_client.ReleaseClient')
def get_search_client(self):
return self._connection.get_client('azure.devops.v5_0.search.search_client.SearchClient')
def get_security_client(self):
return self._connection.get_client('azure.devops.v5_0.security.security_client.SecurityClient')
def get_service_endpoint_client(self):
return self._connection.get_client('azure.devops.v5_0.service_endpoint.service_endpoint_client.ServiceEndpointClient')
def get_service_hooks_client(self):
return self._connection.get_client('azure.devops.v5_0.service_hooks.service_hooks_client.ServiceHooksClient')
def get_settings_client(self):
return self._connection.get_client('azure.devops.v5_0.settings.settings_client.SettingsClient')
def get_symbol_client(self):
return self._connection.get_client('azure.devops.v5_0.symbol.symbol_client.SymbolClient')
def get_task_client(self):
return self._connection.get_client('azure.devops.v5_0.task.task_client.TaskClient')
def get_task_agent_client(self):
return self._connection.get_client('azure.devops.v5_0.task_agent.task_agent_client.TaskAgentClient')
def get_test_client(self):
return self._connection.get_client('azure.devops.v5_0.test.test_client.TestClient')
def get_tfvc_client(self):
return self._connection.get_client('azure.devops.v5_0.tfvc.tfvc_client.TfvcClient')
def get_token_admin_client(self):
return self._connection.get_client('azure.devops.v5_0.token_admin.token_admin_client.TokenAdminClient')
def get_token_administration_client(self):
return self._connection.get_client('azure.devops.v5_0.token_administration.token_administration_client.TokenAdministrationClient')
def get_upack_api_client(self):
return self._connection.get_client('azure.devops.v5_0.upack_api.upack_api_client.UPackApiClient') | MIT License |
nccgroup/depthcharge | python/depthcharge/memory/patch.py | MemoryPatch.from_tuple | python | def from_tuple(cls, src: tuple):
src_len = len(src)
if src_len == 4:
exp = src[2]
desc = src[3]
elif src_len == 3:
exp = src[2] if isinstance(src[2], bytes) else None
desc = src[2] if isinstance(src[2], str) else None
elif src_len == 2:
exp = None
desc = None
else:
err = 'Invalid number of elements ({:d})'
raise ValueError(err.format(src_len))
return cls(src[0], src[1], exp, desc) | Create a :py:class:`.MemoryPatch` object from a tuple with the following elements:
+-------+-------+----------------------------------------------------------------------+
| Index | Type | Description |
+=======+=======+======================================================================+
| 0 | int | Address to apply patch to |
+-------+-------+----------------------------------------------------------------------+
| 1 | bytes | Data to write to the target address |
+-------+-------+----------------------------------------------------------------------+
| 2 | bytes | Value expected to reside at target address. Optional; may be ``None``|
+-------+-------+----------------------------------------------------------------------+
| 3 | str | Description of patch. Optional may be ``None`` or empty string. |
+-------+-------+----------------------------------------------------------------------+ | https://github.com/nccgroup/depthcharge/blob/9b66d1c2a80b9398ac561c83173ebd748aef018d/python/depthcharge/memory/patch.py#L70-L101 | class MemoryPatch:
def __init__(self, addr: int, value: bytes, expected: bytes = None, desc=''):
self._addr = addr
self._val = value
self._exp = expected
self._desc = desc
if expected is not None and len(expected) != len(value):
err = 'Expected data is {:d} bytes, but patch value is {:d} bytes'
raise ValueError(err.format(len(expected), len(value)))
@property
def address(self) -> int:
return self._addr
@property
def value(self) -> bytes:
return self._val
@property
def expected(self) -> bytes:
return self._exp
@property
def description(self) -> str:
suffix = ' @ 0x{:08x}'.format(self._addr)
if self._desc is None:
return 'Patch' + suffix
return self._desc + suffix
@classmethod | BSD 3-Clause New or Revised License |
arangodb-community/pyarango | pyArango/theExceptions.py | AQLFetchError.__init__ | python | def __init__(self, err_message):
Exception.__init__(self, err_message) | Error when unable to fetch.
Parameters
----------
err_message : str
error message. | https://github.com/arangodb-community/pyarango/blob/db758bf6ffab47fee02bec3f960f87065b28bc33/pyArango/theExceptions.py#L196-L205 | class pyArangoException(Exception):
def __init__(self, message, errors = None):
Exception.__init__(self, message)
if errors is None:
errors = {}
self.message = message
self.errors = errors
def __str__(self):
return self.message + ". Errors: " + str(self.errors)
class ConnectionError(pyArangoException):
def __init__(self, message, URL, statusCode = "", errors = None):
if errors is None:
errors = {}
mes = "%s. URL: %s, status: %s" % (message, URL, statusCode)
pyArangoException.__init__(self, mes, errors)
class ArangoError(pyArangoException):
def __init__(self, errorObject):
self.errorNum = errorObject['errorNum']
pyArangoException.__init__(self, errorObject['errorMessage'], errorObject)
class CreationError(pyArangoException):
def __init__(self, message, errors = None):
if errors is None:
errors = {}
pyArangoException.__init__(self, message, errors)
class IndexError(pyArangoException):
def __init__(self, message, errors = None):
if errors is None:
errors = {}
pyArangoException.__init__(self, message, errors)
class UpdateError(pyArangoException):
def __init__(self, message, errors = None):
if errors is None:
errors = {}
pyArangoException.__init__(self, message, errors)
class DeletionError(pyArangoException):
def __init__(self, message, errors = None):
if errors is None:
errors = {}
pyArangoException.__init__(self, message, errors)
class TraversalError(pyArangoException):
def __init__(self, message, errors = None):
if errors is None:
errors = {}
pyArangoException.__init__(self, message, errors)
class ValidationError(pyArangoException):
def __init__(self, message, errors = None):
if errors is None:
errors = {}
pyArangoException.__init__(self, message, errors)
class SchemaViolation(pyArangoException):
def __init__(self, collection, field, errors = None):
if errors is None:
errors = {}
message = "Collection '%s' does not have a field '%s' in it's schema" % (collection.__name__, field)
pyArangoException.__init__(self, message, errors)
class InvalidDocument(pyArangoException):
def __init__(self, errors):
message = "Unsuccesful validation"
self.strErrors = []
for k, v in errors.items():
self.strErrors.append("%s -> %s" % (k, v))
self.strErrors = '\n\t'.join(self.strErrors)
pyArangoException.__init__(self, message, errors)
def __str__(self):
strErrors = []
for k, v in self.errors.items():
strErrors.append("%s -> %s" % (k, v))
strErrors = '\n\t'.join(strErrors)
return self.message + ":\n\t" + strErrors
class SimpleQueryError(pyArangoException):
def __init__(self, message, errors = None):
if errors is None:
errors = {}
pyArangoException.__init__(self, message, errors)
class BulkOperationError(pyArangoException):
def __init__(self, message):
self._errors = []
self._errmsgs = []
self._documents = []
pyArangoException.__init__(self, "Batch error - + " + message)
def addBulkError(self, error, document):
self._errors.append(error)
self._errmsgs.append(str(error))
self._documents.append(document)
def __str__(self):
strErrors = []
i = 0
for errMsg in self._errmsgs:
err = "<unknown>"
docstr = "<unknown>"
try:
err = errMsg
except:
pass
try:
docstr = self._documents[i]
except:
pass
strErrors.append("\t<%s> -> %s" % (err, docstr))
i+=1
strErrors = '\n\t'.join(strErrors)
return self.message + ":\n\t" + strErrors
class QueryError(pyArangoException):
def __init__(self, message, errors = None):
if errors is None:
errors = {}
pyArangoException.__init__(self, message, errors)
class AQLQueryError(pyArangoException):
def __init__(self, message, query, errors = None):
if errors is None:
errors = {}
lq = []
for i, ll in enumerate(query.split("\n")):
lq.append("%s: %s" % (i+1, ll))
lq = '\n'.join(lq)
message = "Error in:\n%s.\n->%s" % (lq, message)
pyArangoException.__init__(self, message, errors)
class CursorError(pyArangoException):
def __init__(self, message, cursorId, errors = None):
if errors is None:
errors = {}
message = "Unable to retreive data for cursor %s: %s" % (cursorId, message)
pyArangoException.__init__(self, message, errors)
class TransactionError(pyArangoException):
def __init__(self, message, action, errors = None):
if errors is None:
errors = {}
message = "Error in: %s.\n->%s" % (action, message)
pyArangoException.__init__(self, message, errors)
class AbstractInstanciationError(Exception):
def __init__(self, cls):
self.cls = cls
self.message = "%s is abstract and is not supposed to be instanciated. Collections my inherit from it" % self.cls.__name__
Exception.__init__(self, self.message)
def __str__(self):
return self.message
class ExportError(pyArangoException):
def __init__(self, message, errors = None ):
if errors is None:
errors = {}
pyArangoException.__init__(self, message, errors)
class DocumentNotFoundError(pyArangoException):
def __init__(self, message, errors = None):
if errors is None:
errors = {}
pyArangoException.__init__(self, message, errors)
class AQLFetchError(Exception): | Apache License 2.0 |
sigsep/open-unmix-pytorch | openunmix/filtering.py | _mul_add | python | def _mul_add(a: torch.Tensor, b: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)])
if out is None or out.shape != target_shape:
out = torch.zeros(target_shape, dtype=a.dtype, device=a.device)
if out is a:
real_a = a[..., 0]
out[..., 0] = out[..., 0] + (real_a * b[..., 0] - a[..., 1] * b[..., 1])
out[..., 1] = out[..., 1] + (real_a * b[..., 1] + a[..., 1] * b[..., 0])
else:
out[..., 0] = out[..., 0] + (a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1])
out[..., 1] = out[..., 1] + (a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0])
return out | Element-wise multiplication of two complex Tensors described
through their real and imaginary parts.
The result is added to the `out` tensor | https://github.com/sigsep/open-unmix-pytorch/blob/49e65ac367cc2ab9fa3f6f41dd9dd778223ca67d/openunmix/filtering.py#L50-L66 | from typing import Optional
import torch
import torch.nn as nn
from torch import Tensor
from torch.utils.data import DataLoader
def atan2(y, x):
pi = 2 * torch.asin(torch.tensor(1.0))
x += ((x == 0) & (y == 0)) * 1.0
out = torch.atan(y / x)
out += ((y >= 0) & (x < 0)) * pi
out -= ((y < 0) & (x < 0)) * pi
out *= 1 - ((y > 0) & (x == 0)) * 1.0
out += ((y > 0) & (x == 0)) * (pi / 2)
out *= 1 - ((y < 0) & (x == 0)) * 1.0
out += ((y < 0) & (x == 0)) * (-pi / 2)
return out
def _norm(x: torch.Tensor) -> torch.Tensor:
return torch.abs(x[..., 0]) ** 2 + torch.abs(x[..., 1]) ** 2 | MIT License |
zapatacomputing/z-quantum-core | src/python/zquantum/core/bitstring_distribution/distance_measures/mmd.py | compute_rbf_kernel | python | def compute_rbf_kernel(x_i: np.ndarray, y_j: np.ndarray, sigma: float) -> np.ndarray:
exponent = np.abs(x_i[:, None] - y_j[None, :]) ** 2
try:
gamma = 1.0 / (2 * sigma)
except ZeroDivisionError as error:
print("Handling run-time error:", error)
raise
kernel_matrix = np.exp(-gamma * exponent)
return kernel_matrix | Compute the gaussian (RBF) kernel matrix K, with K_ij = exp(-gamma |x_i - y_j|^2)
and gamma = 1/(2*sigma).
Args:
x_i: Samples A (integers).
y_j: Samples B (integers).
sigma: The bandwidth of the gaussian kernel.
Returns:
np.ndarray: The gaussian kernel matrix. | https://github.com/zapatacomputing/z-quantum-core/blob/5fa4fd5d8682bbae696f8c2c2d386133ccf7f378/src/python/zquantum/core/bitstring_distribution/distance_measures/mmd.py#L34-L53 | from typing import TYPE_CHECKING, Dict, List, Sequence, Union
import numpy as np
if TYPE_CHECKING:
from zquantum.core.bitstring_distribution import BitstringDistribution | Apache License 2.0 |
giacomocerquone/univaqbot | libs/utils.py | db_connection | python | def db_connection():
try:
conn = pymongo.MongoClient(os.environ['MONGODB_URI'])
print("Connected successfully!")
except (pymongo.errors.ConnectionFailure) as err:
print("Could not connect to MongoDB: %s" % err)
global DATABASE
DATABASE = conn.get_default_database() | Get MongoDB connection | https://github.com/giacomocerquone/univaqbot/blob/754519befe24dcc3c4a658160b727de7b14a6b21/libs/utils.py#L33-L43 | import logging
import os
import bs4
import requests
import pymongo
from telegram import TelegramError
DATABASE = ""
USERS = {
'telegramID': [],
'disim': [],
'univaq': [],
'discab_general': [],
'discab_biotechnology': [],
'discab_medical':[],
'discab_motor_science': [],
'discab_psychology': [],
'mesva_general': [],
'mesva_medical': [],
'mesva_environmental_science': [],
'mesva_biological_science': []
}
NEWS = {} | MIT License |
bilylee/siamfc-tensorflow | scripts/build_VID2015_imdb.py | Dataset._get_unique_trackids | python | def _get_unique_trackids(self, video_dir):
x_image_paths = glob.glob(video_dir + '/*.crop.x.jpg')
trackids = [os.path.basename(path).split('.')[1] for path in x_image_paths]
unique_trackids = set(trackids)
return unique_trackids | Get unique trackids within video_dir | https://github.com/bilylee/siamfc-tensorflow/blob/f572dca95f2b3b2861f54de467259753428e468c/scripts/build_VID2015_imdb.py#L47-L52 | from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import glob
import os
import os.path as osp
import pickle
import sys
import numpy as np
import tensorflow as tf
CURRENT_DIR = osp.dirname(__file__)
sys.path.append(osp.join(CURRENT_DIR, '..'))
from utils.misc_utils import sort_nicely
class Config:
dataset_dir = 'data/ILSVRC2015-VID-Curation'
save_dir = 'data/'
validation_ratio = 0.1
class DataIter:
pass
class Dataset:
def __init__(self, config):
self.config = config | MIT License |
jefkine/zeta-learn | ztlearn/utils/data_utils.py | minibatches | python | def minibatches(input_data, input_label, batch_size, shuffle):
assert input_data.shape[0] == input_label.shape[0], 'input data and label sizes do not match!'
minibatches = []
indices = np.arange(input_data.shape[0])
if shuffle:
np.random.shuffle(indices)
for idx in range(0, input_data.shape[0], batch_size):
mini_batch = indices[idx:idx + batch_size]
minibatches.append((input_data[mini_batch], input_label[mini_batch]))
return minibatches | generate minibatches on a given input data matrix | https://github.com/jefkine/zeta-learn/blob/04388f90093b52f5df2f334c898f3a1224f5a13f/ztlearn/utils/data_utils.py#L98-L111 | import os
import sys
import gzip
import urllib
import tarfile
import zipfile
import numpy as np
from itertools import chain
from itertools import combinations
from itertools import combinations_with_replacement
def eucledian_norm(vec_a, vec_b):
distance = vec_a - vec_b
return np.linalg.norm(distance, ord = 'fro', axis = 1)
def clip_gradients(grad, g_min = -1., g_max = 1.):
return np.clip(grad, g_min, g_max, out = grad)
def accuracy_score(predictions, targets):
return np.mean(predictions == targets)
def one_hot(labels, num_classes = None):
num_classes = np.max(labels.astype('int')) + 1 if not num_classes else num_classes
one_hot_labels = np.zeros([labels.size, num_classes])
one_hot_labels[np.arange(labels.size), labels.astype('int')] = 1.
return one_hot_labels
def unhot(one_hot, unhot_axis = 1):
return np.argmax(one_hot, axis = unhot_axis)
def imbalanced_dataset(input_data, input_label, digit, remainder):
input_label_ids = np.squeeze(np.array(np.where(input_label == digit)), axis = 0)
remainder_ids = input_label_ids[remainder:]
return np.delete(input_data, remainder_ids, 0), np.delete(input_label, remainder_ids, 0)
def shuffle_data(input_data, input_label, random_seed = None):
assert input_data.shape[0] == input_label.shape[0], 'input data and label sizes do not match!'
if random_seed is not None:
np.random.seed(random_seed)
indices = np.arange(input_data.shape[0])
np.random.shuffle(indices)
return input_data[indices], input_label[indices]
def train_test_split(samples, labels, test_size = 0.2, shuffle = True, random_seed = None, cut_off = None):
if shuffle:
samples, labels = shuffle_data(samples, labels, random_seed)
split_ratio = int((1.0 - test_size) * len(samples))
samples_train, samples_test = samples[:split_ratio], samples[split_ratio:]
labels_train, labels_test = labels[:split_ratio], labels[split_ratio:]
if cut_off is not None and isinstance(cut_off, (int, np.integer)):
return samples_train[:cut_off], samples_test[:cut_off], labels_train[:cut_off], labels_test[:cut_off]
return samples_train, samples_test, labels_train, labels_test
def kfold_split(samples, labels, n_splits = 5, shuffle = False, random_seed = None):
if shuffle:
samples, labels = shuffle_data(samples, labels, random_seed)
def get_folds(input_data, num_rows):
fold_size = int(num_rows / n_splits)
for idx in range(0, num_rows, fold_size):
yield input_data[idx:idx + fold_size]
sample_folds = list(get_folds(samples, samples.shape[0]))
label_folds = list(get_folds(labels, samples.shape[0]))
return sample_folds, label_folds | MIT License |
openschc/openschc | src/frag_tile.py | TileList.unset_sent_flag | python | def unset_sent_flag(self, win, bit_list):
def unset_sent_flag_do(wn, tn):
if tn is None:
dprint("last tile case")
return
counter = 0
dprint('unset_sent_flag_do')
for t in self.all_tiles:
if t["w-num"] == wn:
if t["t-num"] == self.max_fcn - tn:
counter += 1
dprint('counter = {}, t-num {}, tn {}'.format(counter, t["t-num"],tn))
t["sent"] = False
elif t["t-num"] == self.max_fcn:
dprint("t-num {} == max_fcn {}".format(t["t-num"],self.max_fcn))
dprint("unset_sent_flag")
dprint("bit_list -> {}".format(bit_list))
dprint("self.max_w_num:{} win:{}, len(bit_list[:-1]):{}".format(self.max_w_num, win, len(bit_list[:-1])))
if self.max_w_num == win:
dprint("last window")
dprint("self.all_tiles -> {}".format(self.all_tiles))
for bi in range(len(bit_list[:-1])):
dprint("bi -> {}".format(bi))
if bit_list[bi] == 0:
unset_sent_flag_do(win, bi)
if bit_list[-1] == 1:
dprint("Problem in tx, the last bit is set as 1")
dprint("self.all_tiles -> {}".format(self.all_tiles))
self.all_tiles[-1]["sent"] = True
else:
dprint("not last window")
for bi in range(len(bit_list)):
if bit_list[bi] == 0:
unset_sent_flag_do(win, bi)
dprint("self.all_tiles -> {}".format(self.all_tiles)) | set the sent flag to False from True. | https://github.com/openschc/openschc/blob/7b0c165a27936d8f2732a90844a00c5ade23eea5/src/frag_tile.py#L108-L161 | from gen_base_import import *
from gen_utils import dprint
import frag_msg
from compr_core import *
class TileList():
def __init__(self, rule, packet_bbuf, l2word=8):
self.rule = rule
self.t_size = rule[T_FRAG][T_FRAG_PROF][T_FRAG_TILE]
assert self.t_size >= l2word
self.max_fcn = frag_msg.get_max_fcn(rule)
self.all_tiles = []
w_num = 0
t_num = self.max_fcn
bbuf = packet_bbuf.copy()
bbuf_bits_size = bbuf.count_added_bits()
nb_full_size_tiles, last_tile_size = (
bbuf_bits_size // self.t_size,
bbuf_bits_size % self.t_size)
if last_tile_size == 0:
tiles = [ bbuf.get_bits_as_buffer(self.t_size)
for _ in range(nb_full_size_tiles) ]
elif last_tile_size >= l2word:
tiles = [ bbuf.get_bits_as_buffer(self.t_size)
for _ in range(nb_full_size_tiles) ]
tiles.append(bbuf.get_bits_as_buffer(last_tile_size))
else:
if nb_full_size_tiles >= 1:
tiles = [ bbuf.get_bits_as_buffer(self.t_size)
for _ in range(nb_full_size_tiles-1) ]
tiles.append(bbuf.get_bits_as_buffer(self.t_size-l2word))
tiles.append(bbuf.get_bits_as_buffer(last_tile_size+l2word))
else:
tiles.append(bbuf.get_bits_as_buffer(last_tile_size))
for t in tiles:
tile_obj = {
"w-num": w_num,
"t-num": t_num,
"tile": t,
"sent": False,
}
self.all_tiles.append(tile_obj)
if t_num == 0:
t_num = self.max_fcn
w_num += 1
else:
t_num -= 1
if frag_msg.get_win_all_1(rule) < w_num:
raise ValueError(
"ERROR: the packet size > WSize. {} > {}".format(
w_num, frag_msg.get_win_all_1(rule)))
self.max_w_num = w_num
def get_tiles(self, mtu_size):
remaining_size = mtu_size - frag_msg.get_sender_header_size(self.rule)
max_tiles = remaining_size // self.t_size
tiles = []
t_prev = None
for i in range(len(self.all_tiles)):
t = self.all_tiles[i]
if t["sent"] == False:
tiles.append(t)
t["sent"] = True
t_prev = t
if len(tiles) == max_tiles:
break
if len(tiles) == 0:
return None, 0, remaining_size
nb_remaining_tiles = len(
[ _ for _ in self.all_tiles if _["sent"] == False ])
remaining_size -= self.get_tile_size(tiles)
return tiles, nb_remaining_tiles, remaining_size
def get_all_tiles(self):
return self.all_tiles | MIT License |
ebay/accelerator | accelerator/extras.py | json_encode | python | def json_encode(variable, sort_keys=True, as_str=False):
if sort_keys:
dict_type = dict
else:
dict_type = OrderedDict
def typefix(e):
if isinstance(e, dict):
return dict_type((typefix(k), typefix(v)) for k, v in iteritems(e))
elif isinstance(e, (list, tuple, set,)):
return [typefix(v) for v in e]
elif PY2 and isinstance(e, bytes):
return uni(e)
else:
return e
variable = typefix(variable)
res = json.dumps(variable, indent=4, sort_keys=sort_keys)
if PY3 and not as_str:
res = res.encode('ascii')
return res | Return variable serialised as json bytes (or str with as_str=True).
