Skywayne commited on
Commit
4cbde8f
·
verified ·
1 Parent(s): 1e12ed0

Upload 4 files

Browse files
Files changed (4) hide show
  1. calculate_pnl.py +252 -0
  2. demo.py +68 -0
  3. notebook/data_eda.ipynb +341 -0
  4. notebook/nn_baseline.ipynb +259 -0
calculate_pnl.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import pandas as pd
4
+ import matplotlib.pyplot as plt
5
+ from typing import Dict
6
+
7
+
8
+ def calculate_pnl(
9
+ product: str,
10
+ exchange: str,
11
+ data: pd.DataFrame,
12
+ max_pos: int,
13
+ open_threshold: float,
14
+ close_threshold: float
15
+ ):
16
+ """
17
+ 此函数用于计算一天的收益。
18
+ :param product: 交易品种
19
+ :param exchange: 交易所
20
+ :param data: 交易数据, 必须包含 predict, bid, ask, bid_vol, ask_vol 这五列数据
21
+ :param max_pos: 最大仓位
22
+ :param open_threshold: 开仓阈值
23
+ :param close_threshold: 平仓阈值
24
+ :return: {"profit": 毛利润, "commission": 手续费, "trade_n": 交易手数}
25
+ """
26
+ # load other data
27
+ ############################## change dir here ##############################
28
+ fee_data = pd.read_csv("./other_data/commission-2023-12-18.csv")
29
+ volume_data = pd.read_csv("./other_data/DailyMarketVolume_20231218.csv")
30
+ inst_data = pd.read_csv("./other_data/instrument-2023-12-18.csv")
31
+ #############################################################################
32
+ lock_position_list = ["IC", "IF", "IH", "IM", "AP", "lh", "sn", "ni", ]
33
+ lock_position = product in lock_position_list
34
+ if exchange in ["SHFE", "DCE", "GFEX"]:
35
+ product = product.lower()
36
+ else:
37
+ product = product.upper()
38
+ tmp = volume_data[volume_data['ProductId'] == product]
39
+ if len(tmp) != 1:
40
+ raise ValueError("There is {} volume record for {} ".format(len(tmp), product))
41
+ symbol = str(tmp['Symbol1'].values[0])
42
+ tmp = fee_data[fee_data["InstrumentID"] == symbol]
43
+ if len(tmp) < 1:
44
+ raise ValueError("{} commission record less than 1".format(symbol))
45
+ open_ratio = tmp["OpenRatioByMoney"].values[0]
46
+ open_fix = tmp["OpenRatioByVolume"].values[0]
47
+ if lock_position:
48
+ close_ratio = tmp["CloseRatioByMoney"].values[0]
49
+ close_fix = tmp["CloseRatioByVolume"].values[0]
50
+ else:
51
+ close_ratio = tmp["CloseTodayRatioByMoney"].values[0]
52
+ close_fix = tmp["CloseTodayRatioByVolume"].values[0]
53
+ inst_data = inst_data[inst_data["InstrumentID"] == symbol]
54
+ assert len(inst_data) > 0, "{} inst record is 0".format(symbol)
55
+ multiplier = int(inst_data["VolumeMultiple"].values[0])
56
+ px_tick = inst_data["PriceTick"].values[0]
57
+ val_multip = multiplier * px_tick
58
+ # calculate trade information
59
+ # predict = data["predict"].values
60
+ predict = data["predict_0226"].values
61
+ bid = data["bid"].values
62
+ ask = data["ask"].values
63
+ bid_vol = data["bid_vol"].values
64
+ ask_vol = data["ask_vol"].values
65
+ cur_pos = 0
66
+ revenue = [0]
67
+ average_profit = 0
68
+ commission = [0]
69
+ all_account = [0]
70
+ trade_n = 0
71
+ for i in range(predict.shape[0]):
72
+ trade_signal = predict[i]
73
+ ord_amt = 0
74
+ dir = None
75
+ if cur_pos == 0:
76
+ if trade_signal >= open_threshold:
77
+ dir = "BUY"
78
+ ord_amt = min(max_pos, ask_vol[i])
79
+ elif trade_signal <= -1 * open_threshold:
80
+ dir = "SELL"
81
+ ord_amt = min(max_pos, bid_vol[i])
82
+ elif cur_pos > 0:
83
+ if trade_signal >= open_threshold and cur_pos < max_pos:
84
+ dir = "BUY"
85
+ ord_amt = max(0, min(max_pos - cur_pos, ask_vol[i]))
86
+ elif trade_signal <= -1 * close_threshold:
87
+ dir = "SELL"
88
+ if trade_signal <= -1 * open_threshold:
89
+ ord_amt = min(max_pos + cur_pos, bid_vol[0])
90
+ else:
91
+ ord_amt = min(cur_pos, bid_vol[0])
92
