ShuhuaiRen
commited on
Commit
·
63566b7
1
Parent(s):
b9d7cfa
Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,264 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
|
6 |
+
# Dataset Card for TimeIT
|
7 |
+
|
8 |
+
TimeIT encompasses 6 longstanding timestamp-related video tasks and incorporates 12 specific datasets derived from different domains.
|
9 |
+
|
10 |
+
## Dataset Description
|
11 |
+
|
12 |
+
|
13 |
+
- **Homepage: https://huggingface.co/datasets/ShuhuaiRen/TimeIT**
|
14 |
+
- **Repository: https://huggingface.co/datasets/ShuhuaiRen/TimeIT**
|
15 |
+
- **Paper: https://arxiv.org/abs/2312.02051**
|
16 |
+
- **Leaderboard:**
|
17 |
+
- **Point of Contact:**
|
18 |
+
|
19 |
+
## Dataset Statistics
|
20 |
+
|
21 |
+
Our dataset compiles diverse tasks of time-sensitive long video understanding, including Dense Video Captioning, Video Grounding, Video Summarization, Video Highlight Detection, Step Localization, Transcribed Speech Generation.
|
22 |
+
|
23 |
+
### Instruction Statistics
|
24 |
+
|
25 |
+
| Task | #Instructions |
|
26 |
+
|-------------------------------|---------------|
|
27 |
+
| Dense Video Captioning | |
|
28 |
+
| Temporal Video Grounding | |
|
29 |
+
| Video Summarization | |
|
30 |
+
| Video Highlight Detection | |
|
31 |
+
| Step Localization | |
|
32 |
+
| Transcribed Speech Generation | |
|
33 |
+
| Total | |
|
34 |
+
|
35 |
+
### Task Statistics
|
36 |
+
|
37 |
+
| Task | Description | #Train | #Val | #Test |
|
38 |
+
|-------------------------------|----------------------------------------------------------------------------------------------------------------------|---------|---------|---------|
|
39 |
+
| Dense Video Captioning | detects a series of events in the given video and outputs the corresponding timestamps and descriptions |
|
40 |
+
| Temporal Video Grounding | predict a timestamp boundary including the start and end time in the video given a natural language query |
|
41 |
+
| Video Summarization | create a compressed set of frames or clip shots to represent the most informative content of the given video |
|
42 |
+
| Video Highlight Detection | identify the most exciting, impressive, or emotional moments that may not cover the full scope of the original video |
|
43 |
+
| Step Localization | segment and describe significant steps in a long untrimmed video |
|
44 |
+
| Transcribed Speech Generation | predict the speech content and its corresponding start and end timestamps based on visual signals in the video |
|
45 |
+
| Total | - |
|
46 |
+
|
47 |
+
### Detailed Dataset Statistics
|
48 |
+
|
49 |
+
| Task | Dataset | #Train | #Val | #Test |
|
50 |
+
|-------------------------------|------------------------|---------|--------|-------|
|
51 |
+
| Dense Video Captioning | `ActivityNet Captions` | | | |
|
52 |
+
| | `ViTT` | 97,765 | 13,965 | 0 |
|
53 |
+
| | `YouCook2` | 14,575 | 2,487 | 2,489 |
|
54 |
+
| Temporal Video Grounding | `DiDeMo` | 30,000 | 2,000 | 0 |
|
55 |
+
| | `QuerYD` | 118,312 | 27,550 | 0 |
|
56 |
+
| | `HiREST_grounding` | 30,000 | 50,000 | 0 |
|
57 |
+
| | `Charades-STA` | 30,000 | 5,000 | 5,000 |
|
58 |
+
| Video Summarization | `TVSum` | 30,000 | 30,000 | 0 |
|
59 |
+
| | `SumMe` | 13,568 | 1,024 | 1,024 |
|
60 |
+
| Video Highlight Detection | `QVHighlights` | 9,009 | 5,046 | 0 |
|
61 |
+
| Step Localization | `COIN` | 30,000 | 2,000 | 0 |