You can pass tuples and sets (saved as lists).
On py2 you can also pass bytes that will be passed through compat.uni.
If you set sort_keys=False you can use OrderedDict to get whatever
order you like. | https://github.com/ebay/accelerator/blob/4c053465b893e8ece354c26953fd168a36edccc1/accelerator/extras.py#L107-L133 | from __future__ import print_function
from __future__ import division
import os
import datetime
import json
from traceback import print_exc
from collections import OrderedDict
import sys
from accelerator.compat import PY2, PY3, pickle, izip, iteritems, first_value
from accelerator.compat import num_types, uni, unicode, str_types
from accelerator.job import Job, JobWithFile
from accelerator.statmsg import status
def _fn(filename, jobid, sliceno):
if filename.startswith('/'):
assert not jobid, "Don't specify full path (%r) and jobid (%s)." % (filename, jobid,)
assert not sliceno, "Don't specify full path (%r) and sliceno." % (filename,)
elif jobid:
filename = Job(jobid).filename(filename, sliceno)
elif sliceno is not None:
filename = '%s.%d' % (filename, sliceno,)
return filename
def _typelistnone(v, t):
if isinstance(v, list):
return [t(v) if v else None for v in v]
elif v:
return t(v)
else:
return None
def _job_params(jobid):
from accelerator.setupfile import load_setup
d = load_setup(jobid)
_apply_typing(d.options, d.get('_typing', ()))
return d
def job_params(jobid=None, default_empty=False):
if default_empty and not jobid:
return DotDict(
options=DotDict(),
datasets=DotDict(),
jobs=DotDict(),
)
from accelerator.dataset import Dataset
from accelerator.job import Job
d = _job_params(jobid)
d.datasets = DotDict({k: _typelistnone(v, Dataset) for k, v in d.datasets.items()})
d.jobs = DotDict({k: _typelistnone(v, Job) for k, v in d.jobs.items()})
d.jobid = Job(d.jobid)
return d
def job_post(jobid):
job = Job(jobid)
d = job.json_load('post.json')
version = d.get('version', 0)
if version == 0:
prefix = job.path + '/'
d.files = sorted(fn[len(prefix):] if fn.startswith(prefix) else fn for fn in d.files)
version = 1
if version != 1:
raise Exception("Don't know how to load post.json version %d (in %s)" % (d.version, jobid,))
return d
def pickle_save(variable, filename='result.pickle', sliceno=None, temp=None, _hidden=False):
filename = _fn(filename, None, sliceno)
with FileWriteMove(filename, temp, _hidden=_hidden) as fh:
pickle.dump(variable, fh, 2)
def pickle_load(filename='result.pickle', jobid=None, sliceno=None, encoding='bytes'):
filename = _fn(filename, jobid, sliceno)
with status('Loading ' + filename):
with open(filename, 'rb') as fh:
if PY3:
return pickle.load(fh, encoding=encoding)
else:
return pickle.load(fh) | Apache License 2.0 |
databiosphere/toil | src/toil/lib/bioio.py | system | python | def system(command):
logger.warning('Deprecated toil method that will be moved/replaced in a future release."')
logger.debug(f'Running: {command}')
subprocess.check_call(command, shell=isinstance(command, str), bufsize=-1) | A convenience wrapper around subprocess.check_call that logs the command before passing it
on. The command can be either a string or a sequence of strings. If it is a string shell=True
will be passed to subprocess.check_call.
:type command: str | sequence[string] | https://github.com/databiosphere/toil/blob/eb2ae8365ae2ebdd50132570b20f7d480eb40cac/src/toil/lib/bioio.py#L25-L34 | import logging
import subprocess
from toil.statsAndLogging import (logger,
root_logger,
set_logging_from_options)
from toil.test import get_temp_file | Apache License 2.0 |
dynatrace-oss/api-client-python | dynatrace/environment_v1/deployment.py | DeploymentService.get_gateway_installer_connection_info | python | def get_gateway_installer_connection_info(self, network_zone: Optional[str] = "default") -> "ActiveGateConnectionInfo":
params = {"networkZone": network_zone}
response = self.__http_client.make_request(path=f"{self.ENDPOINT_INSTALLER_GATEWAY}/connectioninfo", params=params)
return ActiveGateConnectionInfo(raw_element=response.json()) | Gets the connectivity information for Environment ActiveGate.
:param network_zone: The network zone you want the result to be configured with.
:returns ActiveGateConnectionInfo: connectivity information | https://github.com/dynatrace-oss/api-client-python/blob/7749125ab384d36e9a00d5d8dc5964cce4d46f66/dynatrace/environment_v1/deployment.py#L178-L188 | from typing import Optional, Dict, List, Any
from requests import Response
from dynatrace.dynatrace_object import DynatraceObject
from dynatrace.http_client import HttpClient
class DeploymentService:
ENDPOINT_INSTALLER_AGENT = "/api/v1/deployment/installer/agent"
ENDPOINT_INSTALLER_GATEWAY = "/api/v1/deployment/installer/gateway"
ENDPOINT_BOSHRELEASE = "/api/v1/deployment/boshrelease"
ENDPOINT_LAMBDA = "/api/v1/deployment/lambda/agent/latest"
ENDPOINT_ORCHESTRATION = "/api/v1/deployment/orchestration/agent"
def __init__(self, http_client: HttpClient):
self.__http_client = http_client
def get_agent_installer_latest_metainfo(
self, os_type: str, installer_type: str, flavor: Optional[str] = None, arch: Optional[str] = None, bitness: Optional[str] = None
) -> "InstallerMetaInfoDto":
params = {"flavor": flavor, "arch": arch, "bitness": bitness}
response = self.__http_client.make_request(path=f"{self.ENDPOINT_INSTALLER_AGENT}/{os_type}/{installer_type}/latest/metainfo", params=params)
return InstallerMetaInfoDto(raw_element=response.json())
def get_agent_installer(
self,
os_type: str,
installer_type: str,
version: str = "latest",
flavor: Optional[str] = None,
arch: Optional[str] = None,
bitness: Optional[str] = None,
include: Optional[List[str]] = None,
skip_metadata: Optional[bool] = None,
network_zone: Optional[str] = None,
if_none_match: Optional[str] = None,
) -> "Response":
if version != "latest":
version = "version/" + version
params = {
"flavor": flavor,
"arch": arch,
"bitness": bitness,
"include": "&include=".join(include) if include else None,
"skipMetadata": skip_metadata,
"networkZone": network_zone,
}
headers = {"If-None-Match": if_none_match} if if_none_match else None
return self.__http_client.make_request(path=f"{self.ENDPOINT_INSTALLER_AGENT}/{os_type}/{installer_type}/{version}", params=params, headers=headers)
def get_agent_installer_connection_info(self, network_zone: Optional[str] = "default", version: Optional[str] = None) -> "ConnectionInfo":
params = {"networkZone": network_zone, "version": version}
response = self.__http_client.make_request(path=f"{self.ENDPOINT_INSTALLER_AGENT}/connectioninfo", params=params)
return ConnectionInfo(raw_element=response.json())
def get_agent_installer_connection_endpoints(self, network_zone: Optional[str] = "default") -> str:
params = {"networkZone": network_zone}
return self.__http_client.make_request(path=f"{self.ENDPOINT_INSTALLER_AGENT}/connectioninfo/endpoints", params=params).text
def list_agent_installer_versions(
self, os_type: str, installer_type: str, flavor: Optional[str] = None, arch: Optional[str] = None
) -> "AgentInstallerVersions":
params = {"flavor": flavor, "arch": arch}
response = self.__http_client.make_request(path=f"{self.ENDPOINT_INSTALLER_AGENT}/versions/{os_type}/{installer_type}", params=params)
return AgentInstallerVersions(raw_element=response.json()) | Apache License 2.0 |
caktus/django-sticky-uploads | stickyuploads/views.py | UploadView.post | python | def post(self, *args, **kwargs):
if self.upload_allowed():
form = self.get_upload_form()
result = {}
if form.is_valid():
storage = self.get_storage()
result['is_valid'] = True
info = form.stash(storage, self.request.path)
result.update(info)
else:
result.update({
'is_valid': False,
'errors': form.errors,
})
return HttpResponse(json.dumps(result), content_type='application/json')
else:
return HttpResponseForbidden() | Save file and return saved info or report errors. | https://github.com/caktus/django-sticky-uploads/blob/a57539655ba991f63f31f0a5c98d790947bcd1b8/stickyuploads/views.py#L18-L35 | from __future__ import unicode_literals
import json
from django.core.files.storage import get_storage_class
from django.http import HttpResponse, HttpResponseForbidden
from django.views.generic import View
from .forms import UploadForm
class UploadView(View):
form_class = UploadForm
storage_class = 'stickyuploads.storage.TempFileSystemStorage' | BSD 3-Clause New or Revised License |
jmcarp/flask-apispec | flask_apispec/extension.py | FlaskApiSpec._register | python | def _register(self, target, endpoint=None, blueprint=None,
resource_class_args=None, resource_class_kwargs=None):
if isinstance(target, types.FunctionType):
paths = self.view_converter.convert(target, endpoint, blueprint)
elif isinstance(target, ResourceMeta):
paths = self.resource_converter.convert(
target,
endpoint,
blueprint,
resource_class_args=resource_class_args,
resource_class_kwargs=resource_class_kwargs,
)
else:
raise TypeError()
for path in paths:
self.spec.path(**path) | Register a view.
:param target: view function or view class.
:param endpoint: (optional) endpoint name.
:param blueprint: (optional) blueprint name.
:param tuple resource_class_args: (optional) args to be forwarded to the
view class constructor.
:param dict resource_class_kwargs: (optional) kwargs to be forwarded to
the view class constructor. | https://github.com/jmcarp/flask-apispec/blob/de6f5adbcf3e6fce14aa1e1288ac2e401fd9ca35/flask_apispec/extension.py#L127-L152 | import flask
import functools
import types
from apispec import APISpec
from apispec.ext.marshmallow import MarshmallowPlugin
from flask_apispec import ResourceMeta
from flask_apispec.apidoc import ViewConverter, ResourceConverter
class FlaskApiSpec:
def __init__(self, app=None, document_options=True):
self._deferred = []
self.app = app
self.view_converter = None
self.resource_converter = None
self.spec = None
self.document_options = document_options
if app:
self.init_app(app)
def init_app(self, app):
self.app = app
self.spec = self.app.config.get('APISPEC_SPEC') or make_apispec(self.app.config.get('APISPEC_TITLE', 'flask-apispec'),
self.app.config.get('APISPEC_VERSION', 'v1'),
self.app.config.get('APISPEC_OAS_VERSION', '2.0'))
self.add_swagger_routes()
self.resource_converter = ResourceConverter(self.app,
self.spec,
self.document_options)
self.view_converter = ViewConverter(self.app, self.spec, self.document_options)
for deferred in self._deferred:
deferred()
def _defer(self, callable, *args, **kwargs):
bound = functools.partial(callable, *args, **kwargs)
self._deferred.append(bound)
if self.app:
bound()
def add_swagger_routes(self):
blueprint = flask.Blueprint(
'flask-apispec',
__name__,
static_folder='./static',
template_folder='./templates',
static_url_path='/flask-apispec/static',
)
json_url = self.app.config.get('APISPEC_SWAGGER_URL', '/swagger/')
if json_url:
blueprint.add_url_rule(json_url, 'swagger-json', self.swagger_json)
ui_url = self.app.config.get('APISPEC_SWAGGER_UI_URL', '/swagger-ui/')
if ui_url:
blueprint.add_url_rule(ui_url, 'swagger-ui', self.swagger_ui)
self.app.register_blueprint(blueprint)
def swagger_json(self):
return flask.jsonify(self.spec.to_dict())
def swagger_ui(self):
return flask.render_template('swagger-ui.html')
def register_existing_resources(self):
for name, rule in self.app.view_functions.items():
try:
blueprint_name, _ = name.split('.')
except ValueError:
blueprint_name = None
try:
self.register(rule, blueprint=blueprint_name)
except TypeError:
pass
def register(self, target, endpoint=None, blueprint=None,
resource_class_args=None, resource_class_kwargs=None):
self._defer(self._register, target, endpoint, blueprint,
resource_class_args, resource_class_kwargs) | MIT License |
peoplepower/botlab | com.ppc.Lesson6-DataStreams/intelligence/lesson6/location_datastream_microservice.py | LocationDataStreamMicroservice.datastream_updated | python | def datastream_updated(self, botengine, address, content):
if hasattr(self, address):
getattr(self, address)(botengine, content) | Data Stream Message Received
:param botengine: BotEngine environment
:param address: Data Stream address
:param content: Content of the message | https://github.com/peoplepower/botlab/blob/21cc90c558a17b7ef4a42bca247b437d2f968dc0/com.ppc.Lesson6-DataStreams/intelligence/lesson6/location_datastream_microservice.py#L123-L132 | from intelligence.intelligence import Intelligence
from devices.light.light import LightDevice
class LocationDataStreamMicroservice(Intelligence):
def __init__(self, botengine, parent):
Intelligence.__init__(self, botengine, parent)
self.is_present = self.parent.is_present(botengine)
def initialize(self, botengine):
return
def destroy(self, botengine):
return
def get_html_summary(self, botengine, oldest_timestamp_ms, newest_timestamp_ms, test_mode=False):
return ""
def mode_updated(self, botengine, current_mode):
if not self.parent.is_present(botengine) and self.is_present:
self.is_present = False
botengine.get_logger().info("location_datastream_microservice : Sending an internal data stream message to all listeners to turn everything off!")
self.parent.distribute_datastream_message(botengine, "toggle_everything", {"on": False}, internal=True, external=False)
elif self.parent.is_present(botengine) and not self.is_present:
self.is_present = True
botengine.get_logger().info("location_datastream_microservice : Sending an internal data stream message to all listeners to turn everything on!")
self.parent.distribute_datastream_message(botengine, "toggle_everything", {"on": True}, internal=True, external=False)
def device_measurements_updated(self, botengine, device_object):
return
def device_metadata_updated(self, botengine, device_object):
return
def device_alert(self, botengine, device_object, alert_type, alert_params):
return
def device_deleted(self, botengine, device_object):
return
def question_answered(self, botengine, question):
return | Apache License 2.0 |
crespo-otero-group/fromage | fromage/scripts/fro_assign_charges.py | charged_kinds | python | def charged_kinds(in_atoms, in_kinds):
q_kinds = []
for kind in in_kinds:
charges = []
for atom in in_atoms:
if atom.kind == kind:
charges.append(atom.q)
if charges:
avg_charge = sum(charges) / float(len(charges))
else:
avg_charge = 0
q_kinds.append((avg_charge, kind))
return q_kinds | Get charged atom kinds from charged atoms and kinds.
For each kind of atom to be charged, goes through the list of atoms and
makes an average of the partial atomic charge of atoms of that type.
Parameters
----------
in_atoms : Mol object
The atoms should be charged and some of them at least should be of the
relevant kind
in_kinds : list of tuples
The tuples are of the form (a,b) where a is an element string (like 'C')
and b is a frozenset of ((element string,order of connection),amount of
connections). (a,b) is known as an atom kind
Returns
-------
q_kinds : list of tuples
Each tuple is now (average charge,kind). This tuple is known as a
charged kind | https://github.com/crespo-otero-group/fromage/blob/9b4a80698ed1672268dde292d5512c72a23cb00a/fromage/scripts/fro_assign_charges.py#L119-L154 | import numpy as np
import sys
import argparse
import fromage.io.read_file as rf
def detect_1_connect(in_atoms):
nat_mol = len(in_atoms)
cnct = np.zeros((nat_mol, nat_mol),dtype=int)
for i, i_atom in enumerate(in_atoms):
for j, j_atom in enumerate(in_atoms):
if np.count_nonzero(in_atoms.vectors) == 0:
if in_atoms.bonded(i_atom, j_atom):
cnct[i][j] = 1
else:
if in_atoms.per_bonded(i_atom, j_atom):
cnct[i][j] = 1
return cnct
def expand_connect(in_mat):
out_mat = np.copy(in_mat)
for i, row in enumerate(in_mat):
dangles = []
connectors = []
for j, element in enumerate(row):
if element == 0 and j > i:
dangles.append(j)
elif element != 0:
connectors.append(j)
for dangle in dangles:
orders = []
for k, dangle_element in enumerate(in_mat[dangle]):
if dangle_element != 0 and k in connectors:
orders.append(dangle_element + in_mat[i][k])
if orders:
out_mat[i][dangle] = min(orders)
out_mat[dangle][i] = min(orders)
return out_mat
def complete_expand(in_mat):
mat = np.copy(in_mat)
i = 1
while True:
i += 1
temp_mat = expand_connect(mat)
if np.array_equal(mat, temp_mat):
break
mat = np.copy(temp_mat)
return mat
def get_connectivity_mat(in_mol):
first_connect = detect_1_connect(in_mol)
connect_mat = complete_expand(first_connect)
return connect_mat | MIT License |
jest-community/jest-pytest | src/__tests__/integration/home-assistant/homeassistant/components/switch/telnet.py | TelnetSwitch.turn_off | python | def turn_off(self, **kwargs):
self._telnet_command(self._command_off)
if self.assumed_state:
self._state = False | Turn the device off. | https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/switch/telnet.py#L140-L144 | from datetime import timedelta
import logging
import telnetlib
import voluptuous as vol
from homeassistant.components.switch import (
ENTITY_ID_FORMAT, PLATFORM_SCHEMA, SwitchDevice)
from homeassistant.const import (
CONF_COMMAND_OFF, CONF_COMMAND_ON, CONF_COMMAND_STATE, CONF_NAME,
CONF_PORT, CONF_RESOURCE, CONF_SWITCHES, CONF_VALUE_TEMPLATE)
import homeassistant.helpers.config_validation as cv
_LOGGER = logging.getLogger(__name__)
DEFAULT_PORT = 23
SWITCH_SCHEMA = vol.Schema({
vol.Required(CONF_COMMAND_OFF): cv.string,
vol.Required(CONF_COMMAND_ON): cv.string,
vol.Required(CONF_RESOURCE): cv.string,
vol.Optional(CONF_VALUE_TEMPLATE): cv.template,
vol.Optional(CONF_COMMAND_STATE): cv.string,
vol.Optional(CONF_NAME): cv.string,
vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port,
})
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Required(CONF_SWITCHES): vol.Schema({cv.slug: SWITCH_SCHEMA}),
})
SCAN_INTERVAL = timedelta(seconds=10)
def setup_platform(hass, config, add_devices, discovery_info=None):
devices = config.get(CONF_SWITCHES, {})
switches = []
for object_id, device_config in devices.items():
value_template = device_config.get(CONF_VALUE_TEMPLATE)
if value_template is not None:
value_template.hass = hass
switches.append(
TelnetSwitch(
hass,
object_id,
device_config.get(CONF_RESOURCE),
device_config.get(CONF_PORT),
device_config.get(CONF_NAME, object_id),
device_config.get(CONF_COMMAND_ON),
device_config.get(CONF_COMMAND_OFF),
device_config.get(CONF_COMMAND_STATE),
value_template
)
)
if not switches:
_LOGGER.error("No switches added")
return
add_devices(switches)
class TelnetSwitch(SwitchDevice):
def __init__(self, hass, object_id, resource, port, friendly_name,
command_on, command_off, command_state, value_template):
self._hass = hass
self.entity_id = ENTITY_ID_FORMAT.format(object_id)
self._resource = resource
self._port = port
self._name = friendly_name
self._state = False
self._command_on = command_on
self._command_off = command_off
self._command_state = command_state
self._value_template = value_template
def _telnet_command(self, command):
try:
telnet = telnetlib.Telnet(self._resource, self._port)
telnet.write(command.encode('ASCII') + b'\r')
response = telnet.read_until(b'\r', timeout=0.2)
return response.decode('ASCII').strip()
except IOError as error:
_LOGGER.error(
'Command "%s" failed with exception: %s',
command, repr(error))
return None
@property
def name(self):
return self._name
@property
def should_poll(self):
return self._command_state is not None
@property
def is_on(self):
return self._state
@property
def assumed_state(self):
return self._command_state is None
def update(self):
response = self._telnet_command(self._command_state)
if response:
rendered = self._value_template .render_with_possible_json_value(response)
self._state = rendered == "True"
else:
_LOGGER.warning(
"Empty response for command: %s", self._command_state)
def turn_on(self, **kwargs):
self._telnet_command(self._command_on)
if self.assumed_state:
self._state = True | MIT License |
borda/pyimsegm | experiments_ovary_centres/run_center_prediction.py | main | python | def main(params):
params = run_train.prepare_experiment_folder(params, FOLDER_EXPERIMENT)
tl_expt.set_experiment_logger(params['path_expt'])
logging.info('COMPUTER: \n%r', platform.uname())
logging.info(tl_expt.string_dict(params, desc='PARAMETERS'))
tl_expt.create_subfolders(params['path_expt'], LIST_SUBFOLDER)
path_csv = os.path.join(params['path_expt'], NAME_CSV_TRIPLES)
df_paths = get_csv_triplets(
params['path_list'], path_csv, params['path_images'], params['path_segms'], force_reload=FORCE_RERUN
)
dict_classif = seg_clf.load_classifier(params['path_classif'])
params_clf = dict_classif['params']
params_clf.update(params)
logging.info(tl_expt.string_dict(params, desc='UPDATED PARAMETERS'))
df_stat = pd.DataFrame()
_wrapper_detection = partial(
load_compute_detect_centers,
params=params_clf,
path_classif=params['path_classif'],
path_output=params['path_expt'],
)
iterate = tl_expt.WrapExecuteSequence(_wrapper_detection, df_paths.iterrows(), nb_workers=params['nb_workers'])
for dict_center in iterate:
df_stat = df_stat.append(dict_center, ignore_index=True)
df_stat.to_csv(os.path.join(params['path_expt'], NAME_CSV_TRIPLES_TEMP))
df_stat.set_index(['image'], inplace=True)
df_stat.to_csv(os.path.join(params['path_expt'], NAME_CSV_TRIPLES))
logging.info('STATISTIC: \n %r', df_stat.describe()) | PIPELINE for new detections
:param dict(str,str) params: | https://github.com/borda/pyimsegm/blob/7463cfc7aad8781564dc84c8780f291cc3c17fe3/experiments_ovary_centres/run_center_prediction.py#L122-L161 | import gc
import logging
import os
import platform
import sys
import time
from functools import partial
import pandas as pd
sys.path += [os.path.abspath('.'), os.path.abspath('..')]