+ else: # cur_pos < 0
93
+ if trade_signal <= -1 * open_threshold and cur_pos > -max_pos:
94
+ dir = "SELL"
95
+ ord_amt = max(0, min(max_pos + cur_pos, bid_vol[i]))
96
+ elif trade_signal >= close_threshold:
97
+ dir = "BUY"
98
+ if trade_signal >= open_threshold:
99
+ ord_amt = min(max_pos - cur_pos, ask_vol[i])
100
+ else:
101
+ ord_amt = min(-cur_pos, ask_vol[i])
102
+ if ord_amt != 0 and dir is not None:
103
+ # calculate pnl & update cur_pos
104
+ if dir == 'SELL':
105
+ px = bid[i]
106
+ if cur_pos >= ord_amt:
107
+ diff = px * ord_amt - average_profit * ord_amt
108
+ commission.append(ord_amt * (px * close_ratio * val_multip + close_fix))
109
+ elif cur_pos <= 0:
110
+ diff = 0
111
+ average_profit = (average_profit * abs(cur_pos) + ord_amt * px) / (abs(cur_pos) + ord_amt)
112
+ commission.append(ord_amt * (px * open_ratio * val_multip + open_fix))
113
+ else:
114
+ diff = px * abs(cur_pos) - average_profit * abs(cur_pos)
115
+ commission.append(abs(cur_pos) * (px * close_ratio * val_multip + close_fix) + \
116
+ (ord_amt - abs(cur_pos)) * (px * open_ratio * val_multip + open_fix))
117
+ average_profit = px
118
+ cur_pos = cur_pos - ord_amt
119
+ all_account.append(cur_pos)
120
+ elif dir == 'BUY':
121
+ px = ask[i]
122
+ if cur_pos <= ord_amt * -1:
123
+ diff = average_profit * ord_amt - px * ord_amt
124
+ commission.append(ord_amt * (px * close_ratio * val_multip + close_fix))
125
+ elif cur_pos >= 0:
126
+ diff = 0
127
+ average_profit = (average_profit * abs(cur_pos) + ord_amt * px) / (abs(cur_pos) + ord_amt)
128
+ commission.append(ord_amt * (px * open_ratio * val_multip + open_fix))
129
+ else:
130
+ diff = average_profit * abs(cur_pos) - px * abs(cur_pos)
131
+ commission.append(abs(cur_pos) * (px * close_ratio * val_multip + close_fix) + \
132
+ (ord_amt - abs(cur_pos)) * (px * open_ratio * val_multip + open_fix))
133
+ average_profit = px
134
+ cur_pos = cur_pos + ord_amt
135
+ all_account.append(cur_pos)
136
+ else:
137
+ raise ValueError("Unknown dir: {}".format(dir))
138
+ revenue.append(diff * val_multip)
139
+ trade_n += ord_amt
140
+ return {"revenue": revenue, "commission": commission, "trade_n": trade_n} # "position": all_account,
141
+
142
+
143
+ def sharpe_ratio(
144
+ pl: np.ndarray,
145
+ base_rate: float = 0,
146
+ ):
147
+ """
148
+ 此代码用于计算夏普率
149
+ """
150
+ if len(pl) == 0:
151
+ return np.NaN
152
+ pl2 = pl - base_rate
153
+ pl2_std = np.std(pl2)
154
+ if pl2_std == 0:
155
+ return np.NaN
156
+ return np.mean(pl2) / pl2_std
157
+
158
+
159
+ def sharpe_ratio_day(
160
+ net_pl: np.ndarray
161
+ ):
162
+ """
163
+ 此代码用于计算夏普率(按照天数计算)
164
+ """
165
+ n_days = len(net_pl)
166
+ if n_days == 0:
167
+ return np.NaN
168
+ mult = float(len(net_pl)) * 250 / n_days
169
+ return sharpe_ratio(net_pl) * np.sqrt(mult)
170
+
171
+
172
+ def plot_pnl(revenue: np.ndarray, commission: np.ndarray, rebate_ratio: float, save_dir: str, title: str):
173
+ """
174
+ 此代码用于绘制收益曲线
175
+ """
176
+ plt.figure(figsize = (10, 5))
177
+ plt.step(range(len(revenue)), np.cumsum(revenue), color = 'g', label = 'Revenue')
178
+ plt.step(range(len(commission)), np.cumsum(commission), color = 'r', label = 'Commission')
179
+ plt.step(range(len(revenue)), np.cumsum(revenue) - np.cumsum(commission), color = 'b', linestyle = '--', label = 'Profit')
180
+ plt.step(range(len(revenue)), np.cumsum(revenue) - np.cumsum(commission * (1 - rebate_ratio)), color = 'b', label = 'Net P&L')
181
+ plt.axhline(y = 0, color = 'g', linestyle = '--')
182
+ plt.title(title)
183
+ plt.legend()
184
+ plt.savefig(save_dir)
185
+
186
+
187
+ def portfolio(
188
+ trade_data: Dict,
189
+ max_pos: int,
190