|
62 |
+
| | `HiREST_step` | 29,372 | 2,000 | 0 |
|
63 |
+
| Transcribed Speech Generation | `YT-Temporal` | 5,000 | 4,315 | 4,350 |
|
64 |
+
|
65 |
+
## Dataset Structure
|
66 |
+
|
67 |
+
### HuggingFace Login (Optional)
|
68 |
+
|
69 |
+
```python
|
70 |
+
# OR run huggingface-cli login
|
71 |
+
from huggingface_hub import login
|
72 |
+
|
73 |
+
hf_token = "hf_xxx" # TODO: set a valid HuggingFace access token for loading datasets/models
|
74 |
+
login(token=hf_token)
|
75 |
+
```
|
76 |
+
|
77 |
+
### Data Loading
|
78 |
+
|
79 |
+
```python
|
80 |
+
from datasets import load_dataset
|
81 |
+
|
82 |
+
ds_name = "youcook2" # change the dataset name here
|
83 |
+
dataset = load_dataset("ShuhuaiRen/TimeIT", ds_name)
|
84 |
+
```
|
85 |
+
|
86 |
+
### Data Splits
|
87 |
+
|
88 |
+
```python
|
89 |
+
from datasets import load_dataset
|
90 |
+
|
91 |
+
ds_name = "youcook2" # change the dataset name here
|
92 |
+
dataset = load_dataset("ShuhuaiRen/TimeIT", ds_name)
|
93 |
+
train_set = dataset["train"]
|
94 |
+
```
|
95 |
+
|
96 |
+
### Data Instances
|
97 |
+
|
98 |
+
```python
|
99 |
+
from datasets import load_dataset
|
100 |
+
from io import BytesIO
|
101 |
+
from base64 import b64decode
|
102 |
+
from PIL import Image
|
103 |
+
|
104 |
+
ds_name = "youcook2" # change the dataset name here
|
105 |
+
dataset = load_dataset("ShuhuaiRen/TimeIT", ds_name)
|
106 |
+
train_set = dataset["train"]
|
107 |
+
|
108 |
+
for train_instance in train_set:
|
109 |
+
question = train_instance["QA"][0]['q'] # str
|
110 |
+
answer = train_instance["QA"][0]['a'] # str
|
111 |
+
video_path = train_instance["video"] # str
|
112 |
+
```
|
113 |
+
|
114 |
+
### Data Fields
|
115 |
+
|
116 |
+
```python
|
117 |
+
import datasets
|
118 |
+
|
119 |
+
features = datasets.Features(
|
120 |
+
{
|
121 |
+
"instruction": datasets.Value("string"),
|
122 |
+
"inputs": datasets.Value("string"),
|
123 |
+
"image_base64_str": [datasets.Value("string")],
|
124 |
+
"outputs": datasets.Value("string"),
|
125 |
+
}
|
126 |
+
)
|
127 |
+
```
|
128 |
+
|
129 |
+
## Dataset Creation
|
130 |
+
|
131 |
+
### Curation Rationale
|
132 |
+
|
133 |
+
[More Information Needed]
|
134 |
+
|
135 |
+
### Source Data
|
136 |
+
|
137 |
+
| Task | Dataset [Citation] | Source |
|
138 |
+
|---------------------------|----------------------------------|------------------------------------------------------------------------------------|
|
139 |
+
| Image Captioning | `coco` [1] | [Source](https://cocodataset.org/#home) |
|
140 |
+
| | `textcap` [2] | [Source](https://textvqa.org/textcaps/) |
|
141 |
+
| | `image-paragraph-captioning` [3] | [Source](https://cs.stanford.edu/people/ranjaykrishna/im2p/index.html) |
|
142 |
+
| Classification | `coco-goi` [1] | [Source](https://cocodataset.org/#home) |
|
143 |
+
| | `coco-text` [4] | [Source](https://bgshih.github.io/cocotext/) |
|
144 |
+
| | `imagenet` [5] | [Source](https://www.image-net.org/) |
|
145 |
+
| | `coco-itm` [1] | [Source](https://cocodataset.org/#home) |
|
146 |
+
| | `snli-ve` [6] | [Source](https://github.com/necla-ml/SNLI-VE) |
|
147 |
+
| | `mocheg` [7] | [Source](https://github.com/VT-NLP/Mocheg) |
|
148 |
+
| | `iqa` [8] | [Source](https://github.com/icbcbicc/IQA-Dataset) |
|
149 |
+
| Visual Question Answering | `vqa-v2` [9] | [Source](https://visualqa.org/) |