import run_center_candidate_training as run_train
import run_center_clustering as run_clust
import imsegm.classification as seg_clf
import imsegm.utilities.data_io as tl_data
import imsegm.utilities.experiments as tl_expt
FORCE_RERUN = False
NAME_CSV_TRIPLES = run_train.NAME_CSV_TRIPLES
NAME_CSV_TRIPLES_TEMP = os.path.splitext(NAME_CSV_TRIPLES)[0] + '__TEMP.csv'
FOLDER_INPUTS = 'inputs'
FOLDER_POINTS = run_train.FOLDER_POINTS
FOLDER_POINTS_VISU = run_train.FOLDER_POINTS_VISU
FOLDER_CENTRE = run_clust.FOLDER_CENTER
FOLDER_CLUSTER_VISUAL = run_clust.FOLDER_CLUSTER_VISUAL
LIST_SUBFOLDER = [FOLDER_INPUTS, FOLDER_POINTS, FOLDER_POINTS_VISU, FOLDER_CENTRE, FOLDER_CLUSTER_VISUAL]
FOLDER_EXPERIMENT = 'detect-centers-predict_%s'
DEFAULT_PARAMS = run_train.CENTER_PARAMS
DEFAULT_PARAMS.update(run_clust.CLUSTER_PARAMS)
DEFAULT_PARAMS['path_centers'] = os.path.join(
DEFAULT_PARAMS['path_output'], run_train.FOLDER_EXPERIMENT % DEFAULT_PARAMS['name'], 'classifier_RandForest.pkl'
)
def load_compute_detect_centers(idx_row, params, classif=None, path_classif='', path_output=''):
_, row = idx_row
dict_center = dict(row)
if not classif:
dict_classif = seg_clf.load_classifier(path_classif)
classif = dict_classif['clf_pipeline']
try:
path_show_in = os.path.join(path_output, FOLDER_INPUTS)
name, img, segm, _ = run_train.load_image_segm_center((None, row), path_show_in, params['dict_relabel'])
t_start = time.time()
_, slic, points, features, _ = run_train.estim_points_compute_features(name, img, segm, params)
dict_detect = run_train.detect_center_candidates(
name, img, segm, None, slic, points, features, params, path_output, classif
)
dict_detect['time elapsed'] = time.time() - t_start
dict_center.update(dict_detect)
dict_center = run_clust.cluster_points_draw_export(dict_center, params, path_output)
except Exception:
logging.exception('load_compute_detect_centers')
gc.collect()
time.sleep(1)
return dict_center
def get_csv_triplets(path_csv, path_csv_out, path_imgs, path_segs, path_centers=None, force_reload=False):
if os.path.isfile(path_csv):
logging.info('loading path pairs "%s"', path_csv)
df_paths = pd.read_csv(path_csv, index_col=0)
df_paths['image'] = df_paths['path_image'].apply(lambda x: os.path.splitext(os.path.basename(x))[0])
df_paths.set_index('image', inplace=True)
elif os.path.isfile(path_csv_out) and not force_reload:
logging.info('loading path pairs "%s"', path_csv_out)
df_paths = pd.read_csv(path_csv_out, index_col=0)
else:
logging.info('estimating own triples')
df_paths = run_train.find_match_images_segms_centers(path_imgs, path_segs, path_centers)
df_paths['image'] = df_paths['path_image'].apply(lambda x: os.path.splitext(os.path.basename(x))[0])
df_paths.set_index('image', inplace=True)
for col in (c for c in df_paths.columns if c.startswith('path_')):
df_paths[col] = df_paths[col].apply(tl_data.update_path)
df_paths.to_csv(path_csv_out)
return df_paths | BSD 3-Clause New or Revised License |
theirc/cts | shipments/tasks.py | delete_shipment | python | def delete_shipment(shipment_id):
try:
try:
shipment = Shipment.objects.get(pk=shipment_id)
except Shipment.DoesNotExist:
logger.error("In delete_shipment task, no shipment with id %s" % shipment_id)
else:
shipment.fast_delete()
except Exception:
logger.exception("Unexpected error in delete_shipment") | Task to delete a shipment, because it can take more than 60 seconds. | https://github.com/theirc/cts/blob/43eb3e3b78c19f9e1dc02158ca12fc0c5d6bb270/shipments/tasks.py#L10-L22 | import logging
from celery.task import task
from shipments.models import Shipment
logger = logging.getLogger(__name__)
@task | BSD 3-Clause New or Revised License |
inquest/omnibus | omnibus-cli.py | Console.do_hibp | python | def do_hibp(self, arg):
result = self.dispatch.submit(self.session, 'hibp', arg)
pp_json(result) | Check HaveIBeenPwned for email address | https://github.com/inquest/omnibus/blob/88dbf5d02f87eaa79a1cfc13d403cf854ee44c40/omnibus-cli.py#L468-L471 | import os
import sys
import cmd2
import json
import argparse
from lib import common
from lib import storage
from lib import asciiart
from lib.mongo import Mongo
from lib.cache import RedisCache
from lib.dispatch import Dispatch
from lib.common import info
from lib.common import mkdir
from lib.common import error
from lib.common import running
from lib.common import success
from lib.common import warning
from lib.common import bold_msg
from lib.common import pp_json
from lib.common import lookup_key
from lib.common import detect_type
from lib.common import read_file
from lib.common import get_option
from lib.models import create_artifact
help_dict = {
'general': [
'help', 'history', 'quit', 'cat', 'apikey', 'banner', 'set', 'clear', 'artifacts', 'general',
'redirect', 'sessions', 'modules'
],
'artifacts': [
'new', 'cat', 'open', 'source', 'artifacts', 'delete'
],
'modules': [
'blockchain', 'clearbit', 'censys', 'csirtg', 'csirtg', 'cymon',
'dnsresolve', 'geoip', 'fullcontact', 'hackedemails', 'he', 'hibp',
'ipinfo', 'ipvoid', 'isc', 'keybase', 'machine', 'nmap', 'passivetotal',
'pgp', 'rss', 'shodan', 'threatcrowd',
'twitter', 'urlvoid', 'virustotal', 'web', 'whois'],
'sessions': [
'session', 'ls', 'rm', 'wipe'
]
}
class Console(cmd2.Cmd):
def __init__(self):
cmd2.Cmd.__init__(self,
completekey='tab',
persistent_history_file=get_option('core', 'hist_file', config),
persistent_history_length=int(get_option('core', 'hist_size', config)))
self.allow_cli_args = False
self.default_to_shell = False
self.intro = 'Welcome to the Omnibus shell! Type "session" to get started or "help" to view all commands.'
self.allow_redirection = True
self.prompt = 'omnibus >> '
self.redirector = '>'
self.quit_on_sigint = False
del cmd2.Cmd.do_alias
del cmd2.Cmd.do_edit
del cmd2.Cmd.do_eof
del cmd2.Cmd.do_shell
del cmd2.Cmd.do_eos
del cmd2.Cmd.do_load
del cmd2.Cmd.do_py
del cmd2.Cmd.do_pyscript
del cmd2.Cmd.do_shortcuts
del cmd2.Cmd.do_unalias
del cmd2.Cmd.do__relative_load
self.db = Mongo(config)
self.dispatch = Dispatch(self.db)
self.session = None
if DEBUG:
self.do_set('debug true')
def sigint_handler(self, signum, frame):
pipe_proc = self.pipe_proc
if pipe_proc is not None:
pipe_proc.terminate()
if self.session is not None:
self.session.flush()
raise KeyboardInterrupt('Caught keyboard interrupt; quitting ...')
def default(self, arg):
if arg.startswith('#'):
return
error('Unknown command')
return
def do_quit(self, _):
self._should_quit = True
if self.session is not None:
running('Clearing artifact cache ...')
self.session.flush()
warning('Closing Omnibus shell ...')
return self._STOP_AND_EXIT
def do_clear(self, arg):
os.system('clear')
def do_modules(self, arg):
bold_msg('[ Modules ]')
for cmd in help_dict['modules']:
print(cmd)
def do_artifacts(self, arg):
bold_msg('[ Artifacts ]')
for cmd in help_dict['artifacts']:
print(cmd)
def do_general(self, arg):
bold_msg('[ General Commands ]')
for cmd in help_dict['general']:
print(cmd)
def do_sessions(self, arg):
bold_msg('[ Session Commands ]')
for cmd in help_dict['sessions']:
print(cmd)
def do_redirect(self, arg):
info('Omnibus supports command redirection to output files using the ">" character. For example, "cat host zeroharbor.org > zh.json" will pipe the output of the cat command to ./zh.json on disk.')
def do_banner(self, arg):
print(asciiart.show_banner())
def do_session(self, arg):
self.session = RedisCache(config)
if self.session.db is None:
error('Failed to connect to Redis back-end. Please ensure the Redis service is running')
else:
success('Opened new session')
def do_ls(self, arg):
if self.session is None:
warning('No active session')
return
count = 0
keys = self.session.db.scan_iter()
for key in keys:
value = self.session.get(key)
print('[%s] %s' % (key, value))
count += 1
info('Active Artifacts: %d' % count)
def do_wipe(self, arg):
if self.session is not None:
info('Clearing active artifacts from cache ...')
self.session.flush()
success('Artifact cache cleared')
else:
warning('No active session; start a new session by running the "session" command')
def do_rm(self, arg):
try:
arg = int(arg)
except:
error('Artifact ID must be an integer')
return
if self.session is not None:
if self.session.exists(arg):
self.session.delete(arg)
success('Removed artifact from cache (%s)' % arg)
else:
warning('Unable to find artifact by ID (%s)' % arg)
else:
warning('No active session; start a new session by running the "session" command')
def do_new(self, arg):
artifact = create_artifact(arg)
if not self.db.exists(artifact.type, {'name': artifact.name}):
doc_id = self.db.insert_one(artifact.type, artifact)
if doc_id is not None:
success('Created new artifact (%s - %s)' % (artifact.name, artifact.type))
if self.session is None:
self.session = RedisCache(config)
self.session.set(1, artifact.name)
success('Opened new session')
print('Artifact ID: 1')
else:
count = 0
for key in self.session.db.scan_iter():
count += 1
_id = count + 1
self.session.set(_id, artifact.name)
print('Artifact ID: %s' % _id)
def do_delete(self, arg):
is_key, value = lookup_key(self.session, arg)
if is_key and value is None:
error('Unable to find artifact key in session (%s)' % arg)
return
elif is_key and value is not None:
arg = value
else:
pass
artifact_type = detect_type(arg)
self.db.delete_one(artifact_type, {'name': arg})
def do_cat(self, arg):
if arg == 'apikeys':
data = json.load(open(common.API_CONF, 'rb'))
print json.dumps(data, indent=2)
else:
is_key, value = lookup_key(self.session, arg)
if is_key and value is None:
error('Unable to find artifact key in session (%s)' % arg)
return
elif is_key and value is not None:
arg = value
else:
pass
artifact_type = detect_type(arg)
result = self.db.find(artifact_type, {'name': arg}, one=True)
if len(result) == 0:
info('No entry found for artifact (%s)' % arg)
else:
print json.dumps(result, indent=2, separators=(',', ':'))
def do_open(self, arg):
if not os.path.exists(arg):
warning('Cannot find file on disk (%s)' % arg)
return
artifacts = read_file(arg, True)
for artifact in artifacts:
new_artifact = create_artifact(artifact)
if not self.db.exists(new_artifact.type, {'name': new_artifact.name}):
doc_id = self.db.insert_one(new_artifact.type, new_artifact)
if doc_id is not None:
success('Created new artifact (%s - %s)' % (artifact.name, artifact.type))
if self.session is None:
self.session = RedisCache(config)
self.session.set(1, arg)
success('Opened new session')
print('Artifact ID: 1')
else:
count = 0
for key in self.session.db.scan_iter():
count += 1
_id = count + 1
self.session.set(_id, arg)
print('Artifact ID: %s' % _id)
success('Finished loading artifact list')
def do_report(self, arg):
is_key, value = lookup_key(self.session, arg)
if is_key and value is None:
error('Unable to find artifact key in session (%s)' % arg)
return
elif is_key and value is not None:
arg = value
else:
pass
_type = detect_type(arg)
result = self.db.find(_type, {'name': arg}, one=True)
if len(result) == 0:
warning('No entry found for artifact (%s)' % arg)
else:
report = storage.JSON(data=result, file_path=output_dir)
report.save()
if os.path.exists(report.file_path):
success('Saved artifact report (%s)' % report.file_path)
else:
error('Failed to properly save report')
def do_machine(self, arg):
result = self.dispatch.machine(self.session, arg)
pp_json(result)
def do_blockchain(self, arg):
result = self.dispatch.submit(self.session, 'blockchain', arg)
pp_json(result)
def do_clearbit(self, arg):
result = self.dispatch.submit(self.session, 'clearbit', arg)
pp_json(result)
def do_censys(self, arg):
result = self.dispatch.submit(self.session, 'censys', arg)
pp_json(result)
def do_csirtg(self, arg):
result = self.dispatch.submit(self.session, 'csirtg', arg)
pp_json(result)
def do_cybercure(self, arg):
result = self.dispatch.submit(self.session, 'cybercure', arg)
pp_json(result)
def do_cymon(self, arg):
result = self.dispatch.submit(self.session, 'cymon', arg)
pp_json(result)
def do_dnsresolve(self, arg):
result = self.dispatch.submit(self.session, 'dnsresolve', arg)
pp_json(result)
def do_geoip(self, arg):
result = self.dispatch.submit(self.session, 'geoip', arg)
pp_json(result)
def do_fullcontact(self, arg):
result = self.dispatch.submit(self.session, 'fullcontact', arg)
pp_json(result)
def do_github(self, arg):
result = self.dispatch.submit(self.session, 'github', arg)
pp_json(result)
def do_hackedemails(self, arg):
result = self.dispatch.submit(self.session, 'hackedemails', arg)
pp_json(result)
def do_he(self, arg):
result = self.dispatch.submit(self.session, 'he', arg)
pp_json(result) | MIT License |
kozea/weasyprint | weasyprint/text/fonts.py | FontConfiguration.__del__ | python | def __del__(self):
for filename in self._filenames:
try:
os.remove(filename)
except OSError:
continue | Clean a font configuration for a document. | https://github.com/kozea/weasyprint/blob/a149af9aaf902901d5d19134f5393e2637bcd219/weasyprint/text/fonts.py#L282-L292 | import io
import os
import pathlib
import sys
import tempfile
import warnings
from fontTools.ttLib import TTFont, woff2
from ..logger import LOGGER
from ..urls import FILESYSTEM_ENCODING, fetch
from .constants import (
CAPS_KEYS, EAST_ASIAN_KEYS, FONTCONFIG_STRETCH, FONTCONFIG_STYLE,
FONTCONFIG_WEIGHT, LIGATURE_KEYS, NUMERIC_KEYS)
from .ffi import ffi, fontconfig, gobject, pangoft2
def _check_font_configuration(font_config):
fonts = fontconfig.FcConfigGetFonts(font_config, fontconfig.FcSetSystem)
if fonts.nfont > 0:
return
config_files = fontconfig.FcConfigGetConfigFiles(font_config)
config_file = fontconfig.FcStrListNext(config_files)
if config_file == ffi.NULL:
warnings.warn(
'FontConfig cannot load default config file. '
'Expect ugly output.')
return
else:
warnings.warn(
'FontConfig: No fonts configured. Expect ugly output.')
return
_check_font_configuration(ffi.gc(
fontconfig.FcInitLoadConfigAndFonts(),
fontconfig.FcConfigDestroy))
class FontConfiguration:
def __init__(self):
self._fontconfig_config = ffi.gc(
fontconfig.FcInitLoadConfigAndFonts(),
fontconfig.FcConfigDestroy)
self.font_map = ffi.gc(
pangoft2.pango_ft2_font_map_new(), gobject.g_object_unref)
pangoft2.pango_fc_font_map_set_config(
ffi.cast('PangoFcFontMap *', self.font_map),
self._fontconfig_config)
fontconfig.FcConfigDestroy(self._fontconfig_config)
self._tempdir = None
if sys.platform.startswith('win'):
self._tempdir = os.path.join(
tempfile.gettempdir(), 'weasyprint')
try:
os.mkdir(self._tempdir)
except FileExistsError:
pass
except Exception:
self._tempdir = None
self._filenames = []
def add_font_face(self, rule_descriptors, url_fetcher):
if self.font_map is None:
return
for font_type, url in rule_descriptors['src']:
if url is None:
continue
if font_type in ('external', 'local'):
config = self._fontconfig_config
if font_type == 'local':
font_name = url.encode('utf-8')
pattern = ffi.gc(
fontconfig.FcPatternCreate(),
fontconfig.FcPatternDestroy)
fontconfig.FcConfigSubstitute(
config, pattern, fontconfig.FcMatchFont)
fontconfig.FcDefaultSubstitute(pattern)
fontconfig.FcPatternAddString(
pattern, b'fullname', font_name)
fontconfig.FcPatternAddString(
pattern, b'postscriptname', font_name)
family = ffi.new('FcChar8 **')
postscript = ffi.new('FcChar8 **')
result = ffi.new('FcResult *')
matching_pattern = fontconfig.FcFontMatch(
config, pattern, result)
if matching_pattern == ffi.NULL:
LOGGER.debug(
'Failed to get matching local font for %r',
font_name.decode('utf-8'))
continue
fontconfig.FcPatternGetString(
matching_pattern, b'fullname', 0, family)
fontconfig.FcPatternGetString(
matching_pattern, b'postscriptname', 0, postscript)
family = ffi.string(family[0])
postscript = ffi.string(postscript[0])
if font_name.lower() in (
family.lower(), postscript.lower()):
filename = ffi.new('FcChar8 **')
fontconfig.FcPatternGetString(
matching_pattern, b'file', 0, filename)
path = ffi.string(filename[0]).decode(
FILESYSTEM_ENCODING)
url = pathlib.Path(path).as_uri()
else:
LOGGER.debug(
'Failed to load local font "%s"',
font_name.decode('utf-8'))
continue
try:
with fetch(url_fetcher, url) as result:
if 'string' in result:
font = result['string']
else:
font = result['file_obj'].read()
if font[:3] == b'wOF':
out = io.BytesIO()
if font[3:4] == b'F':
ttfont = TTFont(io.BytesIO(font))
ttfont.flavor = ttfont.flavorData = None
ttfont.save(out)
elif font[3:4] == b'2':
woff2.decompress(io.BytesIO(font), out)
font = out.getvalue()
except Exception as exc:
LOGGER.debug(
'Failed to load font at %r (%s)', url, exc)
continue
features = {
rules[0][0].replace('-', '_'): rules[0][1] for rules in
rule_descriptors.get('font_variant', [])}
if 'font_feature_settings' in rule_descriptors:
features['font_feature_settings'] = (
rule_descriptors['font_feature_settings'])
features_string = ''
for key, value in font_features(**features).items():
features_string += f'<string>{key} {value}</string>'
fd = tempfile.NamedTemporaryFile(
'wb', dir=self._tempdir, delete=False)
font_filename = fd.name
fd.write(font)
fd.close()
self._filenames.append(font_filename)
fontconfig_style = FONTCONFIG_STYLE[
rule_descriptors.get('font_style', 'normal')]
fontconfig_weight = FONTCONFIG_WEIGHT[
rule_descriptors.get('font_weight', 'normal')]
fontconfig_stretch = FONTCONFIG_STRETCH[
rule_descriptors.get('font_stretch', 'normal')]
xml = f'''<?xml version="1.0"?>
<!DOCTYPE fontconfig SYSTEM "fonts.dtd">
<fontconfig>
<match target="scan">
<test name="file" compare="eq">
<string>{font_filename}</string>
</test>
<edit name="family" mode="assign_replace">
<string>{rule_descriptors['font_family']}</string>
</edit>
<edit name="slant" mode="assign_replace">
<const>{fontconfig_style}</const>
</edit>
<edit name="weight" mode="assign_replace">
<const>{fontconfig_weight}</const>
</edit>
<edit name="width" mode="assign_replace">
<const>{fontconfig_stretch}</const>
</edit>
</match>
<match target="font">
<test name="file" compare="eq">
<string>{font_filename}</string>
</test>
<edit name="fontfeatures"
mode="assign_replace">{features_string}</edit>
</match>
</fontconfig>'''
fd = tempfile.NamedTemporaryFile(
'w', dir=self._tempdir, delete=False)
fd.write(xml)
fd.close()
self._filenames.append(fd.name)
fontconfig.FcConfigParseAndLoad(
config, fd.name.encode(FILESYSTEM_ENCODING),
True)
font_added = fontconfig.FcConfigAppFontAddFile(
config, font_filename.encode(FILESYSTEM_ENCODING))
if font_added:
pangoft2.pango_fc_font_map_config_changed(
ffi.cast('PangoFcFontMap *', self.font_map))
return font_filename
else:
LOGGER.debug('Failed to load font at %r', url)
LOGGER.warning(
'Font-face %r cannot be loaded', rule_descriptors['font_family']) | BSD 3-Clause New or Revised License |
scut-ailab/dcp | dcp/channel_selection/channel_selection.py | LayerChannelSelection.prepare_channel_selection | python | def prepare_channel_selection(self, original_segment, pruned_segment, module, aux_fc, layer_name, block_count):
self.split_segment_into_three_parts(original_segment, pruned_segment, block_count)
pruned_segment, layer = self.replace_layer_with_mask_conv(pruned_segment, module, layer_name, block_count)
self.register_layer_hook(original_segment, pruned_segment, module, layer_name, block_count)
self.segment_parallelism(original_segment, pruned_segment)
for params in self.original_segment_parallel.parameters():
params.requires_grad = False
for params in self.pruned_segment_parallel.parameters():
params.requires_grad = False
self.original_segment_parallel.eval()
self.pruned_segment_parallel.eval()
aux_fc.eval()
self.num_batch = len(self.train_loader)
layer.pruned_weight.requires_grad = True
aux_fc.cuda()
