Datasets:

Languages:
English
ArXiv:
License:
ShuhuaiRen commited on
Commit
63566b7
·
1 Parent(s): b9d7cfa

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +261 -0
README.md CHANGED
@@ -1,3 +1,264 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+
6
+ # Dataset Card for TimeIT
7
+
8
+ TimeIT encompasses 6 longstanding timestamp-related video tasks and incorporates 12 specific datasets derived from different domains.
9
+
10
+ ## Dataset Description
11
+
12
+
13
+ - **Homepage: https://huggingface.co/datasets/ShuhuaiRen/TimeIT**
14
+ - **Repository: https://huggingface.co/datasets/ShuhuaiRen/TimeIT**
15
+ - **Paper: https://arxiv.org/abs/2312.02051**
16
+ - **Leaderboard:**
17
+ - **Point of Contact:**
18
+
19
+ ## Dataset Statistics
20
+
21
+ Our dataset compiles diverse tasks of time-sensitive long video understanding, including Dense Video Captioning, Video Grounding, Video Summarization, Video Highlight Detection, Step Localization, Transcribed Speech Generation.
22
+
23
+ ### Instruction Statistics
24
+
25
+ | Task | #Instructions |
26
+ |-------------------------------|---------------|
27
+ | Dense Video Captioning | |
28
+ | Temporal Video Grounding | |
29
+ | Video Summarization | |
30
+ | Video Highlight Detection | |
31
+ | Step Localization | |
32
+ | Transcribed Speech Generation | |
33
+ | Total | |
34
+
35
+ ### Task Statistics
36
+
37
+ | Task | Description | #Train | #Val | #Test |
38
+ |-------------------------------|----------------------------------------------------------------------------------------------------------------------|---------|---------|---------|
39
+ | Dense Video Captioning | detects a series of events in the given video and outputs the corresponding timestamps and descriptions |
40
+ | Temporal Video Grounding | predict a timestamp boundary including the start and end time in the video given a natural language query |
41
+ | Video Summarization | create a compressed set of frames or clip shots to represent the most informative content of the given video |
42
+ | Video Highlight Detection | identify the most exciting, impressive, or emotional moments that may not cover the full scope of the original video |
43
+ | Step Localization | segment and describe significant steps in a long untrimmed video |
44
+ | Transcribed Speech Generation | predict the speech content and its corresponding start and end timestamps based on visual signals in the video |
45
+ | Total | - |
46
+
47
+ ### Detailed Dataset Statistics
48
+
49
+ | Task | Dataset | #Train | #Val | #Test |
50
+ |-------------------------------|------------------------|---------|--------|-------|
51
+ | Dense Video Captioning | `ActivityNet Captions` | | | |
52
+ | | `ViTT` | 97,765 | 13,965 | 0 |
53
+ | | `YouCook2` | 14,575 | 2,487 | 2,489 |
54
+ | Temporal Video Grounding | `DiDeMo` | 30,000 | 2,000 | 0 |
55
+ | | `QuerYD` | 118,312 | 27,550 | 0 |
56
+ | | `HiREST_grounding` | 30,000 | 50,000 | 0 |
57
+ | | `Charades-STA` | 30,000 | 5,000 | 5,000 |
58
+ | Video Summarization | `TVSum` | 30,000 | 30,000 | 0 |
59
+ | | `SumMe` | 13,568 | 1,024 | 1,024 |
60
+ | Video Highlight Detection | `QVHighlights` | 9,009 | 5,046 | 0 |
61
+ | Step Localization | `COIN` | 30,000 | 2,000 | 0 |
62
+ | | `HiREST_step` | 29,372 | 2,000 | 0 |
63
+ | Transcribed Speech Generation | `YT-Temporal` | 5,000 | 4,315 | 4,350 |
64
+
65
+ ## Dataset Structure
66
+
67
+ ### HuggingFace Login (Optional)
68
+
69
+ ```python
70
+ # OR run huggingface-cli login
71
+ from huggingface_hub import login
72
+
73
+ hf_token = "hf_xxx" # TODO: set a valid HuggingFace access token for loading datasets/models
74
+ login(token=hf_token)
75
+ ```
76
+
77
+ ### Data Loading
78
+
79
+ ```python
80
+ from datasets import load_dataset
81
+
82
+ ds_name = "youcook2" # change the dataset name here
83
+ dataset = load_dataset("ShuhuaiRen/TimeIT", ds_name)
84
+ ```
85
+
86
+ ### Data Splits
87
+
88
+ ```python
89
+ from datasets import load_dataset
90
+
91
+ ds_name = "youcook2" # change the dataset name here
92
+ dataset = load_dataset("ShuhuaiRen/TimeIT", ds_name)
93
+ train_set = dataset["train"]
94
+ ```
95
+
96
+ ### Data Instances
97
+
98
+ ```python
99
+ from datasets import load_dataset
100
+ from io import BytesIO
101
+ from base64 import b64decode
102
+ from PIL import Image
103
+
104
+ ds_name = "youcook2" # change the dataset name here
105