|
150 |
+
| | `shapes` [10] | [Source](https://github.com/ronghanghu/n2nmn) |
|
151 |
+
| | `docvqa` [11] | [Source](https://www.docvqa.org/) |
|
152 |
+
| | `ocr-vqa` [12] | [Source](https://ocr-vqa.github.io/) |
|
153 |
+
| | `st-vqa` [13] | [Source](https://rrc.cvc.uab.es/?ch=11) |
|
154 |
+
| | `text-vqa` [14] | [Source](https://textvqa.org/) |
|
155 |
+
| | `gqa` [15] | [Source](https://cs.stanford.edu/people/dorarad/gqa/about.html) |
|
156 |
+
| Knowledgeable Visual QA | `okvqa` [16] | [Source](https://okvqa.allenai.org/) |
|
157 |
+
| | `a-okvqa` [17] | [Source](https://allenai.org/project/a-okvqa/home) |
|
158 |
+
| | `science-qa` [18] | [Source](https://scienceqa.github.io/) |
|
159 |
+
| | `viquae` [19] | [Source](https://github.com/PaulLerner/ViQuAE) |
|
160 |
+
| Reasoning | `clevr` [20] | [Source](https://cs.stanford.edu/people/jcjohns/clevr/) |
|
161 |
+
| | `nlvr` [21] | [Source](https://lil.nlp.cornell.edu/nlvr/) |
|
162 |
+
| | `vcr` [22] | [Source](https://visualcommonsense.com/) |
|
163 |
+
| | `visual-mrc` [23] | [Source](https://github.com/nttmdlab-nlp/VisualMRC) |
|
164 |
+
| | `winoground` [24] | [Source](https://huggingface.co/datasets/facebook/winoground) |
|
165 |
+
| Generation | `vist` [25] | [Source](https://visionandlanguage.net/VIST/) |
|
166 |
+
| | `visual-dialog` [26] | [Source](https://visualdialog.org/) |
|
167 |
+
| | `multi30k` [27] | [Source](https://github.com/multi30k/dataset) |
|
168 |
+
| Chinese | `fm-iqa` [28] | [Source](https://paperswithcode.com/dataset/fm-iqa) |
|
169 |
+
| | `coco-cn` [29] | [Source](https://github.com/li-xirong/coco-cn) |
|
170 |
+
| | `flickr8k-cn` [30] | [Source](https://github.com/li-xirong/flickr8kcn) |
|
171 |
+
| | `chinese-food` [31] | [Source](https://sites.google.com/view/chinesefoodnet) |
|
172 |
+
| | `mmchat` [32] | [Source](https://github.com/silverriver/MMChat) |
|
173 |
+
| Video | `ss` [33] | [Source](https://developer.qualcomm.com/software/ai-datasets/something-something) |
|
174 |
+
| | `ivqa` [34] | [Source](https://antoyang.github.io/just-ask.html) |
|
175 |
+
| | `msvd-qa` [35] | [Source](https://paperswithcode.com/dataset/msvd) |
|
176 |
+
| | `activitynet-qa` [36] | [Source](https://github.com/MILVLG/activitynet-qa) |
|
177 |
+
| | `msrvtt` [35] | [Source](https://paperswithcode.com/dataset/msr-vtt) |
|
178 |
+
| | `msrvtt-qa` [37] | [Source](https://paperswithcode.com/sota/visual-question-answering-on-msrvtt-qa-1) |
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
### Annotations
|
183 |
+
|
184 |
+
#### Annotation process
|
185 |
+
|
186 |
+
To build high-quality multimodal instruction datasets,
|
187 |
+
we rewrite various datasets into multimodal-to-text dialog format.
|
188 |
+
The annotation process includes four steps:
|
189 |
+
|
190 |
+
- (1) **Stage I: Instruction Writing**: writing instructions for each task;
|
191 |
+
- (2) **Stage II: Data Format Unification**: structuring images and texts into a unified schema;
|
192 |
+
- (3) **Stage III: Quality Check**: checking the overall dataset quality;
|
193 |
+
- (4) **Stage IV: Key Datasets Translation**: building multilingual sets.
|
194 |
+
|
195 |
+
#### Who are the annotators?
|
196 |
+
|
197 |
+
Three authors of this work are employed as human annotators,
|
198 |
+
each of whom is a graduate student familiar with relevant literature.