self.logger_counter = 0
return pruned_segment, layer | Prepare for channel selection
1. Split the segment into three parts.
2. Replace the pruned layer with mask convolution.
3. Store the input feature map of the pruned layer in advance to accelerate channel selection. | https://github.com/scut-ailab/dcp/blob/70a2e53ae896573b0b4323eac5817e5660315cb4/dcp/channel_selection/channel_selection.py#L179-L213 | import datetime
import math
import os
import time
import torch
import torch.nn as nn
import dcp.utils as utils
from dcp.mask_conv import MaskConv2d
from dcp.utils.others import concat_gpu_data
from dcp.utils.write_log import write_log
class LayerChannelSelection(object):
def __init__(self, trainer, train_loader, val_loader, settings, checkpoint, logger, tensorboard_logger):
self.segment_wise_trainer = trainer
self.train_loader = train_loader
self.val_loader = val_loader
self.settings = settings
self.checkpoint = checkpoint
self.logger = logger
self.tensorboard_logger = tensorboard_logger
self.feature_cache_original_input = {}
self.feature_cache_original_output = {}
self.feature_cache_pruned_input = {}
self.feature_cache_pruned_output = {}
self.criterion_mse = nn.MSELoss().cuda()
self.criterion_softmax = nn.CrossEntropyLoss().cuda()
self.logger_counter = 0
self.record_time = utils.AverageMeter()
self.record_selection_mse_loss = utils.AverageMeter()
self.record_selection_softmax_loss = utils.AverageMeter()
self.record_selection_loss = utils.AverageMeter()
self.record_sub_problem_softmax_loss = utils.AverageMeter()
self.record_sub_problem_mse_loss = utils.AverageMeter()
self.record_sub_problem_loss = utils.AverageMeter()
self.record_sub_problem_top1_error = utils.AverageMeter()
self.record_sub_problem_top5_error = utils.AverageMeter()
def split_segment_into_three_parts(self, original_segment, pruned_segment, block_count):
original_segment_list = utils.model2list(original_segment)
pruned_segment_list = utils.model2list(pruned_segment)
original_segment_before_pruned_module = []
pruned_segment_before_pruned_module = []
pruned_segment_after_pruned_module = []
for i in range(len(pruned_segment)):
if i < block_count:
original_segment_before_pruned_module.append(original_segment_list[i])
pruned_segment_before_pruned_module.append(pruned_segment_list[i])
if i > block_count:
pruned_segment_after_pruned_module.append(pruned_segment_list[i])
self.original_segment_before_pruned_module = nn.Sequential(*original_segment_before_pruned_module)
self.pruned_segment_before_pruned_module = nn.Sequential(*pruned_segment_before_pruned_module)
self.pruned_segment_after_pruned_module = nn.Sequential(*pruned_segment_after_pruned_module)
@staticmethod
def _replace_layer(net, layer, layer_index):
assert isinstance(net, nn.Sequential), "only support nn.Sequential"
new_net = None
count = 0
for origin_layer in net:
if count == layer_index:
if new_net is None:
new_net = nn.Sequential(layer)
else:
new_net.add_module(str(len(new_net)), layer)
else:
if new_net is None:
new_net = nn.Sequential(origin_layer)
else:
new_net.add_module(str(len(new_net)), origin_layer)
count += 1
return new_net
def replace_layer_with_mask_conv(self, pruned_segment, module, layer_name, block_count):
if layer_name == "conv2":
layer = module.conv2
elif layer_name == "conv3":
layer = module.conv3
elif layer_name == "conv":
assert self.settings.net_type in ["vgg"], "only support vgg"
layer = module
else:
assert False, "unsupport layer: {}".format(layer_name)
if not isinstance(layer, MaskConv2d):
temp_conv = MaskConv2d(
in_channels=layer.in_channels,
out_channels=layer.out_channels,
kernel_size=layer.kernel_size,
stride=layer.stride,
padding=layer.padding,
bias=(layer.bias is not None))
temp_conv.weight.data.copy_(layer.weight.data)
if layer.bias is not None:
temp_conv.bias.data.copy_(layer.bias.data)
temp_conv.pruned_weight.data.fill_(0)
temp_conv.d.fill_(0)
if layer_name == "conv2":
module.conv2 = temp_conv
elif layer_name == "conv3":
module.conv3 = temp_conv
elif layer_name == "conv":
pruned_segment = self._replace_layer(net=pruned_segment,
layer=temp_conv,
layer_index=block_count)
layer = temp_conv
return pruned_segment, layer
def _hook_origin_feature(self, module, input, output):
gpu_id = str(output.get_device())
self.feature_cache_original_input[gpu_id] = input[0]
self.feature_cache_original_output[gpu_id] = output
def _hook_pruned_feature(self, module, input, output):
gpu_id = str(output.get_device())
self.feature_cache_pruned_input[gpu_id] = input[0]
self.feature_cache_pruned_output[gpu_id] = output
def register_layer_hook(self, original_segment, pruned_segment, module, layer_name, block_count):
if layer_name == "conv2":
self.hook_origin = original_segment[block_count].conv2.register_forward_hook(self._hook_origin_feature)
self.hook_pruned = module.conv2.register_forward_hook(self._hook_pruned_feature)
elif layer_name == "conv3":
self.hook_origin = original_segment[block_count].conv3.register_forward_hook(self._hook_origin_feature)
self.hook_pruned = module.conv3.register_forward_hook(self._hook_pruned_feature)
elif layer_name == "conv":
self.hook_origin = original_segment[block_count].register_forward_hook(self._hook_origin_feature)
self.hook_pruned = pruned_segment[block_count].register_forward_hook(self._hook_pruned_feature)
def segment_parallelism(self, original_segment, pruned_segment):
self.original_segment_parallel = utils.data_parallel(original_segment, self.settings.n_gpus)
self.pruned_segment_parallel = utils.data_parallel(pruned_segment, self.settings.n_gpus)
def reset_average_meter(self):
self.record_time.reset()
self.record_selection_mse_loss.reset()
self.record_selection_softmax_loss.reset()
self.record_selection_loss.reset()
self.record_sub_problem_softmax_loss.reset()
self.record_sub_problem_mse_loss.reset()
self.record_sub_problem_loss.reset()
self.record_sub_problem_top1_error.reset()
self.record_sub_problem_top5_error.reset() | BSD 3-Clause New or Revised License |
rojopolis/terraform-aws-lambda-python-archive | scripts/build_lambda.py | get_hash | python | def get_hash(output_path):
with open(output_path, 'rb') as f:
h = hashlib.sha256()
h.update(f.read())
return base64.standard_b64encode(h.digest()).decode('utf-8', 'strict') | Return base64 encoded sha256 hash of archive file | https://github.com/rojopolis/terraform-aws-lambda-python-archive/blob/0b0dc9cf0870c4280495633aa0cd92fe197bbde2/scripts/build_lambda.py#L61-L68 | from distutils.dir_util import copy_tree
import base64
import errno
import hashlib
import json
import logging
import os
import shutil
import subprocess
import sys
import tempfile
import zipfile
def build(src_dir, output_path, install_dependencies):
with tempfile.TemporaryDirectory() as build_dir:
copy_tree(src_dir, build_dir)
if os.path.exists(os.path.join(src_dir, 'requirements.txt')):
subprocess.run(
[sys.executable,
'-m',
'pip',
'install',
'--ignore-installed',
'--target', build_dir,
'-r', os.path.join(build_dir, 'requirements.txt'),
*(['--no-deps'] if install_dependencies == 'false' else [])],
check=True,
stdout=subprocess.DEVNULL,
)
make_archive(build_dir, output_path)
return output_path
def make_archive(src_dir, output_path):
try:
os.makedirs(os.path.dirname(output_path))
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise
with zipfile.ZipFile(output_path, 'w') as archive:
for root, dirs, files in os.walk(src_dir):
for file in files:
if file.endswith('.pyc'):
break
metadata = zipfile.ZipInfo(
os.path.join(root, file).replace(src_dir, '').lstrip(os.sep)
)
metadata.external_attr = 0o755 << 16
with open(os.path.join(root, file), 'rb') as f:
data = f.read()
archive.writestr(
metadata,
data
) | MIT License |
chenwuperth/rgz_rcnn | lib/fast_rcnn/test.py | _rescale_boxes | python | def _rescale_boxes(boxes, inds, scales):
for i in xrange(boxes.shape[0]):
boxes[i,:] = boxes[i,:] / scales[int(inds[i])]
return boxes | Rescale boxes according to image rescaling. | https://github.com/chenwuperth/rgz_rcnn/blob/b526c237fea5c9a77bbe7bd0048f72cf93e733a4/lib/fast_rcnn/test.py#L131-L137 | from fast_rcnn.config import cfg, get_output_dir
import argparse
from utils.timer import Timer
import numpy as np
import cv2
from utils.cython_nms import nms, nms_new
from utils.boxes_grid import get_boxes_grid
from utils.project_bbox import project_bbox_inv
import cPickle
import heapq
from utils.blob import im_list_to_blob
import os
import math
from rpn_msr.generate import imdb_proposals_det
import tensorflow as tf
from fast_rcnn.bbox_transform import clip_boxes, bbox_transform_inv, bbox_contains
try:
import matplotlib.pyplot as plt
except:
print('Cannot run vis during test due to the unavailability of matplotlib')
from tensorflow.python.client import timeline
import time
from collections import defaultdict
def _get_image_blob(im):
im_orig = im.astype(np.float32, copy=True)
im_orig -= cfg.PIXEL_MEANS
im_shape = im_orig.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
processed_ims = []
im_scale_factors = []
for target_size in cfg.TEST.SCALES:
im_scale = float(target_size) / float(im_size_min)
if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE:
im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max)
im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
interpolation=cv2.INTER_LINEAR)
im_scale_factors.append(im_scale)
processed_ims.append(im)
blob = im_list_to_blob(processed_ims)
return blob, np.array(im_scale_factors)
def _get_rois_blob(im_rois, im_scale_factors):
rois, levels = _project_im_rois(im_rois, im_scale_factors)
rois_blob = np.hstack((levels, rois))
return rois_blob.astype(np.float32, copy=False)
def _project_im_rois(im_rois, scales):
im_rois = im_rois.astype(np.float, copy=False)
scales = np.array(scales)
if len(scales) > 1:
widths = im_rois[:, 2] - im_rois[:, 0] + 1
heights = im_rois[:, 3] - im_rois[:, 1] + 1
areas = widths * heights
scaled_areas = areas[:, np.newaxis] * (scales[np.newaxis, :] ** 2)
diff_areas = np.abs(scaled_areas - 224 * 224)
levels = diff_areas.argmin(axis=1)[:, np.newaxis]
else:
levels = np.zeros((im_rois.shape[0], 1), dtype=np.int)
rois = im_rois * scales[levels]
return rois, levels
def _get_blobs(im, rois):
if cfg.TEST.HAS_RPN:
blobs = {'data' : None, 'rois' : None}
blobs['data'], im_scale_factors = _get_image_blob(im)
else:
blobs = {'data' : None, 'rois' : None}
blobs['data'], im_scale_factors = _get_image_blob(im)
if cfg.IS_MULTISCALE:
if cfg.IS_EXTRAPOLATING:
blobs['rois'] = _get_rois_blob(rois, cfg.TEST.SCALES)
else:
blobs['rois'] = _get_rois_blob(rois, cfg.TEST.SCALES_BASE)
else:
blobs['rois'] = _get_rois_blob(rois, cfg.TEST.SCALES_BASE)
return blobs, im_scale_factors
def _clip_boxes(boxes, im_shape):
boxes[:, 0::4] = np.maximum(boxes[:, 0::4], 0)
boxes[:, 1::4] = np.maximum(boxes[:, 1::4], 0)
boxes[:, 2::4] = np.minimum(boxes[:, 2::4], im_shape[1] - 1)
boxes[:, 3::4] = np.minimum(boxes[:, 3::4], im_shape[0] - 1)
return boxes | MIT License |
brython-dev/brython | www/src/Lib/test/test_gdb.py | PrettyPrintTests.assertSane | python | def assertSane(self, source, corruption, exprepr=None):
if corruption:
cmds_after_breakpoint=[corruption, 'backtrace']
else:
cmds_after_breakpoint=['backtrace']
gdb_repr, gdb_output = self.get_gdb_repr(source,
cmds_after_breakpoint=cmds_after_breakpoint)
if exprepr:
if gdb_repr == exprepr:
return
pattern = '<.* at remote 0x-?[0-9a-f]+>'
m = re.match(pattern, gdb_repr)
if not m:
self.fail('Unexpected gdb representation: %r\n%s' % (gdb_repr, gdb_output)) | Run Python under gdb, corrupting variables in the inferior process
immediately before taking a backtrace.
Verify that the variable's representation is the expected failsafe
representation | https://github.com/brython-dev/brython/blob/33aeaab551f1b73209326c5a0aecf98642d4c126/www/src/Lib/test/test_gdb.py#L502-L529 | import os
import platform
import re
import subprocess
import sys
import sysconfig
import textwrap
import unittest
from test import support
from test.support import findfile, python_is_optimized
def get_gdb_version():
try:
cmd = ["gdb", "-nx", "--version"]
proc = subprocess.Popen(cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
universal_newlines=True)
with proc:
version, stderr = proc.communicate()
if proc.returncode:
raise Exception(f"Command {' '.join(cmd)!r} failed "
f"with exit code {proc.returncode}: "
f"stdout={version!r} stderr={stderr!r}")
except OSError:
raise unittest.SkipTest("Couldn't find gdb on the path")
match = re.search(r"^(?:GNU|HP) gdb.*?\b(\d+)\.(\d+)", version)
if match is None:
raise Exception("unable to parse GDB version: %r" % version)
return (version, int(match.group(1)), int(match.group(2)))
gdb_version, gdb_major_version, gdb_minor_version = get_gdb_version()
if gdb_major_version < 7:
raise unittest.SkipTest("gdb versions before 7.0 didn't support python "
"embedding. Saw %s.%s:\n%s"
% (gdb_major_version, gdb_minor_version,
gdb_version))
if (gdb_major_version, gdb_minor_version) >= (9, 2):
raise unittest.SkipTest("https://bugzilla.redhat.com/show_bug.cgi?id=1866884")
if not sysconfig.is_python_build():
raise unittest.SkipTest("test_gdb only works on source builds at the moment.")
if 'Clang' in platform.python_compiler() and sys.platform == 'darwin':
raise unittest.SkipTest("test_gdb doesn't work correctly when python is"
" built with LLVM clang")
if ((sysconfig.get_config_var('PGO_PROF_USE_FLAG') or 'xxx') in
(sysconfig.get_config_var('PY_CORE_CFLAGS') or '')):
raise unittest.SkipTest("test_gdb is not reliable on PGO builds")
checkout_hook_path = os.path.join(os.path.dirname(sys.executable),
'python-gdb.py')
PYTHONHASHSEED = '123'
def cet_protection():
cflags = sysconfig.get_config_var('CFLAGS')
if not cflags:
return False
flags = cflags.split()
return (('-mcet' in flags)
and any((flag.startswith('-fcf-protection')
and not flag.endswith(("=none", "=return")))
for flag in flags))
CET_PROTECTION = cet_protection()
def run_gdb(*args, **env_vars):
if env_vars:
env = os.environ.copy()
env.update(env_vars)
else:
env = None
base_cmd = ('gdb', '--batch', '-nx')
if (gdb_major_version, gdb_minor_version) >= (7, 4):
base_cmd += ('-iex', 'add-auto-load-safe-path ' + checkout_hook_path)
proc = subprocess.Popen(base_cmd + args,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
env=env)
with proc:
out, err = proc.communicate()
return out.decode('utf-8', 'replace'), err.decode('utf-8', 'replace')
gdbpy_version, _ = run_gdb("--eval-command=python import sys; print(sys.version_info)")
if not gdbpy_version:
raise unittest.SkipTest("gdb not built with embedded python support")
_, gdbpy_errors = run_gdb('--args', sys.executable)
if "auto-loading has been declined" in gdbpy_errors:
msg = "gdb security settings prevent use of custom hooks: "
raise unittest.SkipTest(msg + gdbpy_errors.rstrip())
def gdb_has_frame_select():
stdout, _ = run_gdb("--eval-command=python print(dir(gdb.Frame))")
m = re.match(r'.*\[(.*)\].*', stdout)
if not m:
raise unittest.SkipTest("Unable to parse output from gdb.Frame.select test")
gdb_frame_dir = m.group(1).split(', ')
return "'select'" in gdb_frame_dir
HAS_PYUP_PYDOWN = gdb_has_frame_select()
BREAKPOINT_FN='builtin_id'
@unittest.skipIf(support.PGO, "not useful for PGO")
class DebuggerTests(unittest.TestCase):
def get_stack_trace(self, source=None, script=None,
breakpoint=BREAKPOINT_FN,
cmds_after_breakpoint=None,
import_site=False):
commands = ['set breakpoint pending yes',
'break %s' % breakpoint,
'set print address off',
'run']
if (gdb_major_version, gdb_minor_version) >= (7, 4):
commands += ['set print entry-values no']
if cmds_after_breakpoint:
if CET_PROTECTION:
commands += ['next']
commands += cmds_after_breakpoint
else:
commands += ['backtrace']
args = ['--eval-command=%s' % cmd for cmd in commands]
args += ["--args",
sys.executable]
args.extend(subprocess._args_from_interpreter_flags())
if not import_site:
args += ["-S"]
if source:
args += ["-c", source]
elif script:
args += [script]
out, err = run_gdb(*args, PYTHONHASHSEED=PYTHONHASHSEED)
for line in err.splitlines():
print(line, file=sys.stderr)
if "PC not saved" in err:
raise unittest.SkipTest("gdb cannot walk the frame object"
" because the Program Counter is"
" not present")
for pattern in (
'(frame information optimized out)',
'Unable to read information on python frame',
):
if pattern in out:
raise unittest.SkipTest(f"{pattern!r} found in gdb output")
return out
def get_gdb_repr(self, source,
cmds_after_breakpoint=None,
import_site=False):
cmds_after_breakpoint = cmds_after_breakpoint or ["backtrace 1"]
gdb_output = self.get_stack_trace(source, breakpoint=BREAKPOINT_FN,
cmds_after_breakpoint=cmds_after_breakpoint,
import_site=import_site)
m = re.search(
r'#0\s+builtin_id\s+\(self\=.*,\s+v=\s*(.*?)?\)'
r'\s+at\s+\S*[A-Za-z]+/[A-Za-z0-9_-]+\.c',
gdb_output, re.DOTALL)
if not m:
self.fail('Unexpected gdb output: %r\n%s' % (gdb_output, gdb_output))
return m.group(1), gdb_output
def assertEndsWith(self, actual, exp_end):
self.assertTrue(actual.endswith(exp_end),
msg='%r did not end with %r' % (actual, exp_end))
def assertMultilineMatches(self, actual, pattern):
m = re.match(pattern, actual, re.DOTALL)
if not m:
self.fail(msg='%r did not match %r' % (actual, pattern))
def get_sample_script(self):
return findfile('gdb_sample.py')
class PrettyPrintTests(DebuggerTests):
def test_getting_backtrace(self):
gdb_output = self.get_stack_trace('id(42)')
self.assertTrue(BREAKPOINT_FN in gdb_output)
def assertGdbRepr(self, val, exp_repr=None):
gdb_repr, gdb_output = self.get_gdb_repr('id(' + ascii(val) + ')')
if not exp_repr:
exp_repr = repr(val)
self.assertEqual(gdb_repr, exp_repr,
('%r did not equal expected %r; full output was:\n%s'
% (gdb_repr, exp_repr, gdb_output)))
def test_int(self):
self.assertGdbRepr(42)
self.assertGdbRepr(0)
self.assertGdbRepr(-7)
self.assertGdbRepr(1000000000000)
self.assertGdbRepr(-1000000000000000)
def test_singletons(self):
self.assertGdbRepr(True)
self.assertGdbRepr(False)
self.assertGdbRepr(None)
def test_dicts(self):
self.assertGdbRepr({})
self.assertGdbRepr({'foo': 'bar'}, "{'foo': 'bar'}")
self.assertGdbRepr({'foo': 'bar', 'douglas': 42}, "{'foo': 'bar', 'douglas': 42}")
def test_lists(self):
self.assertGdbRepr([])
self.assertGdbRepr(list(range(5)))
def test_bytes(self):
self.assertGdbRepr(b'')
self.assertGdbRepr(b'And now for something hopefully the same')
self.assertGdbRepr(b'string with embedded NUL here \0 and then some more text')
self.assertGdbRepr(b'this is a tab:\t'
b' this is a slash-N:\n'
b' this is a slash-R:\r'
)
self.assertGdbRepr(b'this is byte 255:\xff and byte 128:\x80')
self.assertGdbRepr(bytes([b for b in range(255)]))
def test_strings(self):
out, err = run_gdb(
'--eval-command',
'python import locale; print(locale.getpreferredencoding())')
encoding = out.rstrip()
if err or not encoding:
raise RuntimeError(
f'unable to determine the preferred encoding '
f'of embedded Python in GDB: {err}')
def check_repr(text):
try:
text.encode(encoding)
except UnicodeEncodeError:
self.assertGdbRepr(text, ascii(text))
else:
self.assertGdbRepr(text)
self.assertGdbRepr('')
self.assertGdbRepr('And now for something hopefully the same')
self.assertGdbRepr('string with embedded NUL here \0 and then some more text')
check_repr('\u2620')
check_repr('\u6587\u5b57\u5316\u3051')
check_repr(chr(0x1D121))
def test_tuples(self):
self.assertGdbRepr(tuple(), '()')
self.assertGdbRepr((1,), '(1,)')
self.assertGdbRepr(('foo', 'bar', 'baz'))
def test_sets(self):
if (gdb_major_version, gdb_minor_version) < (7, 3):
self.skipTest("pretty-printing of sets needs gdb 7.3 or later")
self.assertGdbRepr(set(), "set()")
self.assertGdbRepr(set(['a']), "{'a'}")
if not sys.flags.ignore_environment:
self.assertGdbRepr(set(['a', 'b']), "{'a', 'b'}")
self.assertGdbRepr(set([4, 5, 6]), "{4, 5, 6}")
gdb_repr, gdb_output = self.get_gdb_repr('''s = set(['a','b'])
s.remove('a')
id(s)''')
self.assertEqual(gdb_repr, "{'b'}")
def test_frozensets(self):
if (gdb_major_version, gdb_minor_version) < (7, 3):
self.skipTest("pretty-printing of frozensets needs gdb 7.3 or later")
self.assertGdbRepr(frozenset(), "frozenset()")
self.assertGdbRepr(frozenset(['a']), "frozenset({'a'})")
if not sys.flags.ignore_environment:
self.assertGdbRepr(frozenset(['a', 'b']), "frozenset({'a', 'b'})")
self.assertGdbRepr(frozenset([4, 5, 6]), "frozenset({4, 5, 6})")
def test_exceptions(self):
gdb_repr, gdb_output = self.get_gdb_repr('''
try:
raise RuntimeError("I am an error")
except RuntimeError as e:
id(e)
''')
self.assertEqual(gdb_repr,
"RuntimeError('I am an error',)")
gdb_repr, gdb_output = self.get_gdb_repr('''
try:
a = 1 / 0
except ZeroDivisionError as e:
id(e)
''')
self.assertEqual(gdb_repr,
"ZeroDivisionError('division by zero',)")
def test_modern_class(self):
gdb_repr, gdb_output = self.get_gdb_repr('''
class Foo:
pass
foo = Foo()
foo.an_int = 42
id(foo)''')
m = re.match(r'<Foo\(an_int=42\) at remote 0x-?[0-9a-f]+>', gdb_repr)
self.assertTrue(m,
msg='Unexpected new-style class rendering %r' % gdb_repr)
def test_subclassing_list(self):
gdb_repr, gdb_output = self.get_gdb_repr('''
class Foo(list):
pass
foo = Foo()
foo += [1, 2, 3]
foo.an_int = 42
id(foo)''')
m = re.match(r'<Foo\(an_int=42\) at remote 0x-?[0-9a-f]+>', gdb_repr)
self.assertTrue(m,
msg='Unexpected new-style class rendering %r' % gdb_repr)
def test_subclassing_tuple(self):
gdb_repr, gdb_output = self.get_gdb_repr('''
class Foo(tuple):
pass
foo = Foo((1, 2, 3))
foo.an_int = 42
id(foo)''')
m = re.match(r'<Foo\(an_int=42\) at remote 0x-?[0-9a-f]+>', gdb_repr)
self.assertTrue(m,
msg='Unexpected new-style class rendering %r' % gdb_repr) | BSD 3-Clause New or Revised License |
zebrium/zebrium-kubernetes-demo | manage.py | list | python | def list(args):
experiments = sorted(os.listdir('./litmus'))
print_color("Available Litmus Chaos Experiments:\n\n")
i = 1
for experiment_file in experiments:
print_color(f"\t{i}. {experiment_file.replace('.yaml', '')}")
i += 1 | List all available Litmus Chaos Experiments available in this repository | https://github.com/zebrium/zebrium-kubernetes-demo/blob/fddf3a05fa798d8f49c40ea3f1ed2f24441f27b7/manage.py#L252-L261 | import argparse
import os
import json
import sys
import time
from datetime import datetime
import subprocess
import yaml
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
def print_color(text: str, color:bcolors = bcolors.BOLD):
print(f"{color}{text}{bcolors.ENDC}")
def run_shell(cmd: str):
print_color(f"** RUNNING: {cmd}")
os.system(cmd)
def start(args):
print_color(f"Starting GKE cluster in project {args.project} with name {args.name} in zone {args.zone}", bcolors.OKBLUE)
run_shell("gcloud components update")
run_shell(f"gcloud config set project \"{args.project}\"")
run_shell(f"gcloud container clusters create {args.name} --zone {args.zone} --cluster-version 1.14.10-gke.17 --machine-type n1-standard-2 --no-enable-autoupgrade")
run_shell(f"gcloud container clusters get-credentials {args.name} --zone {args.zone}")
print_color("\nGKE Cluster Running with following nodes:\n")
run_shell(f"kubectl get nodes")
ze_deployment_name = "zebrium-k8s-demo"
ze_logs_url = "https://zapi03.zebrium.com"
ze_stats_url = "https://zapi03.zebrium.com/stats/api/v1/zstats"
run_shell("sleep 90")
run_shell("kubectl create namespace zebrium")
run_shell(f"helm install zlog-collector --namespace zebrium --set zebrium.deployment={ze_deployment_name},zebrium.collectorUrl={ze_logs_url},zebrium.authToken={args.key} --repo https://raw.githubusercontent.com/zebrium/ze-kubernetes-collector/master/charts zlog-collector")
run_shell(f"helm install zstats-collector --namespace zebrium --set zebrium.deployment={ze_deployment_name},zebrium.collectorUrl={ze_stats_url},zebrium.authToken={args.key} --repo https://raw.githubusercontent.com/zebrium/ze-stats/master/charts zstats")
run_shell("kubectl create -f ./deploy/sock-shop.yaml")
run_shell("kubectl create -f ./deploy/random-log-counter.yaml")
run_shell("kubectl create namespace kafka")
run_shell("helm repo add confluentinc https://confluentinc.github.io/cp-helm-charts/")
run_shell("helm repo update")
run_shell("helm install kafka-cluster --set cp-schema-registry.enabled=false,cp-kafka-rest.enabled=false,cp-kafka-connect.enabled=false,cp-control-center.enabled=false,cp-ksql-server.enabled=false confluentinc/cp-helm-charts --namespace=kafka")
run_shell('kubectl annotate sts/kafka-cluster-cp-kafka litmuschaos.io/chaos="true" -n kafka')
run_shell("kubectl apply -f https://litmuschaos.github.io/pages/litmus-operator-v1.1.0.yaml")
run_shell("curl -sL https://github.com/litmuschaos/chaos-charts/archive/1.1.1.tar.gz -o litmus.tar.gz")
run_shell("tar -zxvf litmus.tar.gz")
run_shell("rm litmus.tar.gz")
run_shell("find chaos-charts-1.1.1 -name experiments.yaml | grep generic | xargs kubectl apply -n sock-shop -f")
run_shell("find chaos-charts-1.1.1 -name experiments.yaml | grep kafka | xargs kubectl apply -n kafka -f")
run_shell("kubectl create -f ./deploy/litmus-rbac.yaml")
run_shell("sleep 60")
print_color("\nIngress Details:\n", bcolors.UNDERLINE)
run_shell("kubectl get ingress basic-ingress --namespace=sock-shop")
try:
ingress_ip = json.loads(os.popen('kubectl get ingress basic-ingress --namespace=sock-shop -o json').read())["status"][
"loadBalancer"]["ingress"][0]["ip"]
print_color(f"\nYou can access the web application in a few minutes at: http://{ingress_ip}\n\n")
except:
print_color("Ingress still being setup. Use the following command to get the IP later:", bcolors.WARNING)
print_color("\tkubectl get ingress basic-ingress --namespace=sock-shop", bcolors.WARNING)
print_color("***************************************************************************************************", bcolors.WARNING)
print_color(f"* {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} Finished creating cluster.", bcolors.WARNING)
print_color("* Please wait at least 15 minutes for environment to become fully initalised.")