+ threshold: tuple,
191
+ rebate_ratio: float,
192
+ save_dir: str,
193
+ ):
194
+ """
195
+ 此代码用于生成回测报告(csv文件)和绘制收益曲线
196
+ :param trade_data: 交易数据
197
+ :param max_pos: 最大仓位
198
+ :param threshold: 交易阈值
199
+ :param rebate_ratio: 手续费返还比例
200
+ :param save_dir: 报告保存路径
201
+ :return: None
202
+ """
203
+ start_day = min(list(trade_data.keys()))
204
+ end_day = max(list(trade_data.keys()))
205
+ days_n = len(list(trade_data.keys()))
206
+ revenue_list = []
207
+ commission_list = []
208
+ trade_n = 0
209
+ for x in trade_data.values():
210
+ revenue_list.append(sum(x["revenue"]))
211
+ commission_list.append(sum(x["commission"]))
212
+ trade_n += x["trade_n"]
213
+ net_pnl_list = np.array(revenue_list) - (1 - rebate_ratio) * np.array(commission_list)
214
+ sr = sharpe_ratio_day(net_pnl_list)
215
+ report_path = os.path.join(save_dir, "backtest.csv")
216
+ figure_path = os.path.join(save_dir, "figures")
217
+ os.makedirs(figure_path, exist_ok = True)
218
+ if os.path.exists(report_path):
219
+ report = pd.read_csv(report_path)
220
+ else:
221
+ report = pd.DataFrame(
222
+ columns = [
223
+ "StartDay", "EndDay", "Days", "Threshold", "MaxPos", "Revenue", "Fee", "Profit", "PNL",
224
+ "AvgPnl", "Sharpe", "Trades", "TO",
225
+ ]
226
+ )
227
+ new_row = pd.DataFrame(
228
+ {
229
+ "StartDay": [start_day], # 第一个交易日
230
+ "EndDay": [end_day], # 最后一个交易日
231
+ "Days": [days_n], # 交易日数量
232
+ "Threshold": [threshold], # 交易阈值
233
+ "MaxPos": [max_pos], # 最大仓位
234
+ "Revenue": [sum(revenue_list)], # 费前收益
235
+ "Fee": [sum(commission_list)], # 手续费
236
+ "Profit": [sum(revenue_list) - sum(commission_list)], # 费后收益
237
+ "PNL": [sum(net_pnl_list)], # 净收益(加上手续费返还:PNL = Profit + rebate_ratio * Fee)
238
+ "AvgPnl": [sum(net_pnl_list) / trade_n if trade_n > 0 else 0], # 每笔交易的净利润
239
+ "Sharpe": [sr], # 夏普率
240
+ "Trades": [trade_n], # 交易手数
241
+ "TO": [trade_n / days_n / max_pos if trade_n > 0 else 0], # 换手率
242
+ }
243
+ )
244
+ report = pd.concat([report, new_row], ignore_index = True)
245
+ report.to_csv(report_path, index = False)
246
+ plot_pnl(
247
+ revenue = np.concatenate([x["revenue"] for x in trade_data.values()]),
248
+ commission = np.concatenate([x["commission"] for x in trade_data.values()]),
249
+ rebate_ratio = rebate_ratio,
250
+ save_dir = os.path.join(figure_path, "backtest_{:.03f}_{:.03f}.png".format(threshold[0], threshold[1])),
251
+ title = "Backtest {} - {}".format(str(start_day), str(end_day))
252
+ )
demo.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ 运行此脚本可以得到回测结果。
3
+ 你需要先修改此脚本中的data_dir和save_dir、以及calculate_pnl.py中的fee_data、volume_data、inst_data五个地方的路径为你本地机器的路径,
4
+ 之后就可以运行成功。
5
+ """
6
+
7
+ from calculate_pnl import calculate_pnl, portfolio
8
+ import pandas as pd
9
+ import os
10
+ from datetime import date, timedelta
11
+
12
+
13
+ product_para = {
14
+ # "FG": {"exchange": "CZCE", "open_threshold": 0.88, "close_threshold": 0.792},
15
+ # "sc": {"exchange": "DCE", "open_threshold": 0.46, "close_threshold": 0.322},
16
+ "FG": {"exchange": "CZCE", "open_threshold": 0.25, "close_threshold": 0.15},
17
+ "sc": {"exchange": "DCE", "open_threshold": 0.46, "close_threshold": 0.322},
18
+ }
19
+ ############################## change dir here ##############################
20
+ # data_dir = "./generate_data/" # 保存数据的路径
21
+ # save_dir = "./backtest/" # 保存回测结果的路径
22
+
23
+ data_dir = "./res/" # 保存数据的路径
24
+ save_dir = "./backtest/" # 保存回测结果的路径
25
+ #############################################################################
26
+
27
+ if __name__ == "__main__":
28
+ # product parameters
29
+ product = "FG" # 品种名称
30
+ exchange = product_para[product]["exchange"] # 交易所