+ dataset = load_dataset("ShuhuaiRen/TimeIT", ds_name)
106
+ train_set = dataset["train"]
107
+
108
+ for train_instance in train_set:
109
+ question = train_instance["QA"][0]['q'] # str
110
+ answer = train_instance["QA"][0]['a'] # str
111
+ video_path = train_instance["video"] # str
112
+ ```
113
+
114
+ ### Data Fields
115
+
116
+ ```python
117
+ import datasets
118
+
119
+ features = datasets.Features(
120
+ {
121
+ "instruction": datasets.Value("string"),
122
+ "inputs": datasets.Value("string"),
123
+ "image_base64_str": [datasets.Value("string")],
124
+ "outputs": datasets.Value("string"),
125
+ }
126
+ )
127
+ ```
128
+
129
+ ## Dataset Creation
130
+
131
+ ### Curation Rationale
132
+
133
+ [More Information Needed]
134
+
135
+ ### Source Data
136
+
137
+ | Task | Dataset [Citation] | Source |
138
+ |---------------------------|----------------------------------|------------------------------------------------------------------------------------|
139
+ | Image Captioning | `coco` [1] | [Source](https://cocodataset.org/#home) |
140
+ | | `textcap` [2] | [Source](https://textvqa.org/textcaps/) |
141
+ | | `image-paragraph-captioning` [3] | [Source](https://cs.stanford.edu/people/ranjaykrishna/im2p/index.html) |
142
+ | Classification | `coco-goi` [1] | [Source](https://cocodataset.org/#home) |
143
+ | | `coco-text` [4] | [Source](https://bgshih.github.io/cocotext/) |
144
+ | | `imagenet` [5] | [Source](https://www.image-net.org/) |
145
+ | | `coco-itm` [1] | [Source](https://cocodataset.org/#home) |
146
+ | | `snli-ve` [6] | [Source](https://github.com/necla-ml/SNLI-VE) |
147
+ | | `mocheg` [7] | [Source](https://github.com/VT-NLP/Mocheg) |
148
+ | | `iqa` [8] | [Source](https://github.com/icbcbicc/IQA-Dataset) |
149
+ | Visual Question Answering | `vqa-v2` [9] | [Source](https://visualqa.org/) |
150
+ | | `shapes` [10] | [Source](https://github.com/ronghanghu/n2nmn) |
151
+ | | `docvqa` [11] | [Source](https://www.docvqa.org/) |
152
+ | | `ocr-vqa` [12] | [Source](https://ocr-vqa.github.io/) |
153
+ | | `st-vqa` [13] | [Source](https://rrc.cvc.uab.es/?ch=11) |
154
+ | | `text-vqa` [14] | [Source](https://textvqa.org/) |
155
+ | | `gqa` [15] | [Source](https://cs.stanford.edu/people/dorarad/gqa/about.html) |
156
+ | Knowledgeable Visual QA | `okvqa` [16] | [Source](https://okvqa.allenai.org/) |
157
+ | | `a-okvqa` [17] | [Source](https://allenai.org/project/a-okvqa/home) |
158
+ | | `science-qa` [18] | [Source](https://scienceqa.github.io/) |
159
+ | | `viquae` [19] | [Source](https://github.com/PaulLerner/ViQuAE) |
160
+ | Reasoning | `clevr` [20] | [Source](https://cs.stanford.edu/people/jcjohns/clevr/) |
161
+ | | `nlvr` [21] | [Source](https://lil.nlp.cornell.edu/nlvr/) |
162
+ | | `vcr` [22] | [Source](https://visualcommonsense.com/) |
163
+ | | `visual-mrc` [23] | [Source](https://github.com/nttmdlab-nlp/VisualMRC) |
164
+ | | `winoground` [24] | [Source](https://huggingface.co/datasets/facebook/winoground) |
165
+ | Generation | `vist` [25] | [Source](https://visionandlanguage.net/VIST/) |
166
+ | | `visual-dialog` [26] | [Source](https://visualdialog.org/) |
167
+ | | `multi30k` [27] | [Source](https://github.com/multi30k/dataset) |
168
+ | Chinese | `fm-iqa` [28] | [Source](https://paperswithcode.com/dataset/fm-iqa) |
169
+ | | `coco-cn` [29] | [Source](https://github.com/li-xirong/coco-cn) |
170
+ | | `flickr8k-cn` [30] | [Source](https://github.com/li-xirong/flickr8kcn) |
171
+ | | `chinese-food` [31] | [Source](https://sites.google.com/view/chinesefoodnet) |
172
+ | | `mmchat` [32] | [Source](https://github.com/silverriver/MMChat) |
173
+ | Video | `ss` [33] | [Source](https://developer.qualcomm.com/software/ai-datasets/something-something) |
174
+ | | `ivqa` [34] | [Source](https://antoyang.github.io/just-ask.html) |
175
+ | | `msvd-qa` [35] | [Source](https://paperswithcode.com/dataset/msvd) |
176
+ | | `activitynet-qa` [36] | [Source](https://github.com/MILVLG/activitynet-qa) |
177
+ | | `msrvtt` [35] | [Source](https://paperswithcode.com/dataset/msr-vtt) |
178
+ | | `msrvtt-qa` [37] | [Source](https://paperswithcode.com/sota/visual-question-answering-on-msrvtt-qa-1) |
179
+
180
+
181
+
182
+ ### Annotations
183
+
184
+ #### Annotation process
185
+
186
+ To build high-quality multimodal instruction datasets,
187
+ we rewrite various datasets into multimodal-to-text dialog format.