print_color("* The ingress to access the web application from your browser can take at least 5 minutes to create.", bcolors.WARNING)
print_color("*", bcolors.WARNING)
print_color("*", bcolors.WARNING)
print_color("* IMPORTANT: To reliably detect Chaos experiment incidents you must reduce the Refractory Period for your account to 10 minutes.", bcolors.WARNING)
print_color("* You can do this under your Advanced account settings at https://portal03.zebrium.com/Settings/advanced.",bcolors.WARNING)
print_color("*", bcolors.WARNING)
print_color("***************************************************************************************************\n\n", bcolors.WARNING)
def stop(args):
print_color(f"Stopping GKE cluster in project {args.project} with name {args.name} in zone {args.zone}", bcolors.OKBLUE)
run_shell(f"gcloud config set project \"{args.project}\"")
run_shell(f"gcloud container clusters delete {args.name} --zone {args.zone}")
class ExperimentResult(object):
def __init__(self, name:str, status:str, startTime:datetime):
self.name = name
self.status = status
self.startTime = startTime
def run_experiment(experiment: str, delay: int = 0):
print_color("***************************************************************************************************", bcolors.OKBLUE)
print_color(f"* {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} Experiment: {experiment}", bcolors.OKBLUE)
print_color("***************************************************************************************************", bcolors.OKBLUE)
experiment_file = experiment + ".yaml"
with open(f"./litmus/{experiment_file}") as f:
spec = yaml.load(f, Loader=yaml.FullLoader)
result_name = spec['metadata']['name']
namespace = spec['metadata']['namespace']
if (delay > 0):
spec['spec']['experiments'][0]['spec']['components']['env'].append({'name': 'RAMP_TIME', 'value': str(delay)})
with open(r"temp.yaml", 'w') as temp:
yaml.dump(spec, temp)
print_color(f"Running Litmus ChaosEngine Experiment {experiment_file} in namespace {namespace} with delay {delay} seconds...")
print_color(f"Deploying {experiment_file}...")
run_shell(f"kubectl delete chaosengine {result_name} -n {namespace}")
run_shell(f"kubectl create -f temp.yaml -n {namespace}")
startTime = datetime.now()
print_color(f"{startTime.strftime('%Y-%m-%d %H:%M:%S')} Running experiment...")
expStatusCmd = "kubectl get chaosengine " + result_name + " -o jsonpath='{.status.experiments[0].status}' -n " + namespace
run_shell(expStatusCmd)
logs_cmd = f"kubectl logs --since=10s -l name={experiment} -n {namespace}"
print(f"\n{bcolors.OKGREEN}//** Experiment Logs ({logs_cmd}) **//\n\n")
try:
while subprocess.check_output(expStatusCmd, shell=True).decode('unicode-escape') != "Execution Successful":
os.system(logs_cmd)
os.system("sleep 10")
print(f"\n\n//** End of Experiment Logs **//{bcolors.ENDC}\n")
run_shell(f"kubectl describe chaosresult {result_name}-{experiment} -n {namespace}")
run_shell('rm temp.yaml')
except:
print_color("User has cancelled script execution.", bcolors.FAIL)
sys.exit(2)
status = subprocess.check_output("kubectl get chaosresult " + result_name + "-" + experiment + " -n " + namespace + " -o jsonpath='{.spec.experimentstatus.verdict}'", shell=True).decode('unicode-escape')
return ExperimentResult(experiment, status, startTime)
def test(args):
experiments = sorted(os.listdir('./litmus'))
experiment_results = []
if args.test == '*':
print_color(f"Running all Litmus ChaosEngine Experiments with {args.wait} mins wait time between each one...")
lstindex = len(experiments)
for experiment_file in experiments:
result = run_experiment(experiment_file.replace('.yaml', ''), args.delay)
experiment_results.append(result)
print_color(f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')} Waiting {args.wait} mins before running next experiment...", bcolors.WARNING)
lstindex -= 1
if lstindex != 0:
time.sleep(args.wait * 60)
else:
experiment_file = args.test + ".yaml"
if experiment_file in experiments:
result = run_experiment(args.test, args.delay)
experiment_results.append(result)
else:
print_color(f"ERROR: {experiment_file} not found in ./litmus directory. Please check the name and try again.", bcolors.FAIL)
sys.exit(2)
print_color("***************************************************************************************************", bcolors.OKBLUE)
print_color("* Experiments Result Summary", bcolors.OKBLUE)
print_color("***************************************************************************************************\n", bcolors.OKBLUE)
headers = ["#", "Start Time", "Experiment", "Status"]
row_format = "{:>25}" * (len(headers) + 1)
print_color(row_format.format("", *headers), bcolors.OKBLUE)
i = 1
for result in experiment_results:
print_color(row_format.format("", str(i), result.startTime.strftime('%Y-%m-%d %H:%M:%S'), result.name, result.status), bcolors.OKBLUE)
i += 1
print("\n") | MIT License |
onnxbot/onnx-fb-universe | test/verify.py | Errors.failWith | python | def failWith(self, msg):
self.addErr(msg)
self.fail() | Add an error to the error context, and then short-circuit. | https://github.com/onnxbot/onnx-fb-universe/blob/076e15d3d6d48c1ca792566bf9c23d07cb6910e1/test/verify.py#L163-L168 | import torch
import torch.jit
import torch.onnx
import onnx
import onnx.helper
import numpy as np
import difflib
import contextlib
import io
def colonize(msg, sep=": "):
if not msg:
return ""
else:
return msg + sep
class Errors(object):
def __init__(self, msg, rtol=1e-3, atol=1e-7):
self.msg = msg
self.errors = []
self.context = []
self.rtol = rtol
self.atol = atol
class ShortCircuit(Exception):
pass
self.exc_class = ShortCircuit
def requireAlmostEqual(self, x, y, msg=None):
self.almostEqualAndThen(x, y, msg, self.failWith)
def checkAlmostEqual(self, x, y, msg=None):
self.almostEqualAndThen(x, y, msg, self.addErr)
def almostEqualAndThen(self, x, y, msg, k):
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
try:
np.testing.assert_allclose(x, y, rtol=self.rtol, atol=self.atol, equal_nan=False, verbose=True)
except AssertionError as e:
raise
k("{}{}".format(colonize(msg), str(e).lstrip()))
else:
raise RuntimeError("Unsupported almost equal test")
def requireEqual(self, x, y, msg=None):
self.equalAndThen(x, y, msg, self.failWith)
def checkEqual(self, x, y, msg=None):
self.equalAndThen(x, y, msg, self.addErr)
def equalAndThen(self, x, y, msg, k):
if isinstance(x, onnx.TensorProto) and isinstance(y, onnx.TensorProto):
self.equalAndThen(x.name, y.name, msg, k)
t1 = onnx.numpy_helper.to_array(x)
t2 = onnx.numpy_helper.to_array(y)
new_msg = "{}In embedded parameter '{}'".format(colonize(msg), x.name)
self.equalAndThen(t1, t2, new_msg, k)
elif isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
try:
np.testing.assert_equal(x, y)
except AssertionError as e:
raise
k("{}{}".format(colonize(msg, ": "), str(e).lstrip()))
else:
if x != y:
sx = str(x)
sy = str(y)
if len(sx) > 40 or len(sy) > 40 or '\n' in sx or '\n' in sy:
l = "=" * 50
k("\n{}The value\n{}\n{}\n{}\n\ndoes not equal\n\n{}\n{}\n{}"
.format(colonize(msg, ":\n"), l, sx, l, l, sy, l))
else:
k("{}{} != {}".format(colonize(msg), sx, sy))
def requireMultiLineEqual(self, x, y, msg=None):
self.multiLineEqualAndThen(x, y, msg, self.failWith)
def multiLineEqualAndThen(self, x, y, msg, k):
if msg is None:
msg = "Strings are not equal"
if x != y:
diff = difflib.ndiff(x.splitlines(True), y.splitlines(True))
k("{}{}".format(colonize(msg, ":\n\n"), "".join(diff)))
def addErr(self, msg):
msg_w_ctx = msg
for c in reversed(self.context):
msg += "\n\n * " + "\n ".join(c.splitlines())
self.errors.append(msg)
def fail(self):
raise self.exc_class() | MIT License |
demisto/demisto-py | demisto_client/demisto_api/models/playbook.py | Playbook.name | python | def name(self, name):
self._name = name | Sets the name of this Playbook.
:param name: The name of this Playbook. # noqa: E501
:type: str | https://github.com/demisto/demisto-py/blob/95d29e07693d27c133f7fe6ef9da13e4b6dbf542/demisto_client/demisto_api/models/playbook.py#L581-L589 | import pprint
import re
import six
from demisto_client.demisto_api.models.playbook_inputs import PlaybookInputs
from demisto_client.demisto_api.models.playbook_outputs import PlaybookOutputs
from demisto_client.demisto_api.models.playbook_task import PlaybookTask
from demisto_client.demisto_api.models.playbook_view import PlaybookView
from demisto_client.demisto_api.models.version import Version
class Playbook(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'brands': 'list[str]',
'commands': 'list[str]',
'comment': 'str',
'commit_message': 'str',
'dbot_created_by': 'str',
'detached': 'bool',
'from_server_version': 'Version',
'has_role': 'bool',
'hidden': 'bool',
'id': 'str',
'inputs': 'PlaybookInputs',
'item_version': 'Version',
'locked': 'bool',
'missing_scripts_ids': 'list[str]',
'modified': 'datetime',
'name': 'str',
'name_raw': 'str',
'outputs': 'PlaybookOutputs',
'pack_id': 'str',
'prev_name': 'str',
'previous_roles': 'list[str]',
'primary_term': 'int',
'private': 'bool',
'propagation_labels': 'list[str]',
'quiet': 'bool',
'roles': 'list[str]',
'script_ids': 'list[str]',
'sequence_number': 'int',
'should_commit': 'bool',
'sort_values': 'list[str]',
'source_playbook_id': 'str',
'start_task_id': 'str',
'system': 'bool',
'tags': 'list[str]',
'task_ids': 'list[str]',
'tasks': 'dict(str, PlaybookTask)',
'to_server_version': 'Version',
'vc_should_ignore': 'bool',
'version': 'int',
'view': 'PlaybookView'
}
attribute_map = {
'brands': 'brands',
'commands': 'commands',
'comment': 'comment',
'commit_message': 'commitMessage',
'dbot_created_by': 'dbotCreatedBy',
'detached': 'detached',
'from_server_version': 'fromServerVersion',
'has_role': 'hasRole',
'hidden': 'hidden',
'id': 'id',
'inputs': 'inputs',
'item_version': 'itemVersion',
'locked': 'locked',
'missing_scripts_ids': 'missingScriptsIds',
'modified': 'modified',
'name': 'name',
'name_raw': 'nameRaw',
'outputs': 'outputs',
'pack_id': 'packID',
'prev_name': 'prevName',
'previous_roles': 'previousRoles',
'primary_term': 'primaryTerm',
'private': 'private',
'propagation_labels': 'propagationLabels',
'quiet': 'quiet',
'roles': 'roles',
'script_ids': 'scriptIds',
'sequence_number': 'sequenceNumber',
'should_commit': 'shouldCommit',
'sort_values': 'sortValues',
'source_playbook_id': 'sourcePlaybookID',
'start_task_id': 'startTaskId',
'system': 'system',
'tags': 'tags',
'task_ids': 'taskIds',
'tasks': 'tasks',
'to_server_version': 'toServerVersion',
'vc_should_ignore': 'vcShouldIgnore',
'version': 'version',
'view': 'view'
}
def __init__(self, brands=None, commands=None, comment=None, commit_message=None, dbot_created_by=None, detached=None, from_server_version=None, has_role=None, hidden=None, id=None, inputs=None, item_version=None, locked=None, missing_scripts_ids=None, modified=None, name=None, name_raw=None, outputs=None, pack_id=None, prev_name=None, previous_roles=None, primary_term=None, private=None, propagation_labels=None, quiet=None, roles=None, script_ids=None, sequence_number=None, should_commit=None, sort_values=None, source_playbook_id=None, start_task_id=None, system=None, tags=None, task_ids=None, tasks=None, to_server_version=None, vc_should_ignore=None, version=None, view=None):
self._brands = None
self._commands = None
self._comment = None
self._commit_message = None
self._dbot_created_by = None
self._detached = None
self._from_server_version = None
self._has_role = None
self._hidden = None
self._id = None
self._inputs = None
self._item_version = None
self._locked = None
self._missing_scripts_ids = None
self._modified = None
self._name = None
self._name_raw = None
self._outputs = None
self._pack_id = None
self._prev_name = None
self._previous_roles = None
self._primary_term = None
self._private = None
self._propagation_labels = None
self._quiet = None
self._roles = None
self._script_ids = None
self._sequence_number = None
self._should_commit = None
self._sort_values = None
self._source_playbook_id = None
self._start_task_id = None
self._system = None
self._tags = None
self._task_ids = None
self._tasks = None
self._to_server_version = None
self._vc_should_ignore = None
self._version = None
self._view = None
self.discriminator = None
if brands is not None:
self.brands = brands
if commands is not None:
self.commands = commands
if comment is not None:
self.comment = comment
if commit_message is not None:
self.commit_message = commit_message
if dbot_created_by is not None:
self.dbot_created_by = dbot_created_by
if detached is not None:
self.detached = detached
if from_server_version is not None:
self.from_server_version = from_server_version
if has_role is not None:
self.has_role = has_role
if hidden is not None:
self.hidden = hidden
if id is not None:
self.id = id
if inputs is not None:
self.inputs = inputs
if item_version is not None:
self.item_version = item_version
if locked is not None:
self.locked = locked
if missing_scripts_ids is not None:
self.missing_scripts_ids = missing_scripts_ids
if modified is not None:
self.modified = modified
if name is not None:
self.name = name
if name_raw is not None:
self.name_raw = name_raw
if outputs is not None:
self.outputs = outputs
if pack_id is not None:
self.pack_id = pack_id
if prev_name is not None:
self.prev_name = prev_name
if previous_roles is not None:
self.previous_roles = previous_roles
if primary_term is not None:
self.primary_term = primary_term
if private is not None:
self.private = private
if propagation_labels is not None:
self.propagation_labels = propagation_labels
if quiet is not None:
self.quiet = quiet
if roles is not None:
self.roles = roles
if script_ids is not None:
self.script_ids = script_ids
if sequence_number is not None:
self.sequence_number = sequence_number
if should_commit is not None:
self.should_commit = should_commit
if sort_values is not None:
self.sort_values = sort_values
if source_playbook_id is not None:
self.source_playbook_id = source_playbook_id
if start_task_id is not None:
self.start_task_id = start_task_id
if system is not None:
self.system = system
if tags is not None:
self.tags = tags
if task_ids is not None:
self.task_ids = task_ids
if tasks is not None:
self.tasks = tasks
if to_server_version is not None:
self.to_server_version = to_server_version
if vc_should_ignore is not None:
self.vc_should_ignore = vc_should_ignore
if version is not None:
self.version = version
if view is not None:
self.view = view
@property
def brands(self):
return self._brands
@brands.setter
def brands(self, brands):
self._brands = brands
@property
def commands(self):
return self._commands
@commands.setter
def commands(self, commands):
self._commands = commands
@property
def comment(self):
return self._comment
@comment.setter
def comment(self, comment):
self._comment = comment
@property
def commit_message(self):
return self._commit_message
@commit_message.setter
def commit_message(self, commit_message):
self._commit_message = commit_message
@property
def dbot_created_by(self):
return self._dbot_created_by
@dbot_created_by.setter
def dbot_created_by(self, dbot_created_by):
self._dbot_created_by = dbot_created_by
@property
def detached(self):
return self._detached
@detached.setter
def detached(self, detached):
self._detached = detached
@property
def from_server_version(self):
return self._from_server_version
@from_server_version.setter
def from_server_version(self, from_server_version):
self._from_server_version = from_server_version
@property
def has_role(self):
return self._has_role
@has_role.setter
def has_role(self, has_role):
self._has_role = has_role
@property
def hidden(self):
return self._hidden
@hidden.setter
def hidden(self, hidden):
self._hidden = hidden
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def inputs(self):
return self._inputs
@inputs.setter
def inputs(self, inputs):
self._inputs = inputs
@property
def item_version(self):
return self._item_version
@item_version.setter
def item_version(self, item_version):
self._item_version = item_version
@property
def locked(self):
return self._locked
@locked.setter
def locked(self, locked):
self._locked = locked
@property
def missing_scripts_ids(self):
return self._missing_scripts_ids
@missing_scripts_ids.setter
def missing_scripts_ids(self, missing_scripts_ids):
self._missing_scripts_ids = missing_scripts_ids
@property
def modified(self):
return self._modified
@modified.setter
def modified(self, modified):
self._modified = modified
@property
def name(self):
return self._name
@name.setter | Apache License 2.0 |
twilio/howtos | intercom/gdata/docs/__init__.py | DocumentListAclEntryFromString | python | def DocumentListAclEntryFromString(xml_string):
return atom.CreateClassFromXMLString(DocumentListAclEntry, xml_string) | Converts an XML string into a DocumentListAclEntry object.