31
+ open_threshold = product_para[product]["open_threshold"] # 开仓阈值
32
+ close_threshold = product_para[product]["close_threshold"] # 平仓阈值
33
+ max_pos = 1 # 最大仓位
34
+
35
+ # backtest parameters
36
+ start_day = date(2023, 12, 18) # 回测起始日
37
+ end_day = date(2023, 12, 18) # 回测结束日
38
+ rebate_ratio = 0.4 # 手续费返还比例,0.4代表40%的手续费最后会被返还给给账户
39
+
40
+ # backtest
41
+ day = start_day
42
+ backtest_data = {}
43
+ while day <= end_day:
44
+ path = os.path.join(data_dir, product, "{}.csv".format(day))
45
+ print(path, os.path.exists(path))
46
+ if not os.path.exists(path):
47
+ day += timedelta(days = 1)
48
+ continue
49
+ tmp = pd.read_csv(path)
50
+ backtest_data[day] = calculate_pnl(
51
+ product = product,
52
+ exchange = exchange,
53
+ data = tmp,
54
+ max_pos = max_pos,
55
+ open_threshold = open_threshold,
56
+ close_threshold = close_threshold,
57
+ )
58
+ day += timedelta(days = 1)
59
+ continue
60
+
61
+ # generate pnl data
62
+ portfolio(
63
+ trade_data = backtest_data,
64
+ max_pos = max_pos,
65
+ threshold = (open_threshold, close_threshold),
66
+ rebate_ratio = rebate_ratio,
67
+ save_dir = os.path.join(save_dir, product),
68
+ )
notebook/data_eda.ipynb ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 2,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import os, sys, json, collections\n",
10
+ "import pandas as pd\n",
11
+ "import numpy as np"
12
+ ]
13
+ },
14
+ {
15
+ "cell_type": "markdown",
16
+ "metadata": {},
17
+ "source": [
18
+ "### FG(玻璃)数据"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "code",
23
+ "execution_count": 6,
24
+ "metadata": {},
25
+ "outputs": [
26
+ {
27
+ "name": "stdout",
28
+ "output_type": "stream",
29
+ "text": [
30
+ "(80808, 127)\n"
31
+ ]
32
+ },
33
+ {
34
+ "data": {
35
+ "text/html": [
36
+ "<div>\n",
37
+ "<style scoped>\n",
38
+ " .dataframe tbody tr th:only-of-type {\n",
39
+ " vertical-align: middle;\n",
40
+ " }\n",
41
+ "\n",
42
+ " .dataframe tbody tr th {\n",
43
+ " vertical-align: top;\n",
44
+ " }\n",
45
+ "\n",
46
+ " .dataframe thead th {\n",
47
+ " text-align: right;\n",
48
+ " }\n",
49
+ "</style>\n",
50
+ "<table border=\"1\" class=\"dataframe\">\n",
51
+ " <thead>\n",
52
+ " <tr style=\"text-align: right;\">\n",
53
+ " <th></th>\n",
54
+ " <th>Unnamed: 0</th>\n",
55
+ " <th>MidPxChange_1</th>\n",
56
+ " <th>MidPxChange_5</th>\n",
57
+ " <th>MidPxChange_10</th>\n",
58
+ " <th>MidPxChange_20</th>\n",
59
+ " <th>MidPxChange_50</th>\n",
60
+ " <th>MidPxChange_100</th>\n",
61
+ " <th>MidPxChange_200</th>\n",
62
+ " <th>MidPxVolRatio_1</th>\n",
63
+ " <th>MidPxVolRatio_5</th>\n",
64
+ " <th>...</th>\n",
65
+ " <th>label1</th>\n",
66
+ " <th>label2</th>\n",
67
+ " <th>last</th>\n",
68
+ " <th>bid</th>\n",
69
+ " <th>ask</th>\n",
70
+ " <th>bid_vol</th>\n",
71
+ " <th>ask_vol</th>\n",
72
+ " <th>volume</th>\n",
73
+ " <th>turnover</th>\n",
74
+ " <th>predict</th>\n",
75
+ " </tr>\n",
76
+ " </thead>\n",
77
+ " <tbody>\n",
78
+ " <tr>\n",
79
+ " <th>0</th>\n",
80
+ " <td>2023-05-31 21:00:00.500</td>\n",
81
+ " <td>-1.0</td>\n",
82
+ " <td>-1.0</td>\n",
83
+ " <td>-1.0</td>\n",
84
+ " <td>-1.0</td>\n",
85
+ " <td>-1.0</td>\n",
86
+ " <td>-1.0</td>\n",
87
+ " <td>-1.0</td>\n",
88
+ " <td>-0.00303</td>\n",
89
+ " <td>-0.003030</td>\n",
90
+ " <td>...</td>\n",
91
+ " <td>-7.0</td>\n",
92
+ " <td>-2.285714</td>\n",
93
+ " <td>1406.0</td>\n",
94
+ " <td>1405.0</td>\n",
95
+ " <td>1406.0</td>\n",
96
+ " <td>594.0</td>\n",
97
+ " <td>96.0</td>\n",
98
+ " <td>2502.0</td>\n",
99
+ " <td>3524194.0</td>\n",
100
+ " <td>0.245262</td>\n",
101
+ " </tr>\n",
102
+ " <tr>\n",
103
+ " <th>1</th>\n",
104
+ " <td>2023-05-31 21:00:00.750</td>\n",