188
+ The annotation process includes four steps:
189
+
190
+ - (1) **Stage I: Instruction Writing**: writing instructions for each task;
191
+ - (2) **Stage II: Data Format Unification**: structuring images and texts into a unified schema;
192
+ - (3) **Stage III: Quality Check**: checking the overall dataset quality;
193
+ - (4) **Stage IV: Key Datasets Translation**: building multilingual sets.
194
+
195
+ #### Who are the annotators?
196
+
197
+ Three authors of this work are employed as human annotators,
198
+ each of whom is a graduate student familiar with relevant literature.
199
+
200
+
201
+ ## Additional Information
202
+
203
+ ### Licensing Information
204
+
205
+ The content of original dataset follows their original license.
206
+ We suggest that for the task with Unknown/Custom license, the user can check the original project or contact the dataset owner for detailed license information.
207
+
208
+ Our annotated instruction data is licensed under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/).
209
+
210
+
211
+ ### Citation Information
212
+ ```bibtex
213
+ @article{Ren2023TimeChatAT,
214
+ title={TimeChat: A Time-sensitive Multimodal Large Language Model for Long Video Understanding},
215
+ author={Shuhuai Ren and Linli Yao and Shicheng Li and Xu Sun and Lu Hou},
216
+ journal={ArXiv},
217
+ year={2023},
218
+ volume={abs/2312.02051},
219
+ }
220
+ ```
221
+ ### Contributions
222
+
223
+ TimeIT is a video-centric instruction-tuning dataset involving timestamps.
224
+ designed to enable the development of general-purpose video agents.
225
+
226
+ ## References
227
+
228
+ - [1] Microsoft COCO: Common Objects in Context
229
+ - [2] TextCaps: a dataset for image captioning with reading comprehension
230
+ - [3] A Hierarchical Approach for Generating Descriptive Image Paragraphs
231
+ - [4] COCO-Text: Dataset and benchmark for text detection and recognition in natural images
232
+ - [5] Imagenet large scale visual recognition challenge
233
+ - [6] E-ViL: A Dataset and Benchmark for Natural Language Explanations in Vision-Language Tasks
234
+ - [7] End-to-End Multimodal Fact-Checking and Explanation Generation: A Challenging Dataset and Models
235
+ - [8] Quantifying visual image quality: A Bayesian view
236
+ - [9] Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering
237
+ - [10] Neural Module Networks
238
+ - [11] DocVQA: A dataset for vqa on document images
239
+ - [12] OCR-VQA: Visual Question Answering by Reading Text in Images
240
+ - [13] Scene Text Visual Question Answering
241
+ - [14] Towards VQA Models That Can Read
242
+ - [15] GQA: A new dataset for real-world visual reasoning and compositional question answering
243
+ - [16] OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge
244
+ - [17] A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge
245
+ - [18] Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering
246
+ - [19] ViQuAE: a dataset for knowledge-based visual question answering about named entities
247
+ - [20] CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning
248
+ - [21] A Corpus of Natural Language for Visual Reasoning
249
+ - [22] From recognition to cognition: Visual Commonsense Reasoning
250
+ - [23] VisualMRC: Machine reading comprehension on document images
251
+ - [24] WinoGround: Probing vision and language models for visio-linguistic compositionality
252
+ - [25] Visual Storytelling
253
+ - [26] Visual Dialog
254
+ - [27] Multi30k: Multilingual english-german image descriptions
255
+ - [28] Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question
256
+ - [29] COCO-CN for cross-lingual image tagging, captioning, and retrieval
257
+ - [30] Adding Chinese Captions to Images
258
+ - [31] ChineseFoodNet: A large-scale image dataset for chinese food recognition
259
+ - [32] MMChat: Multi-Modal Chat Dataset on Social Media
260
+ - [33] The "Something Something" Video Database for Learning and Evaluating Visual Common Sense
261
+ - [34] Just Ask: Learning to answer questions from millions of narrated videos
262
+ - [35] Video Question Answering via Gradually Refined Attention over Appearance and Motion
263
+ - [36] ActivityNet-qa: A dataset for understanding complex web videos via question answering
264
+ - [37] MSR-VTT: A large video description dataset for bridging video and language