Args:
xml_string: string The XML describing a Document List ACL feed entry.
Returns:
A DocumentListAclEntry object corresponding to the given XML. | https://github.com/twilio/howtos/blob/718853f6a89252592d13592638c18f633e061b96/intercom/gdata/docs/__init__.py#L214-L223 | __author__ = ('api.jfisher (Jeff Fisher), '
'[email protected] (Eric Bidelman)')
import atom
import gdata
DOCUMENTS_NAMESPACE = 'http://schemas.google.com/docs/2007'
class Scope(atom.AtomBase):
_tag = 'scope'
_namespace = gdata.GACL_NAMESPACE
_children = atom.AtomBase._children.copy()
_attributes = atom.AtomBase._attributes.copy()
_attributes['value'] = 'value'
_attributes['type'] = 'type'
def __init__(self, value=None, type=None, extension_elements=None,
extension_attributes=None, text=None):
self.value = value
self.type = type
self.text = text
self.extension_elements = extension_elements or []
self.extension_attributes = extension_attributes or {}
class Role(atom.AtomBase):
_tag = 'role'
_namespace = gdata.GACL_NAMESPACE
_children = atom.AtomBase._children.copy()
_attributes = atom.AtomBase._attributes.copy()
_attributes['value'] = 'value'
def __init__(self, value=None, extension_elements=None,
extension_attributes=None, text=None):
self.value = value
self.text = text
self.extension_elements = extension_elements or []
self.extension_attributes = extension_attributes or {}
class FeedLink(atom.AtomBase):
_tag = 'feedLink'
_namespace = gdata.GDATA_NAMESPACE
_attributes = atom.AtomBase._attributes.copy()
_attributes['rel'] = 'rel'
_attributes['href'] = 'href'
def __init__(self, href=None, rel=None, text=None, extension_elements=None,
extension_attributes=None):
self.href = href
self.rel = rel
atom.AtomBase.__init__(self, extension_elements=extension_elements,
extension_attributes=extension_attributes, text=text)
class ResourceId(atom.AtomBase):
_tag = 'resourceId'
_namespace = gdata.GDATA_NAMESPACE
_children = atom.AtomBase._children.copy()
_attributes = atom.AtomBase._attributes.copy()
_attributes['value'] = 'value'
def __init__(self, value=None, extension_elements=None,
extension_attributes=None, text=None):
self.value = value
self.text = text
self.extension_elements = extension_elements or []
self.extension_attributes = extension_attributes or {}
class LastModifiedBy(atom.Person):
_tag = 'lastModifiedBy'
_namespace = gdata.GDATA_NAMESPACE
class LastViewed(atom.Person):
_tag = 'lastViewed'
_namespace = gdata.GDATA_NAMESPACE
class WritersCanInvite(atom.AtomBase):
_tag = 'writersCanInvite'
_namespace = DOCUMENTS_NAMESPACE
_attributes = atom.AtomBase._attributes.copy()
_attributes['value'] = 'value'
class DocumentListEntry(gdata.GDataEntry):
_tag = gdata.GDataEntry._tag
_namespace = atom.ATOM_NAMESPACE
_children = gdata.GDataEntry._children.copy()
_attributes = gdata.GDataEntry._attributes.copy()
_children['{%s}feedLink' % gdata.GDATA_NAMESPACE] = ('feedLink', FeedLink)
_children['{%s}resourceId' % gdata.GDATA_NAMESPACE] = ('resourceId',
ResourceId)
_children['{%s}lastModifiedBy' % gdata.GDATA_NAMESPACE] = ('lastModifiedBy',
LastModifiedBy)
_children['{%s}lastViewed' % gdata.GDATA_NAMESPACE] = ('lastViewed',
LastViewed)
_children['{%s}writersCanInvite' % DOCUMENTS_NAMESPACE] = (
'writersCanInvite', WritersCanInvite)
def __init__(self, resourceId=None, feedLink=None, lastViewed=None,
lastModifiedBy=None, writersCanInvite=None, author=None,
category=None, content=None, atom_id=None, link=None,
published=None, title=None, updated=None, text=None,
extension_elements=None, extension_attributes=None):
self.feedLink = feedLink
self.lastViewed = lastViewed
self.lastModifiedBy = lastModifiedBy
self.resourceId = resourceId
self.writersCanInvite = writersCanInvite
gdata.GDataEntry.__init__(
self, author=author, category=category, content=content,
atom_id=atom_id, link=link, published=published, title=title,
updated=updated, extension_elements=extension_elements,
extension_attributes=extension_attributes, text=text)
def GetAclLink(self):
return self.feedLink
def GetDocumentType(self):
if self.category:
for category in self.category:
if category.scheme == gdata.GDATA_NAMESPACE + '#kind':
return category.label
else:
return None
def DocumentListEntryFromString(xml_string):
return atom.CreateClassFromXMLString(DocumentListEntry, xml_string)
class DocumentListAclEntry(gdata.GDataEntry):
_tag = gdata.GDataEntry._tag
_namespace = gdata.GDataEntry._namespace
_children = gdata.GDataEntry._children.copy()
_attributes = gdata.GDataEntry._attributes.copy()
_children['{%s}scope' % gdata.GACL_NAMESPACE] = ('scope', Scope)
_children['{%s}role' % gdata.GACL_NAMESPACE] = ('role', Role)
def __init__(self, category=None, atom_id=None, link=None,
title=None, updated=None, scope=None, role=None,
extension_elements=None, extension_attributes=None, text=None):
gdata.GDataEntry.__init__(self, author=None, category=category,
content=None, atom_id=atom_id, link=link,
published=None, title=title,
updated=updated, text=None)
self.scope = scope
self.role = role | MIT License |
aldebaran/qibuild | python/qitest/runner.py | TestSuiteRunner.launcher | python | def launcher(self):
pass | This function should return a :py:class:`.TestLauncher` | https://github.com/aldebaran/qibuild/blob/efea6fa3744664348717fe5e8df708a3cf392072/python/qitest/runner.py#L44-L46 | from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import print_function
import re
import os
import json
import abc
import qitest.test_queue
from qisys import ui
class TestSuiteRunner(object):
__metaclass__ = abc.ABCMeta
def __init__(self, project):
self.project = project
self._patterns = list()
self._excludes = list()
self.num_jobs = 1
self.repeat_until_fail = 0
self.cwd = os.getcwd()
self.env = None
self.verbose = False
self.perf = False
self.nightly = False
self.coverage = False
self.nightmare = False
self.test_output_dir = None
self.capture = True
self.last_failed = False
self._tests = project.tests
@abc.abstractproperty | BSD 3-Clause New or Revised License |
burnash/gspread | gspread/worksheet.py | Worksheet.row_values | python | def row_values(self, row, **kwargs):
try:
data = self.get("A{}:{}".format(row, row), **kwargs)
return data[0] if data else []
except KeyError:
return [] | Returns a list of all values in a `row`.
Empty cells in this list will be rendered as :const:`None`.
:param int row: Row number (one-based).
:param str value_render_option: (optional) Determines how values should
be rendered in the the output. See `ValueRenderOption`_ in
the Sheets API.
.. _ValueRenderOption: https://developers.google.com/sheets/api/reference/rest/v4/ValueRenderOption | https://github.com/burnash/gspread/blob/90a728fac1c8f6fb38f19da588de0337697854cc/gspread/worksheet.py#L414-L430 | from .cell import Cell
from .urls import SPREADSHEET_URL, WORKSHEET_DRIVE_URL
from .utils import (
a1_range_to_grid_range,
a1_to_rowcol,
absolute_range_name,
accepted_kwargs,
cast_to_a1_notation,
cell_list_to_rect,
fill_gaps,
filter_dict_values,
finditem,
is_scalar,
numericise_all,
rowcol_to_a1,
)
class ValueRange(list):
@classmethod
def from_json(cls, json):
values = json.get("values", [])
new_obj = cls(values)
new_obj._json = {
"range": json["range"],
"majorDimension": json["majorDimension"],
}
return new_obj
@property
def range(self):
return self._json["range"]
@property
def major_dimension(self):
return self._json["majorDimension"]
def first(self, default=None):
try:
return self[0][0]
except IndexError:
return default
class Worksheet:
def __init__(self, spreadsheet, properties):
self.spreadsheet = spreadsheet
self.client = spreadsheet.client
self._properties = properties
def __repr__(self):
return "<{} {} id:{}>".format(
self.__class__.__name__,
repr(self.title),
self.id,
)
@property
def id(self):
return self._properties["sheetId"]
@property
def title(self):
return self._properties["title"]
@property
def url(self):
return WORKSHEET_DRIVE_URL % (self.spreadsheet.id, self.id)
@property
def index(self):
return self._properties["index"]
@property
def updated(self):
import warnings
warnings.warn(
"Worksheet.updated() is deprecated, "
"this feature is not supported in Sheets API v4",
DeprecationWarning,
stacklevel=2,
)
@property
def row_count(self):
return self._properties["gridProperties"]["rowCount"]
@property
def col_count(self):
return self._properties["gridProperties"]["columnCount"]
@property
def frozen_row_count(self):
return self._properties["gridProperties"].get("frozenRowCount", 0)
@property
def frozen_col_count(self):
return self._properties["gridProperties"].get("frozenColumnCount", 0)
def acell(self, label, value_render_option="FORMATTED_VALUE"):
return self.cell(
*(a1_to_rowcol(label)), value_render_option=value_render_option
)
def cell(self, row, col, value_render_option="FORMATTED_VALUE"):
try:
data = self.get(
rowcol_to_a1(row, col), value_render_option=value_render_option
)
value = data.first()
except KeyError:
value = ""
return Cell(row, col, value)
@cast_to_a1_notation
def range(self, name):
range_label = absolute_range_name(self.title, name)
data = self.spreadsheet.values_get(range_label)
if ":" not in name:
name = data.get("range", "")
if "!" in name:
name = name.split("!")[1]
grid_range = a1_range_to_grid_range(name)
values = data.get("values", [])
row_offset = grid_range.get("startRowIndex", 0)
column_offset = grid_range.get("startColumnIndex", 0)
last_row = grid_range.get("endRowIndex", None)
last_column = grid_range.get("endColumnIndex", None)
if last_row is not None:
last_row -= row_offset
if last_column is not None:
last_column -= column_offset
rect_values = fill_gaps(
values,
rows=last_row,
cols=last_column,
)
return [
Cell(row=i + row_offset + 1, col=j + column_offset + 1, value=value)
for i, row in enumerate(rect_values)
for j, value in enumerate(row)
]
@accepted_kwargs(
major_dimension=None,
value_render_option=None,
date_time_render_option=None,
)
def get_values(self, range_name=None, **kwargs):
try:
return fill_gaps(self.get(range_name, **kwargs))
except KeyError:
return []
@accepted_kwargs(
major_dimension=None,
value_render_option=None,
date_time_render_option=None,
)
def get_all_values(self, **kwargs):
return self.get_values(**kwargs)
def get_all_records(
self,
empty2zero=False,
head=1,
default_blank="",
allow_underscores_in_numeric_literals=False,
numericise_ignore=None,
value_render_option=None,
):
idx = head - 1
data = self.get_all_values(value_render_option=value_render_option)
if len(data) <= idx:
return []
keys = data[idx]
if numericise_ignore == ["all"]:
values = data[idx + 1 :]
else:
values = [
numericise_all(
row,
empty2zero,
default_blank,
allow_underscores_in_numeric_literals,
numericise_ignore,
)
for row in data[idx + 1 :]
]
return [dict(zip(keys, row)) for row in values]
@accepted_kwargs(
major_dimension=None,
value_render_option=None,
date_time_render_option=None,
) | MIT License |
reliaqualassociates/ramstk | src/ramstk/views/gtk3/fmea/view.py | FMEAWorkView._do_request_insert_child | python | def _do_request_insert_child(self, __button: Gtk.ToolButton) -> None:
_model, _row = self._pnlPanel.tvwTreeView.get_selection().get_selected()
try:
_parent_id = _model.get_value(_row, 0)
_level = {
1: "mechanism",
2: "cause",
3: "control_action",
}[len(str(_parent_id).split("."))]
except TypeError:
_parent_id = "0"
_level = "mechanism"
if _level == "control_action":
_level = self.__on_request_insert_control_action()
super().do_set_cursor_busy()
do_request_insert(_level, _parent_id) | Request to insert a new entity to the FMEA.
:return: None
:rtype: None | https://github.com/reliaqualassociates/ramstk/blob/ffec5a107424914cf0026c6dfe26369c221f79f9/src/ramstk/views/gtk3/fmea/view.py#L219-L246 | from typing import Any, Dict, List
from pubsub import pub
from ramstk.configuration import (
RAMSTK_CONTROL_TYPES,
RAMSTK_CRITICALITY,
RAMSTK_FAILURE_PROBABILITY,
RAMSTKUserConfiguration,
)
from ramstk.logger import RAMSTKLogManager
from ramstk.views.gtk3 import Gtk, _
from ramstk.views.gtk3.assistants import AddControlAction
from ramstk.views.gtk3.widgets import RAMSTKMessageDialog, RAMSTKPanel, RAMSTKWorkView
from . import FMEAMethodPanel, FMEATreePanel
def do_request_insert(level: str, parent_id: str) -> None:
if level == "mode":
pub.sendMessage("request_insert_fmea_mode")
elif level == "mechanism":
pub.sendMessage("request_insert_fmea_mechanism", mode_id=str(parent_id))
elif level == "cause":
pub.sendMessage("request_insert_fmea_cause", parent_id=str(parent_id))
elif level in ["control", "action"]:
pub.sendMessage(f"request_insert_fmea_{level}", parent_id=str(parent_id))
class FMEAWorkView(RAMSTKWorkView):
_tag: str = "fmea"
_pixbuf: bool = True
_tablabel: str = _("FMEA")
_tabtooltip: str = _(
"Displays failure mode and effects analysis (FMEA) information for the "
"selected Hardware item."
)
def __init__(
self, configuration: RAMSTKUserConfiguration, logger: RAMSTKLogManager
) -> None:
super().__init__(configuration, logger)
self._lst_callbacks.insert(0, self._do_request_insert_sibling)
self._lst_callbacks.insert(1, self._do_request_insert_child)
self._lst_callbacks.insert(2, self._do_request_delete)
self._lst_callbacks.insert(3, self._do_request_calculate)
self._lst_icons.insert(0, "insert_sibling")
self._lst_icons.insert(1, "insert_child")
self._lst_icons.insert(2, "remove")
self._lst_icons.insert(3, "calculate")
self._lst_mnu_labels.insert(0, _("Add Sibling"))
self._lst_mnu_labels.insert(1, _("Add Child"))
self._lst_mnu_labels.insert(2, _("Delete Selected"))
self._lst_mnu_labels.insert(3, _("Calculate FMEA"))
self._lst_tooltips: List[str] = [
_(
"Add a new (D)FME(C)A entity at the same level as the "
"currently selected entity."
),
_(
"Add a new (D)FME(C)A entity one level below the currently "
"selected entity."
),
_("Delete the selected entity from the (D)FME(C)A."),
_(
"Calculate the Task 102 criticality and/or risk priority "
"number (RPN)."
),
_("Save changes to the selected entity in the (D)FME(C)A."),
_("Save changes to all entities in the (D)FME(C)A."),
]
self._item_hazard_rate: float = 0.0
self._pnlMethods: RAMSTKPanel = FMEAMethodPanel()
self._pnlPanel: RAMSTKPanel = FMEATreePanel()
self.__make_ui()
pub.subscribe(self._do_set_record_id, "selected_fmea")
pub.subscribe(
self._on_get_hardware_attributes, "succeed_get_all_hardware_attributes"
)
def _do_request_calculate(self, __button: Gtk.ToolButton) -> None:
if self._pnlMethods.chkCriticality.get_active():
pub.sendMessage(
"request_calculate_criticality", item_hr=self._item_hazard_rate
)
if self._pnlMethods.chkRPN.get_active():
pub.sendMessage("request_calculate_rpn", method="mechanism")
def _do_request_delete(self, __button: Gtk.ToolButton) -> None:
_parent = self.get_parent().get_parent().get_parent().get_parent()
_model, _row = self._pnlPanel.tvwTreeView.get_selection().get_selected()
_node_id = _model.get_value(_row, 0)
_prompt = _(
"You are about to delete {1} item {0} and all "
"data associated with it. Is this really what "
"you want to do?"