|
199 |
+
|
200 |
+
|
201 |
+
## Additional Information
|
202 |
+
|
203 |
+
### Licensing Information
|
204 |
+
|
205 |
+
The content of original dataset follows their original license.
|
206 |
+
We suggest that for the task with Unknown/Custom license, the user can check the original project or contact the dataset owner for detailed license information.
|
207 |
+
|
208 |
+
Our annotated instruction data is licensed under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/).
|
209 |
+
|
210 |
+
|
211 |
+
### Citation Information
|
212 |
+
```bibtex
|
213 |
+
@article{Ren2023TimeChatAT,
|
214 |
+
title={TimeChat: A Time-sensitive Multimodal Large Language Model for Long Video Understanding},
|
215 |
+
author={Shuhuai Ren and Linli Yao and Shicheng Li and Xu Sun and Lu Hou},
|
216 |
+
journal={ArXiv},
|
217 |
+
year={2023},
|
218 |
+
volume={abs/2312.02051},
|
219 |
+
}
|
220 |
+
```
|
221 |
+
### Contributions
|
222 |
+
|
223 |
+
TimeIT is a video-centric instruction-tuning dataset involving timestamps.
|
224 |
+
designed to enable the development of general-purpose video agents.
|
225 |
+
|
226 |
+
## References
|
227 |
+
|
228 |
+
- [1] Microsoft COCO: Common Objects in Context
|
229 |
+
- [2] TextCaps: a dataset for image captioning with reading comprehension
|
230 |
+
- [3] A Hierarchical Approach for Generating Descriptive Image Paragraphs
|
231 |
+
- [4] COCO-Text: Dataset and benchmark for text detection and recognition in natural images
|
232 |
+
- [5] Imagenet large scale visual recognition challenge
|
233 |
+
- [6] E-ViL: A Dataset and Benchmark for Natural Language Explanations in Vision-Language Tasks
|
234 |
+
- [7] End-to-End Multimodal Fact-Checking and Explanation Generation: A Challenging Dataset and Models
|
235 |
+
- [8] Quantifying visual image quality: A Bayesian view
|
236 |
+
- [9] Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering
|
237 |
+
- [10] Neural Module Networks
|
238 |
+
- [11] DocVQA: A dataset for vqa on document images
|
239 |
+
- [12] OCR-VQA: Visual Question Answering by Reading Text in Images
|
240 |
+
- [13] Scene Text Visual Question Answering
|
241 |
+
- [14] Towards VQA Models That Can Read
|
242 |
+
- [15] GQA: A new dataset for real-world visual reasoning and compositional question answering
|
243 |
+
- [16] OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge
|
244 |
+
- [17] A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge
|
245 |
+
- [18] Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering
|
246 |
+
- [19] ViQuAE: a dataset for knowledge-based visual question answering about named entities
|
247 |
+
- [20] CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning
|
248 |
+
- [21] A Corpus of Natural Language for Visual Reasoning
|
249 |
+
- [22] From recognition to cognition: Visual Commonsense Reasoning
|
250 |
+
- [23] VisualMRC: Machine reading comprehension on document images
|
251 |
+
- [24] WinoGround: Probing vision and language models for visio-linguistic compositionality
|
252 |
+
- [25] Visual Storytelling
|
253 |
+
- [26] Visual Dialog
|
254 |
+
- [27] Multi30k: Multilingual english-german image descriptions
|
255 |
+
- [28] Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question
|
256 |
+
- [29] COCO-CN for cross-lingual image tagging, captioning, and retrieval
|
257 |
+
- [30] Adding Chinese Captions to Images
|
258 |
+
- [31] ChineseFoodNet: A large-scale image dataset for chinese food recognition
|
259 |
+
- [32] MMChat: Multi-Modal Chat Dataset on Social Media
|
260 |
+
- [33] The "Something Something" Video Database for Learning and Evaluating Visual Common Sense
|
261 |
+
- [34] Just Ask: Learning to answer questions from millions of narrated videos
|
262 |
+
- [35] Video Question Answering via Gradually Refined Attention over Appearance and Motion
|
263 |
+
- [36] ActivityNet-qa: A dataset for understanding complex web videos via question answering
|
264 |
+
- [37] MSR-VTT: A large video description dataset for bridging video and language
|