Datasets:

Languages:
English
ArXiv:
License:
qimaqi commited on
Commit
4287e47
1 Parent(s): bce69fc

Create DATA.md

Browse files
Files changed (1) hide show
  1. DATA.md +53 -0
DATA.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ModelNet_Splats release (Fall 2024)
2
+
3
+ Each zip file contains ply files where each Gaussian is encoded as a vertex with custom vertex attributes. This ply format is commonly used for Gaussian splats and can be viewed using [online viewer](https://playcanvas.com/supersplat/editor/).
4
+ To open the .ply files, you can use the following python code:
5
+ ```python
6
+ from plyfile import PlyData
7
+ import numpy as np
8
+ gs_vertex = PlyData.read('ply_path')['vertex']
9
+ ### load centroids[x,y,z] - Gaussian centroid
10
+ x = gs_vertex['x'].astype(np.float32)
11
+ y = gs_vertex['y'].astype(np.float32)
12
+ z = gs_vertex['z'].astype(np.float32)
13
+ centroids = np.stack((x, y, z), axis=-1) # [n, 3]
14
+
15
+ ### load o - opacity
16
+ opacity = gs_vertex['opacity'].astype(np.float32).reshape(-1, 1)
17
+
18
+
19
+ ### load scales[sx, sy, sz] - Scale
20
+ scale_names = [
21
+ p.name
22
+ for p in gs_vertex.properties
23
+ if p.name.startswith("scale_")
24
+ ]
25
+ scale_names = sorted(scale_names, key=lambda x: int(x.split("_")[-1]))
26
+ scales = np.zeros((centroids.shape[0], len(scale_names)))
27
+ for idx, attr_name in enumerate(scale_names):
28
+ scales[:, idx] = gs_vertex[attr_name].astype(np.float32)
29
+
30
+ ### load rotation rots[q_0, q_1, q_2, q_3] - Rotation
31
+ rot_names = [
32
+ p.name for p in gs_vertex.properties if p.name.startswith("rot")
33
+ ]
34
+ rot_names = sorted(rot_names, key=lambda x: int(x.split("_")[-1]))
35
+ rots = np.zeros((centroids.shape[0], len(rot_names)))
36
+ for idx, attr_name in enumerate(rot_names):
37
+ rots[:, idx] = gs_vertex[attr_name].astype(np.float32)
38
+
39
+ rots = rots / (np.linalg.norm(rots, axis=1, keepdims=True) + 1e-9)
40
+
41
+ ### load base sh_base[dc_0, dc_1, dc_2] - Spherical harmonic
42
+ sh_base = np.zeros((centroids.shape[0], 3, 1))
43
+ sh_base[:, 0, 0] = gs_vertex['f_dc_0'].astype(np.float32)
44
+ sh_base[:, 1, 0] = gs_vertex['f_dc_1'].astype(np.float32)
45
+ sh_base[:, 2, 0] = gs_vertex['f_dc_2'].astype(np.float32)
46
+ sh_base = sh_base.reshape(-1, 3)
47
+ ```
48
+ Note that more details regarding <u>PSNR</u>, <u>SSIM</u>, <u>LPIPS</u>, <u>FILE_SIZE</u> and <u>Number of Gaussians</u> can be find in [summary](ShapeSplatsV1_Qualitative_Results.json). To showcase the difference of point cloud in spatial distribution, we report Jensen–Shannon Divergence (JSD) and Maximum Mean Discrepancy (MMD) between gaussian splats and ShapeNetCoreV1 point clouds.
49
+
50
+ More details for the pretraining method of ShapeSplats can be find in [Gaussian-MAE](https://unique1i.github.io/ShapeSplat/)
51
+
52
+ Last updated: 2024-09-05
53
+