).format(_node_id, self._tag.title())
_dialog = RAMSTKMessageDialog(parent=_parent)
_dialog.do_set_message(_prompt)
_dialog.do_set_message_type("question")
if _dialog.do_run() == Gtk.ResponseType.YES:
super().do_set_cursor_busy()
pub.sendMessage(
"request_delete_fmea",
node_id=_node_id,
)
_dialog.do_destroy() | BSD 3-Clause New or Revised License |
barrust/pyprobables | probables/cuckoo/countingcuckoo.py | CountingCuckooBin.__repr__ | python | def __repr__(self):
return self.__str__() | how do we represent this? | https://github.com/barrust/pyprobables/blob/f348fb878cdfbe6c1d997be093c073d26f9b05aa/probables/cuckoo/countingcuckoo.py#L274-L276 | import os
import random
from struct import calcsize, pack, unpack
from ..exceptions import CuckooFilterFullError
from .cuckoo import CuckooFilter
class CountingCuckooFilter(CuckooFilter):
__slots__ = [
"__unique_elements",
"_inserted_elements",
"_bucket_size",
"__max_cuckoo_swaps",
"_cuckoo_capacity",
"_buckets",
]
def __init__(
self,
capacity=10000,
bucket_size=4,
max_swaps=500,
expansion_rate=2,
auto_expand=True,
finger_size=4,
filepath=None,
hash_function=None,
):
self.__unique_elements = 0
super(CountingCuckooFilter, self).__init__(
capacity,
bucket_size,
max_swaps,
expansion_rate,
auto_expand,
finger_size,
filepath,
hash_function,
)
def __contains__(self, val):
if self.check(val) > 0:
return True
return False
@property
def unique_elements(self):
return self.__unique_elements
def load_factor(self):
return self.unique_elements / (self.capacity * self.bucket_size)
def add(self, key):
idx_1, idx_2, fingerprint = self._generate_fingerprint_info(key)
is_present = self._check_if_present(idx_1, idx_2, fingerprint)
if is_present is not None:
for bucket in self.buckets[is_present]:
if fingerprint in bucket:
bucket.increment()
self._inserted_elements += 1
return
finger = self._insert_fingerprint_alt(fingerprint, idx_1, idx_2)
self._deal_with_insertion(finger)
def check(self, key):
idx_1, idx_2, fingerprint = self._generate_fingerprint_info(key)
is_present = self._check_if_present(idx_1, idx_2, fingerprint)
if is_present is not None:
for bucket in self.buckets[is_present]:
if fingerprint in bucket:
return bucket.count
return 0
def remove(self, key):
idx_1, idx_2, fingerprint = self._generate_fingerprint_info(key)
idx = self._check_if_present(idx_1, idx_2, fingerprint)
if idx is None:
return False
for bucket in self.buckets[idx]:
if fingerprint in bucket:
bucket.decrement()
self._inserted_elements -= 1
if bucket.count == 0:
self.buckets[idx].remove(bucket)
self.__unique_elements -= 1
return True
return False
def expand(self):
self._expand_logic(None)
def export(self, filename):
with open(filename, "wb") as filepointer:
for bucket in self.buckets:
rep = len(bucket) * "II"
wbyt = pack(rep, *[x for x in self.__bucket_decomposition(bucket)])
filepointer.write(wbyt)
leftover = self.bucket_size - len(bucket)
rep = leftover * "II"
filepointer.write(pack(rep, *([0] * (leftover * 2))))
filepointer.write(pack("II", self.bucket_size, self.max_swaps))
def _insert_fingerprint_alt(self, fingerprint, idx_1, idx_2, count=1):
if self.__insert_element(fingerprint, idx_1, count):
self._inserted_elements += 1
self.__unique_elements += 1
return None
elif self.__insert_element(fingerprint, idx_2, count):
self._inserted_elements += 1
self.__unique_elements += 1
return None
idx = random.choice([idx_1, idx_2])
prv_bin = CountingCuckooBin(fingerprint, 1)
for _ in range(self.max_swaps):
swap_elm = random.randint(0, self.bucket_size - 1)
swap_finger = self.buckets[idx][swap_elm]
prv_bin, self.buckets[idx][swap_elm] = swap_finger, prv_bin
index_1, index_2 = self._indicies_from_fingerprint(prv_bin.finger)
idx = index_2 if idx == index_1 else index_1
if self.__insert_element(prv_bin.finger, idx, prv_bin.count):
self._inserted_elements += 1
self.__unique_elements += 1
return None
return prv_bin
def _check_if_present(self, idx_1, idx_2, fingerprint):
if fingerprint in [x.finger for x in self.buckets[idx_1]]:
return idx_1
elif fingerprint in [x.finger for x in self.buckets[idx_2]]:
return idx_2
return None
def _load(self, filename):
with open(filename, "rb") as filepointer:
offset = calcsize("II")
int_size = calcsize("II")
filepointer.seek(offset * -1, os.SEEK_END)
list_size = filepointer.tell()
mybytes = unpack("II", filepointer.read(offset))
self._bucket_size = mybytes[0]
self.__max_cuckoo_swaps = mybytes[1]
self._cuckoo_capacity = list_size // int_size // self.bucket_size
self._inserted_elements = 0
filepointer.seek(0, os.SEEK_SET)
self._buckets = list()
for i in range(self.capacity):
self.buckets.append(list())
for _ in range(self.bucket_size):
finger, count = unpack("II", filepointer.read(int_size))
if finger > 0:
ccb = CountingCuckooBin(finger, count)
self.buckets[i].append(ccb)
self._inserted_elements += count
self.__unique_elements += 1
def _expand_logic(self, extra_fingerprint):
fingerprints = self._setup_expand(extra_fingerprint)
self.__unique_elements = 0
for elm in fingerprints:
idx_1, idx_2 = self._indicies_from_fingerprint(elm.finger)
res = self._insert_fingerprint_alt(elm.finger, idx_1, idx_2, elm.count)
if res is not None:
msg = "The CountingCuckooFilter failed to expand"
raise CuckooFilterFullError(msg)
def __insert_element(self, fingerprint, idx, count=1):
if len(self.buckets[idx]) < self.bucket_size:
self.buckets[idx].append(CountingCuckooBin(fingerprint, count))
return True
return False
@staticmethod
def __bucket_decomposition(bucket):
for buck in bucket:
yield buck.finger
yield buck.count
class CountingCuckooBin(object):
__slots__ = ["__fingerprint", "__count"]
def __init__(self, fingerprint, count):
self.__fingerprint = fingerprint
self.__count = count
def __contains__(self, val):
return self.__fingerprint == val
@property
def finger(self):
return self.__fingerprint
@property
def count(self):
return self.__count | MIT License |
theislab/diffxpy | diffxpy/testing/det.py | DifferentialExpressionTestLRT.locations | python | def locations(self):
di = self.full_design_loc_info
sample_description = self.sample_description[[f.name() for f in di.factor_infos]]
dmat = self.full_estim.input_data.design_loc
dmat, sample_description = dmat_unique(dmat, sample_description)
retval = self.full_estim.model.inverse_link_loc(np.matmul(dmat, self.full_estim.model.a))
retval = pd.DataFrame(retval, columns=self.full_estim.input_data.features)
for col in sample_description:
retval[col] = sample_description[col]
retval = retval.set_index(list(sample_description.columns))
return retval | Returns a pandas.DataFrame containing the locations for the different categories of the factors
:return: pd.DataFrame | https://github.com/theislab/diffxpy/blob/b8c6ae0d7d957db72e41bc2e705c240348c66509/diffxpy/testing/det.py#L606-L626 | import abc
try:
import anndata
except ImportError:
anndata = None
import batchglm.api as glm
import dask
import logging
import numpy as np
import patsy
import pandas as pd
from random import sample
import scipy.sparse
import sparse
from typing import Union, Dict, Tuple, List, Set
from .utils import split_x, dmat_unique
from ..stats import stats
from . import correction
logger = logging.getLogger("diffxpy")
class _DifferentialExpressionTest(metaclass=abc.ABCMeta):
def __init__(self):
self._pval = None
self._qval = None
self._mean = None
self._log_likelihood = None
@property
@abc.abstractmethod
def gene_ids(self) -> np.ndarray:
pass
@property
@abc.abstractmethod
def x(self):
pass
@abc.abstractmethod
def log_fold_change(self, base=np.e, **kwargs):
pass
def log2_fold_change(self, **kwargs):
return self.log_fold_change(base=2, **kwargs)
def log10_fold_change(self, **kwargs):
return self.log_fold_change(base=10, **kwargs)
def _test(self, **kwargs) -> np.ndarray:
pass
def _correction(self, method) -> np.ndarray:
if np.all(np.isnan(self.pval)):
return self.pval
else:
return correction.correct(pvals=self.pval, method=method)
def _ave(self):
pass
@property
def log_likelihood(self):
if self._log_likelihood is None:
self._log_likelihood = self._ll()
return self._log_likelihood
@property
def mean(self):
if self._mean is None:
self._mean = self._ave()
return self._mean
@property
def pval(self):
if self._pval is None:
self._pval = self._test().copy()
return self._pval
@property
def qval(self, method="fdr_bh"):
if self._qval is None:
self._qval = self._correction(method=method).copy()
return self._qval
def log10_pval_clean(self, log10_threshold=-30):
pvals = np.reshape(self.pval, -1).astype(dtype=np.float)
pvals = np.clip(
pvals,
np.nextafter(0, 1),
np.inf
)
log10_pval_clean = np.log(pvals) / np.log(10)
log10_pval_clean[np.isnan(log10_pval_clean)] = 1
log10_pval_clean = np.clip(log10_pval_clean, log10_threshold, 0, log10_pval_clean)
return log10_pval_clean
def log10_qval_clean(self, log10_threshold=-30):
qvals = np.reshape(self.qval, -1).astype(dtype=np.float)
qvals = np.clip(
qvals,
np.nextafter(0, 1),
np.inf
)
log10_qval_clean = np.log(qvals) / np.log(10)
log10_qval_clean[np.isnan(log10_qval_clean)] = 1
log10_qval_clean = np.clip(log10_qval_clean, log10_threshold, 0, log10_qval_clean)
return log10_qval_clean
@abc.abstractmethod
def summary(self, **kwargs) -> pd.DataFrame:
pass
def _threshold_summary(
self,
res: pd.DataFrame,
qval_thres=None,
fc_upper_thres=None,
fc_lower_thres=None,
mean_thres=None
) -> pd.DataFrame:
assert fc_lower_thres > 0 if fc_lower_thres is not None else True, "supply positive fc_lower_thres"
assert fc_upper_thres > 0 if fc_upper_thres is not None else True, "supply positive fc_upper_thres"
if qval_thres is not None:
qvals = res['qval'].values
qval_include = np.logical_not(np.isnan(qvals))
qval_include[qval_include] = qvals[qval_include] <= qval_thres
res = res.iloc[qval_include, :]
if fc_upper_thres is not None and fc_lower_thres is None:
res = res.iloc[res['log2fc'].values >= np.log(fc_upper_thres) / np.log(2), :]
elif fc_upper_thres is None and fc_lower_thres is not None:
res = res.iloc[res['log2fc'].values <= np.log(fc_lower_thres) / np.log(2), :]
elif fc_upper_thres is not None and fc_lower_thres is not None:
res = res.iloc[np.logical_or(
res['log2fc'].values <= np.log(fc_lower_thres) / np.log(2),
res['log2fc'].values >= np.log(fc_upper_thres) / np.log(2)), :]
if mean_thres is not None:
res = res.iloc[res['mean'].values >= mean_thres, :]
return res
def plot_volcano(
self,
corrected_pval=True,
log10_p_threshold=-30,
log2_fc_threshold=10,
alpha=0.05,
min_fc=1,
size=20,
highlight_ids: Union[List, Tuple] = (),
highlight_size: float = 30,
highlight_col: str = "red",
show: bool = True,
save: Union[str, None] = None,
suffix: str = "_volcano.png",
return_axs: bool = False
):
import seaborn as sns
import matplotlib.pyplot as plt
plt.ioff()
if corrected_pval:
neg_log_pvals = - self.log10_qval_clean(log10_threshold=log10_p_threshold)
else:
neg_log_pvals = - self.log10_pval_clean(log10_threshold=log10_p_threshold)
logfc = np.reshape(self.log2_fold_change(), -1)
logfc = np.clip(logfc, -log2_fc_threshold, log2_fc_threshold, logfc)
fig, ax = plt.subplots()
is_significant = np.logical_and(
neg_log_pvals >= - np.log(alpha) / np.log(10),
np.abs(logfc) >= np.log(min_fc) / np.log(2)
)
sns.scatterplot(y=neg_log_pvals, x=logfc, hue=is_significant, ax=ax,
legend=False, s=size,
palette={True: "orange", False: "black"})
highlight_ids_found = np.array([x in self.gene_ids for x in highlight_ids])
highlight_ids_clean = [highlight_ids[i] for i in np.where(highlight_ids_found)[0]]
highlight_ids_not_found = [highlight_ids[i] for i in np.where(np.logical_not(highlight_ids_found))[0]]
if len(highlight_ids_not_found) > 0:
logger.warning("not all highlight_ids were found in data set: ", ", ".join(highlight_ids_not_found))
if len(highlight_ids_clean) > 0:
neg_log_pvals_highlights = np.zeros([len(highlight_ids_clean)])
logfc_highlights = np.zeros([len(highlight_ids_clean)])
is_highlight = np.zeros([len(highlight_ids_clean)])
for i, id_i in enumerate(highlight_ids_clean):
idx = np.where(self.gene_ids == id_i)[0]
neg_log_pvals_highlights[i] = neg_log_pvals[idx]
logfc_highlights[i] = logfc[idx]
sns.scatterplot(y=neg_log_pvals_highlights, x=logfc_highlights,
hue=is_highlight, ax=ax,
legend=False, s=highlight_size,
palette={0: highlight_col})
if corrected_pval:
ax.set(xlabel="log2FC", ylabel='-log10(corrected p-value)')
else:
ax.set(xlabel="log2FC", ylabel='-log10(p-value)')
if save is not None:
plt.savefig(save + suffix)
if show:
plt.show()
plt.close(fig)
plt.ion()
if return_axs:
return ax
else:
return
def plot_ma(
self,
corrected_pval=True,
log2_fc_threshold=10,
min_mean=1e-4,
alpha=0.05,
size=20,
highlight_ids: Union[List, Tuple] = (),
highlight_size: float = 30,
highlight_col: str = "red",
show: bool = True,
save: Union[str, None] = None,
suffix: str = "_ma_plot.png",
return_axs: bool = False
):
import seaborn as sns
import matplotlib.pyplot as plt
assert min_mean >= 0, "min_mean must be positive"
plt.ioff()
ave = np.log(np.clip(
self.mean.astype(dtype=np.float),
np.max(np.array([np.nextafter(0, 1), min_mean])),
np.inf
))
logfc = np.reshape(self.log2_fold_change(), -1)
logfc = np.clip(logfc, -log2_fc_threshold, log2_fc_threshold, logfc)
fig, ax = plt.subplots()
if corrected_pval:
pvals = self.pval
pvals[np.isnan(pvals)] = 1
is_significant = pvals < alpha
else:
qvals = self.qval
qvals[np.isnan(qvals)] = 1
is_significant = qvals < alpha
sns.scatterplot(y=logfc, x=ave, hue=is_significant, ax=ax,
legend=False, s=size,
palette={True: "orange", False: "black"})
highlight_ids_found = np.array([x in self.gene_ids for x in highlight_ids])
highlight_ids_clean = [highlight_ids[i] for i in np.where(highlight_ids_found)[0]]
highlight_ids_not_found = [highlight_ids[i] for i in np.where(np.logical_not(highlight_ids_found))[0]]
if len(highlight_ids_not_found) > 0:
logger.warning("not all highlight_ids were found in data set: ", ", ".join(highlight_ids_not_found))
if len(highlight_ids_clean) > 0:
ave_highlights = np.zeros([len(highlight_ids_clean)])
logfc_highlights = np.zeros([len(highlight_ids_clean)])
is_highlight = np.zeros([len(highlight_ids_clean)])
for i, id_i in enumerate(highlight_ids_clean):
idx = np.where(self.gene_ids == id_i)[0]
ave_highlights[i] = ave[idx]
logfc_highlights[i] = logfc[idx]
sns.scatterplot(x=ave_highlights, y=logfc_highlights,
hue=is_highlight, ax=ax,
legend=False, s=highlight_size,
palette={0: highlight_col})
ax.set(xlabel="log mean expression", ylabel="log2FC")
if save is not None:
plt.savefig(save + suffix)
if show:
plt.show()
plt.close(fig)
plt.ion()
if return_axs:
return ax
else:
return
class _DifferentialExpressionTestSingle(_DifferentialExpressionTest, metaclass=abc.ABCMeta):
def summary(
self,
qval_thres=None,
fc_upper_thres=None,
fc_lower_thres=None,
mean_thres=None,
**kwargs
) -> pd.DataFrame:
assert self.gene_ids is not None
res = pd.DataFrame({
"gene": self.gene_ids,
"pval": self.pval,
"qval": self.qval,
"log2fc": self.log2_fold_change(),
"mean": self.mean,
"zero_mean": self.mean == 0
})
return res
class DifferentialExpressionTestLRT(_DifferentialExpressionTestSingle):
sample_description: pd.DataFrame
full_design_loc_info: patsy.design_info
full_estim: glm.typing.EstimatorBaseTyping
reduced_design_loc_info: patsy.design_info
reduced_estim: glm.typing.EstimatorBaseTyping
def __init__(
self,
sample_description: pd.DataFrame,
full_design_loc_info: patsy.design_info,
full_estim: glm.typing.EstimatorBaseTyping,
reduced_design_loc_info: patsy.design_info,
reduced_estim: glm.typing.EstimatorBaseTyping
):
super().__init__()
self.sample_description = sample_description
self.full_design_loc_info = full_design_loc_info
self.full_estim = full_estim
self.reduced_design_loc_info = reduced_design_loc_info
self.reduced_estim = reduced_estim
@property
def gene_ids(self) -> np.ndarray:
return np.asarray(self.full_estim.input_data.features)
@property
def x(self):
return self.full_estim.x
@property
def reduced_model_gradient(self):
return self.reduced_estim.jacobian
@property
def full_model_gradient(self):
return self.full_estim.jacobian
def _test(self):
if np.any(self.full_estim.log_likelihood < self.reduced_estim.log_likelihood):
logger.warning("Test assumption failed: full model is (partially) less probable than reduced model")
return stats.likelihood_ratio_test(
ll_full=self.full_estim.log_likelihood,
ll_reduced=self.reduced_estim.log_likelihood,
df_full=self.full_estim.input_data.constraints_loc.shape[1] +
self.full_estim.input_data.constraints_scale.shape[1],
df_reduced=self.reduced_estim.input_data.constraints_loc.shape[1] +
self.reduced_estim.input_data.constraints_scale.shape[1],
)
def _ave(self):
return np.asarray(np.mean(self.full_estim.x, axis=0)).flatten()
def _log_fold_change(self, factors: Union[Dict, Tuple, Set, List], base=np.e):
if not (isinstance(factors, list) or isinstance(factors, tuple) or isinstance(factors, set)):
factors = {factors}
if not isinstance(factors, set):
factors = set(factors)
di = self.full_design_loc_info
sample_description = self.sample_description[[f.name() for f in di.subset(factors).factor_infos]]
dmat = self.full_estim.input_data.design_loc
dmat, sample_description = dmat_unique(dmat, sample_description)
cols = np.arange(len(di.column_names))
sel = np.concatenate([cols[di.slice(f)] for f in factors], axis=0)
neg_sel = np.ones_like(cols).astype(bool)
neg_sel[sel] = False
dmat[:, neg_sel] = 0
dmat, sample_description = dmat_unique(dmat, sample_description)
locations = self.full_estim.model.inverse_link_loc(np.matmul(dmat, self.full_estim.model.a))
locations = np.log(locations) / np.log(base)
dist = np.expand_dims(locations, axis=0)
dist = np.transpose(dist, [1, 0, 2]) - dist
return dist
def log_fold_change(self, base=np.e, return_type="vector"):
factors = set(self.full_design_loc_info.term_names) - set(self.reduced_design_loc_info.term_names)
if return_type == "dataframe":
dists = self._log_fold_change(factors=factors, base=base)
df = dists.to_dataframe("logFC")
df = df.reset_index().drop(["minuend", "subtrahend"], axis=1, errors="ignore")
return df
elif return_type == "vector":
if len(factors) > 1 or self.sample_description[list(factors)].drop_duplicates().shape[0] != 2:
return None
else:
dists = self._log_fold_change(factors=factors, base=base)
return dists[1, 0]
else:
dists = self._log_fold_change(factors=factors, base=base)
return dists | BSD 3-Clause New or Revised License |
lisa-lab/pylearn2 | pylearn2/dataset_get/dataset-get.py | unpack_tarball | python | def unpack_tarball( tar_filename, dest_path ):
if os.path.exists(tar_filename):
if file_access_rights(dest_path,os.W_OK,check_above=False):
try:
this_tar_file=tarfile.open(tar_filename,"r:bz2")
except Exception as e:
raise IOError("[tar] cannot open '%s'" % tar_filename)
else:
try:
this_tar_file.extractall(dest_path)
except Exception as e:
raise IOError("[tar] error while extracting '%s'" %tar_filename)
else:
pass
else:
raise IOError("[tar] no right access to '%s'" % dest_path)
else:
raise IOError("'%s' not found" % tar_filename) | Unpacks a (bzipped2) tarball to a destination
directory
:param tar_filename: the bzipped2 tar file
:param dest_path: a path to where expand the tarball
:raises: various IOErrors | https://github.com/lisa-lab/pylearn2/blob/af81e5c362f0df4df85c3e54e23b2adeec026055/pylearn2/dataset_get/dataset-get.py#L543-L575 | from __future__ import print_function
__authors__ = "Steven Pigeon"
__copyright__ = "(c) 2012, Université de Montréal"
__contact__ = "Steven Pigeon: [email protected]"
__version__ = "dataset-get 0.1"
__licence__ = "BSD 3-Clause http://www.opensource.org/licenses/BSD-3-Clause "
import logging
import re,os,sys,shutil,time
import warnings
import urllib,urllib2
import tarfile
import subprocess
from theano.compat.six.moves import input
logger = logging.getLogger(__name__)
class package_info:
def __init__(self, cf, name,ts,rs,src,whr):
self.configuration_file=cf
self.name=name
self.timestamp=int(ts)
self.readable_size=rs
self.source=src
self.where=whr
dataset_sources="sources.lst"
dataset_web="http://www.stevenpigeon.org/secret"
dataset_conf_path=""
dataset_data_path=""
root_conf_path=None
root_data_path=None
user_conf_path=None
user_data_path=None
super_powers=False
packages_sources={}
installed_packages_list={}
def local_path_as_url( filename ):
return "file://"+urllib.pathname2url(os.path.abspath(filename))
def has_super_powers():
return os.geteuid()==0
def corename( filename ):
f1=None
f2=os.path.basename(filename)
while f1 != f2:
f1=f2
(f2,ext)=os.path.splitext(f1)
return f2
def get_timestamp_from_url( url ):
obj = urllib2.urlopen( url )
return time.strptime(
obj.info()["Last-Modified"],
"%a, %d %b %Y %H:%M:%S GMT")
def download_from_url( url, filename=None, progress_hook=None ):
(temp_filename, headers)=urllib.urlretrieve( url,filename,progress_hook )
return temp_filename
def file_access_rights( filename, rights, check_above=False ):
if os.path.exists(filename):
return os.access(filename, rights)
else:
if check_above:
return os.access(os.path.dirname(os.path.abspath(filename)), rights)
else:
return False
def atomic_replace( src_filename, dst_filename ):
def same_fs( filename_a, filename_b):
stats_a = os.stat(filename_a)
stats_b = os.stat(filename_b)
return stats_a.st_dev == stats_b.st_dev;
if os.path.exists(dst_filename) and not same_fs(src_filename,dst_filename):
dst_path = os.path.dirname(os.path.abspath(dst_filename))
dst_temp_filename=os.tempnam(dst_path);
shutil.copy(src_filename, dst_temp_filename)
shutil.move(dst_temp_filename,dst_filename)
else:
shutil.move(src_filename, dst_filename)
def set_defaults():
global dataset_conf_path, dataset_data_path, root_conf_path, root_data_path, user_conf_path, super_powers
root_conf_path="/etc/pylearn/"
root_data_path="/usr/share/pylearn/dataset/"
user_conf_path=os.path.join(os.environ["HOME"],".local/share/pylearn/")
user_data_path=os.path.join(os.environ["HOME"],".local/share/pylearn/dataset/")
if has_super_powers():
dataset_conf_path=root_conf_path
dataset_data_path=root_data_path
super_powers=True
else:
dataset_conf_path=user_conf_path
dataset_data_path=user_data_path
super_powers=False
if not os.path.exists(dataset_conf_path):
os.makedirs(dataset_conf_path)
if not os.path.exists(os.path.join(dataset_conf_path,dataset_sources)):
atomic_update(os.path.join(dataset_web,dataset_sources),
os.path.join(dataset_conf_path,dataset_sources),
progress_bar)
if not os.path.exists(dataset_data_path):
os.makedirs(dataset_data_path)
read_packages_sources()
read_installed_packages_list();
def read_packages_sources():
def read_from_file(config_filename):
global packages_sources
try:
f=open(config_filename,"r")
except Exception as e:
pass
else:
for line in f:
t=line.rstrip().split(' ')
packages_sources[t[0]]= this_package=package_info(
config_filename,
t[0],
t[1],
t[2],
urllib.unquote(t[3]),
None)
if super_powers:
read_from_file(os.path.join(dataset_conf_path,dataset_sources))
else:
paths=[ os.path.join(root_conf_path,dataset_sources),
os.path.join(user_conf_path,dataset_sources) ]
try:
paths+=[ os.path.join(x,dataset_sources) for x in re.split(":|;",os.environ["PYLEARN2_DATA_PATH"]) ]
except Exception:
pass
for path in paths:
read_from_file(path)
if len(packages_sources)==0:
raise RuntimeError( "[cf] fatal: could not find/read sources.lst (unexpected!)" )
def read_installed_packages_list():
def read_from_file(config_filename):
global installed_packages_list
try:
installed_list_file=open(config_filename)
except IOError:
pass
else:
for line in installed_list_file:
l=line.rstrip().split(' ')
if l:
installed_packages_list[l[0]]= this_package=package_info(
config_filename,
l[0],
l[1],
l[2],
urllib.unquote(l[3]),
urllib.unquote(l[4]))
else:
pass
if super_powers:
read_from_file(os.path.join(dataset_conf_path,"installed.lst"))
else:
paths=[ os.path.join(root_conf_path,"installed.lst"),
os.path.join(user_conf_path,"installed.lst") ]
try:
paths+=[ os.path.join(x,"installed.lst") for x in re.split(":|;",os.environ["PYLEARN2_DATA_PATH"]) ]
except Exception:
pass
for path in paths:
read_from_file(path)
if len(installed_packages_list)==0:
logger.warning("[cf] no install.lst found "
"(will be created on install/upgrade)")
def write_installed_packages_list():
global installed_packages_list
try:
tmp=open(os.path.join(dataset_conf_path,"installed.lst.2"),"w")
except IOError:
raise RuntimeError("[cf] fatal: cannot create temp file")
else:
for package in installed_packages_list.values():
if package.where!=None and file_access_rights(os.path.join(package.where,package.name),
os.F_OK | os.R_OK):
print(
" ".join(map(str,[ package.name,
package.timestamp,
package.readable_size,
urllib.quote(package.source,"/:~"),
urllib.quote(package.where,"/:~") ] )),
file=tmp)
atomic_replace(os.path.join(dataset_conf_path,"installed.lst.2"),
os.path.join(dataset_conf_path,"installed.lst"))
def atomic_update( remote_src, local_dst, hook=None ):
global hook_download_filename
try:
remote_date = get_timestamp_from_url(remote_src);
except IOError as e:
raise IOError("[ts] %s %s" % (str(e),remote_src))
else:
if os.path.exists(local_dst):
try:
local_date = get_timestamp_from_url(local_path_as_url(local_dst))
except Exception as e:
raise IOError("[ts] %s %s" % (str(e),local_dst))
else:
if (local_date<remote_date):
if file_access_rights(local_dst,os.W_OK,check_above=True):
try:
hook_download_filename=remote_src
temp_filename=download_from_url(remote_src, filename=None, progress_hook=hook)
except Exception as e:
raise IOError("[dl] %s %s" % (str(e),remote_src))
else:
try:
atomic_replace(temp_filename,local_dst)
except Exception as e:
raise IOError("[ac] %s %s --> %s" % (str(e),temp_filename,local_dst))
else:
raise IOError("[rw] no write access to %s " % local_dst )
else:
pass
else:
if file_access_rights(local_dst,os.W_OK,check_above=True):
try:
hook_download_filename=remote_src
temp_filename=download_from_url(remote_src, filename=None, progress_hook=hook)
except Exception as e:
raise IOError("[dl] %s %s" % (str(e),remote_src))
else:
try:
atomic_replace(temp_filename,local_dst)
except Exception as e:
raise IOError("[ac] %s %s --> %s" % (str(e),temp_filename,local_dst))
else:
raise IOError("[rw] no right access to %s" % local_dst) | BSD 3-Clause New or Revised License |
ankush-me/synthtext | synthgen.py | get_text_placement_mask | python | def get_text_placement_mask(xyz,mask,plane,pad=2,viz=False):
_, contour, hier = cv2.findContours(mask.copy().astype('uint8'), mode=cv2.RETR_CCOMP, method=cv2.CHAIN_APPROX_SIMPLE)
contour = [np.squeeze(c).astype('float') for c in contour]
H,W = mask.shape[:2]
pts,pts_fp = [],[]
center = np.array([W,H])/2
n_front = np.array([0.0,0.0,-1.0])
for i in xrange(len(contour)):
cnt_ij = contour[i]
xyz = su.DepthCamera.plane2xyz(center, cnt_ij, plane)
R = su.rot3d(plane[:3],n_front)
xyz = xyz.dot(R.T)
pts_fp.append(xyz[:,:2])
pts.append(cnt_ij)
rect = cv2.minAreaRect(pts_fp[0].copy().astype('float32'))
box = np.array(cv2.boxPoints(rect))
R2d = su.unrotate2d(box.copy())
box = np.vstack([box,box[0,:]])
mu = np.median(pts_fp[0],axis=0)
pts_tmp = (pts_fp[0]-mu[None,:]).dot(R2d.T) + mu[None,:]
boxR = (box-mu[None,:]).dot(R2d.T) + mu[None,:]
s = rescale_frontoparallel(pts_tmp,boxR,pts[0])
boxR *= s
for i in xrange(len(pts_fp)):
pts_fp[i] = s*((pts_fp[i]-mu[None,:]).dot(R2d.T) + mu[None,:])
minxy = -np.min(boxR,axis=0) + pad//2
ROW = np.max(ssd.pdist(np.atleast_2d(boxR[:,0]).T))
COL = np.max(ssd.pdist(np.atleast_2d(boxR[:,1]).T))
place_mask = 255*np.ones((int(np.ceil(COL))+pad, int(np.ceil(ROW))+pad), 'uint8')
pts_fp_i32 = [(pts_fp[i]+minxy[None,:]).astype('int32') for i in xrange(len(pts_fp))]
cv2.drawContours(place_mask,pts_fp_i32,-1,0,
thickness=cv2.FILLED,
lineType=8,hierarchy=hier)
if not TextRegions.filter_rectified((~place_mask).astype('float')/255):
return
H,_ = cv2.findHomography(pts[0].astype('float32').copy(),
pts_fp_i32[0].astype('float32').copy(),
method=0)
Hinv,_ = cv2.findHomography(pts_fp_i32[0].astype('float32').copy(),
pts[0].astype('float32').copy(),
method=0)
if viz:
plt.subplot(1,2,1)
plt.imshow(mask)
plt.subplot(1,2,2)
plt.imshow(~place_mask)
plt.hold(True)
for i in xrange(len(pts_fp_i32)):
plt.scatter(pts_fp_i32[i][:,0],pts_fp_i32[i][:,1],
edgecolors='none',facecolor='g',alpha=0.5)
plt.show()
return place_mask,H,Hinv | Returns a binary mask in which text can be placed.