105
+ " <td>0.0</td>\n",
106
+ " <td>-1.0</td>\n",
107
+ " <td>-1.0</td>\n",
108
+ " <td>-1.0</td>\n",
109
+ " <td>-1.0</td>\n",
110
+ " <td>-1.0</td>\n",
111
+ " <td>-1.0</td>\n",
112
+ " <td>0.00000</td>\n",
113
+ " <td>-0.001105</td>\n",
114
+ " <td>...</td>\n",
115
+ " <td>-7.0</td>\n",
116
+ " <td>-2.285714</td>\n",
117
+ " <td>1406.0</td>\n",
118
+ " <td>1405.0</td>\n",
119
+ " <td>1406.0</td>\n",
120
+ " <td>460.0</td>\n",
121
+ " <td>1102.0</td>\n",
122
+ " <td>3077.0</td>\n",
123
+ " <td>4332491.0</td>\n",
124
+ " <td>-0.709275</td>\n",
125
+ " </tr>\n",
126
+ " </tbody>\n",
127
+ "</table>\n",
128
+ "<p>2 rows × 127 columns</p>\n",
129
+ "</div>"
130
+ ],
131
+ "text/plain": [
132
+ " Unnamed: 0 MidPxChange_1 MidPxChange_5 MidPxChange_10 \\\n",
133
+ "0 2023-05-31 21:00:00.500 -1.0 -1.0 -1.0 \n",
134
+ "1 2023-05-31 21:00:00.750 0.0 -1.0 -1.0 \n",
135
+ "\n",
136
+ " MidPxChange_20 MidPxChange_50 MidPxChange_100 MidPxChange_200 \\\n",
137
+ "0 -1.0 -1.0 -1.0 -1.0 \n",
138
+ "1 -1.0 -1.0 -1.0 -1.0 \n",
139
+ "\n",
140
+ " MidPxVolRatio_1 MidPxVolRatio_5 ... label1 label2 last bid \\\n",
141
+ "0 -0.00303 -0.003030 ... -7.0 -2.285714 1406.0 1405.0 \n",
142
+ "1 0.00000 -0.001105 ... -7.0 -2.285714 1406.0 1405.0 \n",
143
+ "\n",
144
+ " ask bid_vol ask_vol volume turnover predict \n",
145
+ "0 1406.0 594.0 96.0 2502.0 3524194.0 0.245262 \n",
146
+ "1 1406.0 460.0 1102.0 3077.0 4332491.0 -0.709275 \n",
147
+ "\n",
148
+ "[2 rows x 127 columns]"
149
+ ]
150
+ },
151
+ "execution_count": 6,
152
+ "metadata": {},
153
+ "output_type": "execute_result"
154
+ }
155
+ ],
156
+ "source": [
157
+ "filepath = '/Users/saidcalculationboy/Coding/GenWealth/data/generate_data/FG/2023-06-01.csv'\n",
158
+ "FG_1_df = pd.read_csv(filepath)\n",
159
+ "print(FG_1_df.shape)\n",
160
+ "FG_1_df.head(2)"
161
+ ]
162
+ },
163
+ {
164
+ "cell_type": "code",
165
+ "execution_count": null,
166
+ "metadata": {},
167
+ "outputs": [],
168
+ "source": []
169
+ },
170
+ {
171
+ "cell_type": "code",
172
+ "execution_count": null,
173
+ "metadata": {},
174
+ "outputs": [],
175
+ "source": []
176
+ },
177
+ {
178
+ "cell_type": "code",
179
+ "execution_count": 7,
180
+ "metadata": {},
181
+ "outputs": [
182
+ {
183
+ "name": "stdout",
184
+ "output_type": "stream",
185
+ "text": [
186
+ "(84453, 127)\n"
187
+ ]
188
+ },
189
+ {
190
+ "data": {
191
+ "text/html": [
192
+ "<div>\n",
193
+ "<style scoped>\n",
194
+ " .dataframe tbody tr th:only-of-type {\n",
195
+ " vertical-align: middle;\n",
196
+ " }\n",
197
+ "\n",
198
+ " .dataframe tbody tr th {\n",
199
+ " vertical-align: top;\n",
200
+ " }\n",
201
+ "\n",
202
+ " .dataframe thead th {\n",
203
+ " text-align: right;\n",
204
+ " }\n",
205
+ "</style>\n",
206
+ "<table border=\"1\" class=\"dataframe\">\n",
207
+ " <thead>\n",
208
+ " <tr style=\"text-align: right;\">\n",
209
+ " <th></th>\n",
210
+ " <th>Unnamed: 0</th>\n",
211
+ " <th>MidPxChange_1</th>\n",
212
+ " <th>MidPxChange_5</th>\n",
213
+ " <th>MidPxChange_10</th>\n",
214
+ " <th>MidPxChange_20</th>\n",
215
+ " <th>MidPxChange_50</th>\n",
216
+ " <th>MidPxChange_100</th>\n",
217
+ " <th>MidPxChange_200</th>\n",
218
+ " <th>MidPxVolRatio_1</th>\n",
219
+ " <th>MidPxVolRatio_5</th>\n",
220
+ " <th>...</th>\n",
221
+ " <th>label1</th>\n",
222
+ " <th>label2</th>\n",
223
+ " <th>last</th>\n",
224
+ " <th>bid</th>\n",
225
+ " <th>ask</th>\n",
226
+ " <th>bid_vol</th>\n",
227
+ " <th>ask_vol</th>\n",
228
+ " <th>volume</th>\n",
229
+ " <th>turnover</th>\n",
230
+ " <th>predict</th>\n",
231
+ " </tr>\n",
232
+ " </thead>\n",
233
+ " <tbody>\n",
234
+ " <tr>\n",
235
+ " <th>0</th>\n",
236
