Create DATA.md
Browse files
DATA.md
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ModelNet_Splats release (Fall 2024)
|
2 |
+
|
3 |
+
Each zip file contains ply files where each Gaussian is encoded as a vertex with custom vertex attributes. This ply format is commonly used for Gaussian splats and can be viewed using [online viewer](https://playcanvas.com/supersplat/editor/).
|
4 |
+
To open the .ply files, you can use the following python code:
|
5 |
+
```python
|
6 |
+
from plyfile import PlyData
|
7 |
+
import numpy as np
|
8 |
+
gs_vertex = PlyData.read('ply_path')['vertex']
|
9 |
+
### load centroids[x,y,z] - Gaussian centroid
|
10 |
+
x = gs_vertex['x'].astype(np.float32)
|
11 |
+
y = gs_vertex['y'].astype(np.float32)
|
12 |
+
z = gs_vertex['z'].astype(np.float32)
|
13 |
+
centroids = np.stack((x, y, z), axis=-1) # [n, 3]
|
14 |
+
|
15 |
+
### load o - opacity
|
16 |
+
opacity = gs_vertex['opacity'].astype(np.float32).reshape(-1, 1)
|
17 |
+
|
18 |
+
|
19 |
+
### load scales[sx, sy, sz] - Scale
|
20 |
+
scale_names = [
|
21 |
+
p.name
|
22 |
+
for p in gs_vertex.properties
|
23 |
+
if p.name.startswith("scale_")
|
24 |
+
]
|
25 |
+
scale_names = sorted(scale_names, key=lambda x: int(x.split("_")[-1]))
|
26 |
+
scales = np.zeros((centroids.shape[0], len(scale_names)))
|
27 |
+
for idx, attr_name in enumerate(scale_names):
|
28 |
+
scales[:, idx] = gs_vertex[attr_name].astype(np.float32)
|
29 |
+
|
30 |
+
### load rotation rots[q_0, q_1, q_2, q_3] - Rotation
|
31 |
+
rot_names = [
|
32 |
+
p.name for p in gs_vertex.properties if p.name.startswith("rot")
|
33 |
+
]
|
34 |
+
rot_names = sorted(rot_names, key=lambda x: int(x.split("_")[-1]))
|
35 |
+
rots = np.zeros((centroids.shape[0], len(rot_names)))
|
36 |
+
for idx, attr_name in enumerate(rot_names):
|
37 |
+
rots[:, idx] = gs_vertex[attr_name].astype(np.float32)
|
38 |
+
|
39 |
+
rots = rots / (np.linalg.norm(rots, axis=1, keepdims=True) + 1e-9)
|
40 |
+
|
41 |
+
### load base sh_base[dc_0, dc_1, dc_2] - Spherical harmonic
|
42 |
+
sh_base = np.zeros((centroids.shape[0], 3, 1))
|
43 |
+
sh_base[:, 0, 0] = gs_vertex['f_dc_0'].astype(np.float32)
|
44 |
+
sh_base[:, 1, 0] = gs_vertex['f_dc_1'].astype(np.float32)
|
45 |
+
sh_base[:, 2, 0] = gs_vertex['f_dc_2'].astype(np.float32)
|
46 |
+
sh_base = sh_base.reshape(-1, 3)
|
47 |
+
```
|
48 |
+
Note that more details regarding <u>PSNR</u>, <u>SSIM</u>, <u>LPIPS</u>, <u>FILE_SIZE</u> and <u>Number of Gaussians</u> can be find in [summary](ShapeSplatsV1_Qualitative_Results.json). To showcase the difference of point cloud in spatial distribution, we report Jensen–Shannon Divergence (JSD) and Maximum Mean Discrepancy (MMD) between gaussian splats and ShapeNetCoreV1 point clouds.
|
49 |
+
|
50 |
+
More details for the pretraining method of ShapeSplats can be find in [Gaussian-MAE](https://unique1i.github.io/ShapeSplat/)
|
51 |
+
|
52 |
+
Last updated: 2024-09-05
|
53 |
+
|