Also returns a homography from original image
to this rectified mask.
XYZ : (HxWx3) image xyz coordinates
MASK : (HxW) : non-zero pixels mark the object mask
REGION : DICT output of TextRegions.get_regions
PAD : number of pixels to pad the placement-mask by | https://github.com/ankush-me/synthtext/blob/5687aa78ddf8714fc01ef8c043dd40af1cd09115/synthgen.py#L207-L286 | from __future__ import division
import copy
import cv2
import h5py
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import os.path as osp
import scipy.ndimage as sim
import scipy.spatial.distance as ssd
import synth_utils as su
import text_utils as tu
from colorize3_poisson import Colorize
from common import *
import traceback, itertools
class TextRegions(object):
minWidth = 30
minHeight = 30
minAspect = 0.3
maxAspect = 7
minArea = 100
pArea = 0.60
dist_thresh = 0.10
num_inlier = 90
ransac_fit_trials = 100
min_z_projection = 0.25
minW = 20
@staticmethod
def filter_rectified(mask):
wx = np.median(np.sum(mask,axis=0))
wy = np.median(np.sum(mask,axis=1))
return wx>TextRegions.minW and wy>TextRegions.minW
@staticmethod
def get_hw(pt,return_rot=False):
pt = pt.copy()
R = su.unrotate2d(pt)
mu = np.median(pt,axis=0)
pt = (pt-mu[None,:]).dot(R.T) + mu[None,:]
h,w = np.max(pt,axis=0) - np.min(pt,axis=0)
if return_rot:
return h,w,R
return h,w
@staticmethod
def filter(seg,area,label):
good = label[area > TextRegions.minArea]
area = area[area > TextRegions.minArea]
filt,R = [],[]
for idx,i in enumerate(good):
mask = seg==i
xs,ys = np.where(mask)
coords = np.c_[xs,ys].astype('float32')
rect = cv2.minAreaRect(coords)
box = np.array(cv2.boxPoints(rect))
h,w,rot = TextRegions.get_hw(box,return_rot=True)
f = (h > TextRegions.minHeight
and w > TextRegions.minWidth
and TextRegions.minAspect < w/h < TextRegions.maxAspect
and area[idx]/w*h > TextRegions.pArea)
filt.append(f)
R.append(rot)
filt = np.array(filt)
area = area[filt]
R = [R[i] for i in xrange(len(R)) if filt[i]]
aidx = np.argsort(-area)
good = good[filt][aidx]
R = [R[i] for i in aidx]
filter_info = {'label':good, 'rot':R, 'area': area[aidx]}
return filter_info
@staticmethod
def sample_grid_neighbours(mask,nsample,step=3):
if 2*step >= min(mask.shape[:2]):
return
y_m,x_m = np.where(mask)
mask_idx = np.zeros_like(mask,'int32')
for i in xrange(len(y_m)):
mask_idx[y_m[i],x_m[i]] = i
xp,xn = np.zeros_like(mask), np.zeros_like(mask)
yp,yn = np.zeros_like(mask), np.zeros_like(mask)
xp[:,:-2*step] = mask[:,2*step:]
xn[:,2*step:] = mask[:,:-2*step]
yp[:-2*step,:] = mask[2*step:,:]
yn[2*step:,:] = mask[:-2*step,:]
valid = mask&xp&xn&yp&yn
ys,xs = np.where(valid)
N = len(ys)
if N==0:
return
nsample = min(nsample,N)
idx = np.random.choice(N,nsample,replace=False)
xs,ys = xs[idx],ys[idx]
s = step
X = np.transpose(np.c_[xs,xs+s,xs+s,xs-s,xs-s][:,:,None],(1,2,0))
Y = np.transpose(np.c_[ys,ys+s,ys-s,ys+s,ys-s][:,:,None],(1,2,0))
sample_idx = np.concatenate([Y,X],axis=1)
mask_nn_idx = np.zeros((5,sample_idx.shape[-1]),'int32')
for i in xrange(sample_idx.shape[-1]):
mask_nn_idx[:,i] = mask_idx[sample_idx[:,:,i][:,0],sample_idx[:,:,i][:,1]]
return mask_nn_idx
@staticmethod
def filter_depth(xyz,seg,regions):
plane_info = {'label':[],
'coeff':[],
'support':[],
'rot':[],
'area':[]}
for idx,l in enumerate(regions['label']):
mask = seg==l
pt_sample = TextRegions.sample_grid_neighbours(mask,TextRegions.ransac_fit_trials,step=3)
if pt_sample is None:
continue
pt = xyz[mask]
plane_model = su.isplanar(pt, pt_sample,
TextRegions.dist_thresh,
TextRegions.num_inlier,
TextRegions.min_z_projection)
if plane_model is not None:
plane_coeff = plane_model[0]
if np.abs(plane_coeff[2])>TextRegions.min_z_projection:
plane_info['label'].append(l)
plane_info['coeff'].append(plane_model[0])
plane_info['support'].append(plane_model[1])
plane_info['rot'].append(regions['rot'][idx])
plane_info['area'].append(regions['area'][idx])
return plane_info
@staticmethod
def get_regions(xyz,seg,area,label):
regions = TextRegions.filter(seg,area,label)
regions = TextRegions.filter_depth(xyz,seg,regions)
return regions
def rescale_frontoparallel(p_fp,box_fp,p_im):
l1 = np.linalg.norm(box_fp[1,:]-box_fp[0,:])
l2 = np.linalg.norm(box_fp[1,:]-box_fp[2,:])
n0 = np.argmin(np.linalg.norm(p_fp-box_fp[0,:][None,:],axis=1))
n1 = np.argmin(np.linalg.norm(p_fp-box_fp[1,:][None,:],axis=1))
n2 = np.argmin(np.linalg.norm(p_fp-box_fp[2,:][None,:],axis=1))
lt1 = np.linalg.norm(p_im[n1,:]-p_im[n0,:])
lt2 = np.linalg.norm(p_im[n1,:]-p_im[n2,:])
s = max(lt1/l1,lt2/l2)
if not np.isfinite(s):
s = 1.0
return s | Apache License 2.0 |
opennetworkingfoundation/tapi | RI/flask_server/tapi_server/models/tapi_oam_get_oam_job.py | TapiOamGetOamJob.__init__ | python | def __init__(self, output=None):
self.openapi_types = {
'output': TapiOamGetoamjobOutput
}
self.attribute_map = {
'output': 'output'
}
self._output = output | TapiOamGetOamJob - a model defined in OpenAPI
:param output: The output of this TapiOamGetOamJob. # noqa: E501
:type output: TapiOamGetoamjobOutput | https://github.com/opennetworkingfoundation/tapi/blob/1f3fd9483d5674552c5a31206c97399c8c151897/RI/flask_server/tapi_server/models/tapi_oam_get_oam_job.py#L19-L33 | from __future__ import absolute_import
from datetime import date, datetime
from typing import List, Dict
from tapi_server.models.base_model_ import Model
from tapi_server.models.tapi_oam_getoamjob_output import TapiOamGetoamjobOutput
from tapi_server import util
class TapiOamGetOamJob(Model): | Apache License 2.0 |
nipy/nilabels | nilabels/tools/caliber/volumes_and_values.py | get_volumes_per_label | python | def get_volumes_per_label(im_segm, labels, labels_names, tot_volume_prior=None, verbose=0):
num_non_zero_voxels = get_total_num_nonzero_voxels(im_segm)
vol_non_zero_voxels_mm3 = num_non_zero_voxels * one_voxel_volume(im_segm)
if tot_volume_prior is None:
tot_volume_prior = vol_non_zero_voxels_mm3
if labels_names not in [None, 'all', 'tot']:
if len(labels) != len(labels_names):
raise IOError('Inconsistent labels - labels_names input.')
if labels_names == 'all':
labels_names = ['reg {}'.format(l) for l in labels]
if labels_names == 'tot':
labels_names = ['tot']
non_zero_voxels = np.count_nonzero(im_segm.get_data())
volumes = non_zero_voxels * one_voxel_volume(im_segm)
vol_over_tot = volumes / float(tot_volume_prior)
data_frame = pa.DataFrame({'Num voxels': pa.Series([non_zero_voxels], index=labels_names),
'Volume': pa.Series([volumes], index=labels_names),
'Vol over Tot': pa.Series([vol_over_tot], index=labels_names)})
return data_frame
else:
non_zero_voxels_list = []
volumes_list = []
vol_over_tot_list = []
for label_k in labels:
all_places = np.zeros_like(im_segm.get_data(), dtype=np.bool)
if isinstance(label_k, int):
all_places += im_segm.get_data() == label_k
else:
for label_k_j in label_k:
all_places += im_segm.get_data() == label_k_j
flat_volume_voxel = np.nan_to_num((all_places.astype(np.float64)).flatten())
non_zero_voxels = np.count_nonzero(flat_volume_voxel)
volumes = non_zero_voxels * one_voxel_volume(im_segm)
vol_over_tot = volumes / float(tot_volume_prior)
non_zero_voxels_list.append(non_zero_voxels)
volumes_list.append(volumes)
vol_over_tot_list.append(vol_over_tot)
data_frame = pa.DataFrame({'Label' : pa.Series(labels, index=labels_names),
'Num voxels' : pa.Series(non_zero_voxels_list, index=labels_names),
'Volume' : pa.Series(volumes_list, index=labels_names),
'Vol over Tot' : pa.Series(vol_over_tot_list, index=labels_names)})
data_frame = data_frame.rename_axis('Region')
data_frame = data_frame.reset_index()
if verbose > 0:
print(data_frame)
return data_frame | Get a separate volume for each label in a data-frame
:param im_segm: nibabel segmentation
:param labels: labels you want to measure, or 'all' if you want them all or 'tot' to have the total of the non zero
labels.
:param labels_names: list with the indexes of labels in the final dataframes, corresponding to labels list.
:param tot_volume_prior: factor the volumes will be divided with.
:param verbose: > 0 will provide the intermediate stepsp
:return: | https://github.com/nipy/nilabels/blob/b065febc611eef638785651b4642d53bb61f1321/nilabels/tools/caliber/volumes_and_values.py#L84-L153 | import numpy as np
import pandas as pa
from nilabels.tools.aux_methods.utils_nib import one_voxel_volume
def get_total_num_nonzero_voxels(im_segm, list_labels_to_exclude=None):
seg = np.copy(im_segm.get_data())
if list_labels_to_exclude is not None:
for label_k in list_labels_to_exclude:
places = seg != label_k
seg = seg * places
num_voxels = np.count_nonzero(seg)
else:
num_voxels = int(np.count_nonzero(im_segm.get_data()))
return num_voxels
def get_num_voxels_from_labels_list(im_segm, labels_list):
num_voxels_per_label = np.zeros(len(labels_list)).astype(np.int64)
for k, label_k in enumerate(labels_list):
if isinstance(label_k, int):
all_places = im_segm.get_data() == label_k
num_voxels_per_label[k] = np.count_nonzero(np.nan_to_num(all_places))
elif isinstance(label_k, list):
all_places = np.zeros_like(im_segm.get_data(), dtype=np.bool)
for label_k_j in label_k:
all_places += im_segm.get_data() == label_k_j
num_voxels_per_label[k] = np.count_nonzero(np.nan_to_num(all_places))
else:
raise IOError('Labels list must be like [1,2,[3,4]], where [3, 4] are considered as a single label.')
return num_voxels_per_label
def get_values_below_labels_list(im_segm, im_anat, labels_list):
assert im_segm.shape == im_anat.shape
values_below_each_label = []
for label_k in labels_list:
if isinstance(label_k, int):
coords = np.where(im_segm.get_data() == label_k)
values_below_each_label.append(im_anat.get_data()[coords].flatten())
elif isinstance(label_k, list):
vals = np.array([])
for label_k_j in label_k:
coords = np.where(im_segm.get_data() == label_k_j)
vals = np.concatenate((vals, im_anat.get_data()[coords].flatten()), axis=0)
values_below_each_label.append(vals)
else:
raise IOError('Labels list must be like [1,2,[3,4]], where [3, 4] are considered as a single label.')
return values_below_each_label | MIT License |
scqubits/scqubits | scqubits/core/qubit_base.py | QuantumSystem.widget | python | def widget(self, params: Dict[str, Any] = None):
init_params = params or self.get_initdata()
init_params.pop("id_str", None)
ui.create_widget(
self.set_params, init_params, image_filename=self._image_filename
) | Use ipywidgets to modify parameters of class instance | https://github.com/scqubits/scqubits/blob/d8532a3b614e37b1e65b75000493ea2c25c05682/scqubits/core/qubit_base.py#L183-L189 | import functools
import inspect
from abc import ABC, ABCMeta, abstractmethod
from typing import (
TYPE_CHECKING,
Any,
Dict,
Iterable,
List,
Optional,
Tuple,
Union,
overload,
)
import matplotlib.pyplot as plt
import numpy as np
import scipy as sp
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from numpy import ndarray
import scqubits.core.constants as constants
import scqubits.core.descriptors as descriptors
import scqubits.core.units as units
import scqubits.settings as settings
import scqubits.ui.qubit_widget as ui
import scqubits.utils.plotting as plot
from scqubits.core.central_dispatch import DispatchClient
from scqubits.core.discretization import Grid1d
from scqubits.core.storage import DataStore, SpectrumData
from scqubits.settings import IN_IPYTHON
from scqubits.utils.cpu_switch import get_map_method
from scqubits.utils.misc import InfoBar, process_which
from scqubits.utils.spectrum_utils import (
get_matrixelement_table,
order_eigensystem,
recast_esys_mapdata,
standardize_sign,
)
if IN_IPYTHON:
from tqdm.notebook import tqdm
else:
from tqdm import tqdm
if TYPE_CHECKING:
from scqubits.core.storage import WaveFunction
from typing_extensions import Literal
LevelsTuple = Tuple[int, ...]
Transition = Tuple[int, int]
TransitionsTuple = Tuple[Transition, ...]
class QuantumSystem(DispatchClient, ABC):
truncated_dim = descriptors.WatchedProperty(int, "QUANTUMSYSTEM_UPDATE")
_init_params: List[str]
_image_filename: str
_evec_dtype: type
_sys_type: str
_quantumsystem_counter: int = 0
_instance_counter: Dict[str, int] = {}
subclasses: List[ABCMeta] = []
def __new__(cls, *args, **kwargs) -> "QuantumSystem":
QuantumSystem._quantumsystem_counter += 1
if cls.__name__ not in QuantumSystem._instance_counter:
QuantumSystem._instance_counter[cls.__name__] = 1
else:
QuantumSystem._instance_counter[cls.__name__] += 1
return super().__new__(cls)
def __del__(self) -> None:
try:
QuantumSystem._quantumsystem_counter -= 1
except (NameError, AttributeError):
pass
def __init__(self, id_str: Union[str, None]):
self._sys_type = type(self).__name__
self._id_str = id_str or self._autogenerate_id_str()
def __init_subclass__(cls):
super().__init_subclass__()
if not inspect.isabstract(cls):
cls.subclasses.append(cls)
def __repr__(self) -> str:
if hasattr(self, "_init_params"):
init_names = self._init_params
else:
init_names = list(inspect.signature(self.__init__).parameters.keys())[1:]
init_dict = {name: getattr(self, name) for name in init_names}
return type(self).__name__ + f"(**{init_dict!r})"
def __str__(self) -> str:
indent_length = 20
name_prepend = self._sys_type.ljust(indent_length, "-") + "| [{}]\n".format(
self._id_str
)
output = ""
for param_name in self.default_params().keys():
output += "{0}| {1}: {2}\n".format(
" " * indent_length, str(param_name), str(getattr(self, param_name))
)
output += "{0}|\n".format(" " * indent_length)
output += "{0}| dim: {1}\n".format(" " * indent_length, str(self.hilbertdim()))
return name_prepend + output
def __eq__(self, other: Any):
if not isinstance(other, type(self)):
return False
return self.__dict__ == other.__dict__
def __hash__(self):
return super().__hash__()
def _autogenerate_id_str(self):
name = self._sys_type
return "{}_{}".format(name, QuantumSystem._instance_counter[name])
@property
def id_str(self):
return self._id_str
def get_initdata(self) -> Dict[str, Any]:
return {name: getattr(self, name) for name in self._init_params}
@abstractmethod
def hilbertdim(self) -> int:
@classmethod
def create(cls) -> "QuantumSystem":
init_params = cls.default_params()
instance = cls(**init_params)
instance.widget()
return instance | BSD 3-Clause New or Revised License |
gepd/deviot | libraries/preferences_bridge.py | PreferencesBridge.get_selected_boards | python | def get_selected_boards(self):
settings = get_setting('boards', [])
boards = self.get_envs_initialized()
if(boards):
settings.extend(boards)
if(settings):
settings = list(set(settings))
return settings | Get Board/s
List of all boards in the project, the list includes
the one selected in deviot, and the one initialized in the
platformio.ini file, they're mixed and excluding the duplicates
Returns:
list -- list of boards | https://github.com/gepd/deviot/blob/150caea06108369b30210eb287a580fcff4904af/libraries/preferences_bridge.py#L60-L79 | from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
from ..api import deviot
from .tools import get_setting, save_setting
from ..platformio.pio_bridge import PioBridge
from ..libraries.readconfig import ReadConfig
logger = deviot.create_logger('Deviot')
class PreferencesBridge(PioBridge):
COMPILE = 1
UPLOAD = 2
def __init__(self):
super(PreferencesBridge, self).__init__()
deviot.set_logger_level()
self.init_option = None
def save_selected_board(self, board_id):
settings = get_setting('boards', [])
save_flag = True
if(not settings):
settings.append(board_id)
else:
if(board_id not in settings):
settings.append(board_id)
else:
settings.remove(board_id)
try:
self.remove_ini_environment(board_id)
except:
pass
if(len(settings) > 0):
board_id = settings[-1]
else:
board_id = ''
save_setting('boards', settings)
self.save_environment(board_id) | Apache License 2.0 |