+ " <td>2023-05-31 21:00:01.000</td>\n",
237
+ " <td>0.5</td>\n",
238
+ " <td>0.5</td>\n",
239
+ " <td>0.5</td>\n",
240
+ " <td>0.5</td>\n",
241
+ " <td>0.5</td>\n",
242
+ " <td>0.5</td>\n",
243
+ " <td>0.5</td>\n",
244
+ " <td>0.019231</td>\n",
245
+ " <td>0.019231</td>\n",
246
+ " <td>...</td>\n",
247
+ " <td>5.142857</td>\n",
248
+ " <td>5.142857</td>\n",
249
+ " <td>4905.0</td>\n",
250
+ " <td>4901.0</td>\n",
251
+ " <td>4905.0</td>\n",
252
+ " <td>4.0</td>\n",
253
+ " <td>5.0</td>\n",
254
+ " <td>559.0</td>\n",
255
+ " <td>2744938.0</td>\n",
256
+ " <td>-0.014487</td>\n",
257
+ " </tr>\n",
258
+ " <tr>\n",
259
+ " <th>1</th>\n",
260
+ " <td>2023-05-31 21:00:01.250</td>\n",
261
+ " <td>-0.5</td>\n",
262
+ " <td>0.0</td>\n",
263
+ " <td>0.0</td>\n",
264
+ " <td>0.0</td>\n",
265
+ " <td>0.0</td>\n",
266
+ " <td>0.0</td>\n",
267
+ " <td>0.0</td>\n",
268
+ " <td>-0.006173</td>\n",
269
+ " <td>0.000000</td>\n",
270
+ " <td>...</td>\n",
271
+ " <td>6.035714</td>\n",
272
+ " <td>6.035714</td>\n",
273
+ " <td>4904.0</td>\n",
274
+ " <td>4902.0</td>\n",
275
+ " <td>4903.0</td>\n",
276
+ " <td>1.0</td>\n",
277
+ " <td>3.0</td>\n",
278
+ " <td>640.0</td>\n",
279
+ " <td>3141997.0</td>\n",
280
+ " <td>-0.093558</td>\n",
281
+ " </tr>\n",
282
+ " </tbody>\n",
283
+ "</table>\n",
284
+ "<p>2 rows × 127 columns</p>\n",
285
+ "</div>"
286
+ ],
287
+ "text/plain": [
288
+ " Unnamed: 0 MidPxChange_1 MidPxChange_5 MidPxChange_10 \\\n",
289
+ "0 2023-05-31 21:00:01.000 0.5 0.5 0.5 \n",
290
+ "1 2023-05-31 21:00:01.250 -0.5 0.0 0.0 \n",
291
+ "\n",
292
+ " MidPxChange_20 MidPxChange_50 MidPxChange_100 MidPxChange_200 \\\n",
293
+ "0 0.5 0.5 0.5 0.5 \n",
294
+ "1 0.0 0.0 0.0 0.0 \n",
295
+ "\n",
296
+ " MidPxVolRatio_1 MidPxVolRatio_5 ... label1 label2 last bid \\\n",
297
+ "0 0.019231 0.019231 ... 5.142857 5.142857 4905.0 4901.0 \n",
298
+ "1 -0.006173 0.000000 ... 6.035714 6.035714 4904.0 4902.0 \n",
299
+ "\n",
300
+ " ask bid_vol ask_vol volume turnover predict \n",
301
+ "0 4905.0 4.0 5.0 559.0 2744938.0 -0.014487 \n",
302
+ "1 4903.0 1.0 3.0 640.0 3141997.0 -0.093558 \n",
303
+ "\n",
304
+ "[2 rows x 127 columns]"
305
+ ]
306
+ },
307
+ "execution_count": 7,
308
+ "metadata": {},
309
+ "output_type": "execute_result"
310
+ }
311
+ ],
312
+ "source": [
313
+ "filepath = '/Users/saidcalculationboy/Coding/GenWealth/data/generate_data/sc/2023-06-01.csv'\n",
314
+ "sc_1_df = pd.read_csv(filepath)\n",
315
+ "print(sc_1_df.shape)\n",
316
+ "sc_1_df.head(2)"
317
+ ]
318
+ }
319
+ ],
320
+ "metadata": {
321
+ "kernelspec": {
322
+ "display_name": "pytorch",
323
+ "language": "python",
324
+ "name": "python3"
325
+ },
326
+ "language_info": {
327
+ "codemirror_mode": {
328
+ "name": "ipython",
329
+ "version": 3
330
+ },
331
+ "file_extension": ".py",
332
+ "mimetype": "text/x-python",
333
+ "name": "python",
334
+ "nbconvert_exporter": "python",
335
+ "pygments_lexer": "ipython3",
336
+ "version": "3.8.12"
337
+ }
338
+ },
339
+ "nbformat": 4,
340
+ "nbformat_minor": 2
341
+ }
notebook/nn_baseline.ipynb ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 5,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import pandas as pd\n",
10
+ "from sklearn.model_selection import train_test_split\n",
11
+ "from sklearn.preprocessing import StandardScaler\n",
12
+ "from tensorflow.keras.models import Sequential\n",
13
+ "from tensorflow.keras.layers import Dense"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": 7,
19
+ "metadata": {},
20
+ "outputs": [
21
+ {
22
+ "name": "stdout",
23
+ "output_type": "stream",
24
+ "text": [
25
+ "Epoch 1/10\n",
26
