Datasets:

Languages:
English
ArXiv:
License:
ShuhuaiRen commited on
Commit
cfa73c2
·
1 Parent(s): 9ca3dce

Upload 3 files

Browse files
data/video_highlight_detection/qvhighlights/get_coco_format.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import argparse
3
+ import os
4
+ from copy import deepcopy
5
+ import pdb
6
+ import numpy as np
7
+ import random
8
+ from pathlib import Path
9
+ from collections import Counter
10
+
11
+ # read json files
12
+ def read_json(path):
13
+ with open(path, "r") as fin:
14
+ datas = json.load(fin)
15
+ annos = datas["annotations"]
16
+ return annos
17
+
18
+
19
+ def read_jsonl(path):
20
+ anno = []
21
+ with open(path, "r") as fin:
22
+ datas = fin.readlines()
23
+ for data in datas:
24
+ anno.append(json.loads(data.strip()))
25
+ return anno
26
+
27
+
28
+
29
+ def write_json(data, path):
30
+ with open(path, "w") as fout:
31
+ json.dump(data, fout)
32
+ return
33
+
34
+
35
+ def read_txt(path):
36
+ data = []
37
+ with open(path, "r") as fin:
38
+ lines = fin.readlines()
39
+ for i, line in enumerate(lines):
40
+ # e.g. AO8RW 0.0 6.9##a person is putting a book on a shelf.
41
+ line = line.strip("\n")
42
+ cap = line.split("##")[-1]
43
+ if len(cap) < 2:
44
+ continue
45
+ terms = line.split("##")[0].split(" ")
46
+ vid = terms[0] + ".mp4"
47
+ start_time = float(terms[1])
48
+ end_time = float(terms[2])
49
+ data.append({"image_id": vid, "caption": cap, "timestamp": [start_time, end_time], "id": i})
50
+ return data
51
+
52
+
53
+ def filter_sent(sent):
54
+ sent = sent.strip(" ")
55
+ if len(sent) < 2:
56
+ return False
57
+ sent = sent.replace("#", "")
58
+ return sent
59
+
60
+
61
+ if __name__ == "__main__":
62
+ parser = argparse.ArgumentParser()
63
+ parser.add_argument('--dataset', default='qvhighlights') # anet
64
+ parser.add_argument('--anno_path', default='annotations_raw/')
65
+ parser.add_argument('--video_path', default='videos/') # ActivityNet_asr_denseCap/anet_6fps_224
66
+ parser.add_argument('--outpath', default='./')
67
+ args = parser.parse_args()
68
+ '''output data example:
69
+ {
70
+ "annotations": [
71
+ {
72
+ "image_id": "3MSZA.mp4",
73
+ "caption": "person turn a light on.",
74
+ "timestamp": [24.3, 30.4],
75
+ }],
76
+ }
77
+ '''
78
+ miss_videos = []
79
+ num_clips = []
80
+ for split in ["train", "val"]: # "val", "test"
81
+ if args.dataset == "charades":
82
+ filename = f"charades_sta_{split}.txt"
83
+ annos = read_txt(os.path.join(args.anno_path, filename))
84
+ data = {}
85
+ data["annotations"] = annos
86
+ elif args.dataset == "qvhighlights":
87
+ filename = f"highlight_{split}_release.jsonl"
88
+ annos = read_jsonl(os.path.join(args.anno_path, filename))
89
+ new_data = []
90
+ for jterm in annos:
91
+ new_term = {}
92
+ new_term["image_id"] = "v_" + jterm["vid"] + ".mp4"
93
+ # check the existance of the video
94
+ if not os.path.exists(os.path.join(args.video_path, split, new_term["image_id"])):
95
+ miss_videos.append(new_term["image_id"])
96
+ continue
97
+ new_term["id"] = jterm["qid"]
98
+ new_term["caption"] = jterm["query"]
99
+ new_term["timestamp"] = jterm["relevant_windows"]
100
+ new_term["duration"] = jterm["duration"]
101
+ new_term["relevant_clip_ids"] = jterm["relevant_clip_ids"]
102
+ new_term["saliency_scores"] = jterm["saliency_scores"]
103
+ new_data.append(new_term)
104
+ num_clips.append(int(jterm["duration"]/2))
105
+ data = {}
106
+ data["annotations"] = new_data
107
+ else:
108
+ print("Do not support this dataset!")
109
+ exit(0)
110
+
111
+ print(f"==> {args.dataset} dataset \t# examples num: {len(new_data)} \t# miss videos num: {len(miss_videos)}\t# raw data num: {len(annos)}")
112
+ out_name = "{}.caption_coco_format.json".format(split)
113
+ Path(args.outpath).mkdir(parents=True, exist_ok=True)
114
+ write_json(data, os.path.join(args.outpath, out_name))
115
+
116
+ if len(num_clips) >= 1:
117
+ count = Counter(num_clips)
118
+ # sort count dict with the clip num
119
+ print(count)
120
+ print(max(list(count.keys())))
121
+
data/video_highlight_detection/qvhighlights/train.caption_coco_format.json ADDED
The diff for this file is too large to render. See raw diff
 
data/video_highlight_detection/qvhighlights/val.caption_coco_format.json ADDED
The diff for this file is too large to render. See raw diff