+ "2526/2526 [==============================] - 2s 757us/step - loss: 0.6998 - val_loss: 0.9270\n",
27
+ "Epoch 2/10\n",
28
+ "2526/2526 [==============================] - 2s 745us/step - loss: 0.7014 - val_loss: 0.9254\n",
29
+ "Epoch 3/10\n",
30
+ "2526/2526 [==============================] - 2s 647us/step - loss: 0.6917 - val_loss: 0.9253\n",
31
+ "Epoch 4/10\n",
32
+ "2526/2526 [==============================] - 2s 657us/step - loss: 0.6858 - val_loss: 0.9270\n",
33
+ "Epoch 5/10\n",
34
+ "2526/2526 [==============================] - 2s 718us/step - loss: 0.6889 - val_loss: 0.9264\n",
35
+ "Epoch 6/10\n",
36
+ "2526/2526 [==============================] - 2s 730us/step - loss: 0.6945 - val_loss: 0.9289\n",
37
+ "Epoch 7/10\n",
38
+ "2526/2526 [==============================] - 2s 651us/step - loss: 0.6867 - val_loss: 0.9274\n",
39
+ "Epoch 8/10\n",
40
+ "2526/2526 [==============================] - 2s 672us/step - loss: 0.6895 - val_loss: 0.9267\n",
41
+ "Epoch 9/10\n",
42
+ "2526/2526 [==============================] - 2s 656us/step - loss: 0.6938 - val_loss: 0.9278\n",
43
+ "Epoch 10/10\n",
44
+ "2526/2526 [==============================] - 2s 634us/step - loss: 0.6906 - val_loss: 0.9264\n",
45
+ "2539/2539 [==============================] - 1s 334us/step - loss: 0.9264\n",
46
+ "Test Loss: 0.9263737201690674\n"
47
+ ]
48
+ }
49
+ ],
50
+ "source": [
51
+ "# 读取数据\n",
52
+ "train_data = pd.read_csv('../generate_data/FG/2023-06-01.csv')\n",
53
+ "test_data = pd.read_csv('../generate_data/FG/2023-12-18.csv')\n",
54
+ "\n",
55
+ "# 选择因子\n",
56
+ "selected_factors = ['MidPxChange_1', 'MidPxVolRatio_1']\n",
57
+ "X_train = train_data[selected_factors] # 选择你认为合适的因子列\n",
58
+ "y_train = train_data['label1']\n",
59
+ "X_test = test_data[selected_factors]\n",
60
+ "y_test = test_data['label1']\n",
61
+ "\n",
62
+ "\n",
63
+ "# 数据标准化\n",
64
+ "scaler = StandardScaler()\n",
65
+ "X_train_scaled = scaler.fit_transform(X_train)\n",
66
+ "X_test_scaled = scaler.transform(X_test)\n",
67
+ "\n",
68
+ "# 构建神经网络模型\n",
69
+ "model = Sequential([\n",
70
+ " Dense(64, activation='relu', input_shape=(X_train_scaled.shape[1],)),\n",
71
+ " Dense(32, activation='relu'),\n",
72
+ " Dense(1) # 输出层,因为是回归问题,所以没有激活函数\n",
73
+ "])\n",
74
+ "\n",
75
+ "# 编译模型\n",
76
+ "model.compile(optimizer='adam', loss='mean_squared_error')\n",
77
+ "\n",
78
+ "# 训练模型\n",
79
+ "model.fit(X_train_scaled, y_train, epochs=10, batch_size=32, validation_data=(X_test_scaled, y_test))\n",
80
+ "\n",
81
+ "# 评估模型\n",
82
+ "loss = model.evaluate(X_test_scaled, y_test)\n",
83
+ "print('Test Loss:', loss)"
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": 8,
89
+ "metadata": {},
90
+ "outputs": [],
91
+ "source": [
92
+ "predictions = model.predict(X_test)\n",
93
+ "test_data['predict_0226'] = predictions"
94
+ ]
95
+ },
96
+ {
97
+ "cell_type": "code",
98
+ "execution_count": 10,
99
+ "metadata": {},
100
+ "outputs": [],
101
+ "source": [
102
+ "test_data.to_csv('/Users/saidcalculationboy/Coding/GenWealth/data/res/FG/2023-12-18.csv')"
103
+ ]
104
+ },
105
+ {
106
+ "cell_type": "code",
107
+ "execution_count": 12,
108
+ "metadata": {},
109
+ "outputs": [
110
+ {
111
+ "data": {
112
+ "text/html": [
113
+ "<div>\n",
114
+ "<style scoped>\n",
115
+ " .dataframe tbody tr th:only-of-type {\n",
116
+ " vertical-align: middle;\n",
117
+ " }\n",
118
+ "\n",
119
+ " .dataframe tbody tr th {\n",
120
+ " vertical-align: top;\n",
121
+ " }\n",
122
+ "\n",
123
+ " .dataframe thead th {\n",
124
+ " text-align: right;\n",
125
+ " }\n",
126
+ "</style>\n",
127
+ "<table border=\"1\" class=\"dataframe\">\n",
128
+ " <thead>\n",
129
+ " <tr style=\"text-align: right;\">\n",
130
+ " <th></th>\n",
131
+ " <th>Unnamed: 0</th>\n",
132
+ " <th>MidPxChange_1</th>\n",
133
+ " <th>MidPxChange_5</th>\n",
134
+ " <th>MidPxChange_10</th>\n",
135
+ " <th>MidPxChange_20</th>\n",
136
+ " <th>MidPxChange_50</th>\n",
137
+ " <th>MidPxChange_100</th>\n",
138
+ " <th>MidPxChange_200</th>\n",
139
+ " <th>MidPxVolRatio_1</th>\n",
140
+ " <th>MidPxVolRatio_5</th>\n",
141
+ " <th>...</th>\n",
142
+ " <th>label2</th>\n",
143
+ " <th>last</th>\n",
144
+ " <th>bid</th>\n",
145
+ " <th>ask</th>\n",
146
+ " <th>bid_vol</th>\n",
147
+ " <th>ask_vol</th>\n",
148
+ " <th>volume</th>\n",
149
+ " <th>turnover</th>\n",
150
+ " <th>predict</th>\n",
151
+ " <th>predict_0226</th>\n",
152
+ " </tr>\n",
153
+ " </thead>\n",
154
+ " <tbody>\n",
155
+ " <tr>\n",
156
+ " <th>0</th>\n",
157
+ " <td>2023-12-17 21:00:00.250</td>\n",
158
+ " <td>-2.0</td>\n",
159
+ " <td>-2.0</td>\n",
160
+ " <td>-2.0</td>\n",
161
+ " <td>-2.0</td>\n",
162
+ " <td>-2.0</td>\n",
163
+ " <td>-2.0</td>\n",
164
+ " <td>-2.0</td>\n",
165
+ " <td>-0.001403</td>\n",
166
+ " <td>-0.001403</td>\n",
167
+ " <td>...</td>\n",
168
+ " <td>8.1</td>\n",
169
+ " <td>1807.0</td>\n",
170
+ " <td>1807.0</td>\n",
171
+ " <td>1808.0</td>\n",
172
+ " <td>75.0</td>\n",
173
+ " <td>47.0</td>\n",
174
+ " <td>4007.0</td>\n",
175
+ " <td>7245815.0</td>\n",
176
+ " <td>0.269611</td>\n",
177
+ " <td>0.190654</td>\n",
178
+ " </tr>\n",
179
+ " <tr>\n",
180
+ " <th>1</th>\n",
181
+ " <td>2023-12-17 21:00:00.500</td>\n",
182
+ " <td>0.0</td>\n",
183
+ " <td>-2.0</td>\n",
184
+ " <td>-2.0</td>\n",
185
+ " <td>-2.0</td>\n",
186
+ " <td>-2.0</td>\n",
187
+ " <td>-2.0</td>\n",
188
+ " <td>-2.0</td>\n",
189
+ " <td>0.000000</td>\n",
190
+ " <td>-0.001218</td>\n",
191
+ " <td>...</td>\n",
192
+ " <td>8.1</td>\n",
193
+ " <td>1807.0</td>\n",
194
+ " <td>1807.0</td>\n",
195
+ " <td>1808.0</td>\n",
196
+ " <td>25.0</td>\n",
197
+ " <td>12.0</td>\n",
198
+ " <td>4223.0</td>\n",
199
+ " <td>7636347.0</td>\n",
200
+ " <td>0.889756</td>\n",
201
+ " <td>0.027161</td>\n",
202
+ " </tr>\n",
203
+ " </tbody>\n",
204
+ "</table>\n",
205
+ "<p>2 rows × 128 columns</p>\n",
206
+ "</div>"
207
+ ],
208
+ "text/plain": [
209
+ " Unnamed: 0 MidPxChange_1 MidPxChange_5 MidPxChange_10 \\\n",
210
+ "0 2023-12-17 21:00:00.250 -2.0 -2.0 -2.0 \n",
211
+ "1 2023-12-17 21:00:00.500 0.0 -2.0 -2.0 \n",
212
+ "\n",
213
+ " MidPxChange_20 MidPxChange_50 MidPxChange_100 MidPxChange_200 \\\n",
214
+ "0 -2.0 -2.0 -2.0 -2.0 \n",
215
+ "1 -2.0 -2.0 -2.0 -2.0 \n",
216
+ "\n",
217
+ " MidPxVolRatio_1 MidPxVolRatio_5 ... label2 last bid ask \\\n",
218
+ "0 -0.001403 -0.001403 ... 8.1 1807.0 1807.0 1808.0 \n",
219
+ "1 0.000000 -0.001218 ... 8.1 1807.0 1807.0 1808.0 \n",
220
+ "\n",
221
+ " bid_vol ask_vol volume turnover predict predict_0226 \n",
222
+ "0 75.0 47.0 4007.0 7245815.0 0.269611 0.190654 \n",
223
+ "1 25.0 12.0 4223.0 7636347.0 0.889756 0.027161 \n",
224
+ "\n",
225
+ "[2 rows x 128 columns]"
226
+ ]
227
+ },
228
+ "execution_count": 12,
229
+ "metadata": {},
230
+ "output_type": "execute_result"
231
+ }
232
+ ],
233
+ "source": [
234
+ "test_data.head(2)"
235
+ ]
236
+ }
237
+ ],
238
+ "metadata": {
239
+ "kernelspec": {
240
+ "display_name": "pytorch",
241
+ "language": "python",
242
+ "name": "python3"
243
+ },
244
+ "language_info": {
245
+ "codemirror_mode": {
246
+ "name": "ipython",
247
+ "version": 3
248
+ },
249
+ "file_extension": ".py",
250
+ "mimetype": "text/x-python",
251
+ "name": "python",
252
+ "nbconvert_exporter": "python",
253
+ "pygments_lexer": "ipython3",
254
+ "version": "3.8.12"
255
+ }
256
+ },
257
+ "nbformat": 4,
258
+ "nbformat_minor": 2
259
+ }