Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
open-domain-qa
Languages:
English
Size:
1K - 10K
License:
Commit
·
d5f9617
1
Parent(s):
85df600
Delete loading script
Browse files- web_questions.py +0 -98
web_questions.py
DELETED
@@ -1,98 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""WebQuestions Benchmark for Question Answering."""
|
18 |
-
|
19 |
-
|
20 |
-
import json
|
21 |
-
import re
|
22 |
-
|
23 |
-
import datasets
|
24 |
-
|
25 |
-
|
26 |
-
_CITATION = """
|
27 |
-
@inproceedings{berant-etal-2013-semantic,
|
28 |
-
title = "Semantic Parsing on {F}reebase from Question-Answer Pairs",
|
29 |
-
author = "Berant, Jonathan and
|
30 |
-
Chou, Andrew and
|
31 |
-
Frostig, Roy and
|
32 |
-
Liang, Percy",
|
33 |
-
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
|
34 |
-
month = oct,
|
35 |
-
year = "2013",
|
36 |
-
address = "Seattle, Washington, USA",
|
37 |
-
publisher = "Association for Computational Linguistics",
|
38 |
-
url = "https://www.aclweb.org/anthology/D13-1160",
|
39 |
-
pages = "1533--1544",
|
40 |
-
}
|
41 |
-
"""
|
42 |
-
_SPLIT_DOWNLOAD_URL = {
|
43 |
-
"train": "https://worksheets.codalab.org/rest/bundles/0x4a763f8cde224c2da592b75f29e2f5c2/contents/blob/",
|
44 |
-
"test": "https://worksheets.codalab.org/rest/bundles/0xe7bac352fce7448c9ef238fb0a297ec2/contents/blob/",
|
45 |
-
}
|
46 |
-
|
47 |
-
_DESCRIPTION = """\
|
48 |
-
This dataset consists of 6,642 question/answer pairs.
|
49 |
-
The questions are supposed to be answerable by Freebase, a large knowledge graph.
|
50 |
-
The questions are mostly centered around a single named entity.
|
51 |
-
The questions are popular ones asked on the web (at least in 2013).
|
52 |
-
"""
|
53 |
-
|
54 |
-
|
55 |
-
class WebQuestions(datasets.GeneratorBasedBuilder):
|
56 |
-
"""WebQuestions Benchmark for Question Answering."""
|
57 |
-
|
58 |
-
VERSION = datasets.Version("1.0.0")
|
59 |
-
|
60 |
-
def _info(self):
|
61 |
-
return datasets.DatasetInfo(
|
62 |
-
description=_DESCRIPTION,
|
63 |
-
features=datasets.Features(
|
64 |
-
{
|
65 |
-
"url": datasets.Value("string"),
|
66 |
-
"question": datasets.Value("string"),
|
67 |
-
"answers": datasets.features.Sequence(datasets.Value("string")),
|
68 |
-
}
|
69 |
-
),
|
70 |
-
supervised_keys=None,
|
71 |
-
homepage="https://worksheets.codalab.org/worksheets/0xba659fe363cb46e7a505c5b6a774dc8a",
|
72 |
-
citation=_CITATION,
|
73 |
-
)
|
74 |
-
|
75 |
-
def _split_generators(self, dl_manager):
|
76 |
-
"""Returns SplitGenerators."""
|
77 |
-
file_paths = dl_manager.download(_SPLIT_DOWNLOAD_URL)
|
78 |
-
|
79 |
-
return [
|
80 |
-
datasets.SplitGenerator(name=split, gen_kwargs={"file_path": file_path})
|
81 |
-
for split, file_path in file_paths.items()
|
82 |
-
]
|
83 |
-
|
84 |
-
def _generate_examples(self, file_path):
|
85 |
-
"""Parses split file and yields examples."""
|
86 |
-
|
87 |
-
def _target_to_answers(target):
|
88 |
-
target = re.sub(r"^\(list |\)$", "", target)
|
89 |
-
return ["".join(ans) for ans in re.findall(r'\(description (?:"([^"]+?)"|([^)]+?))\)\w*', target)]
|
90 |
-
|
91 |
-
with open(file_path, encoding="utf-8") as f:
|
92 |
-
examples = json.load(f)
|
93 |
-
for i, ex in enumerate(examples):
|
94 |
-
yield i, {
|
95 |
-
"url": ex["url"],
|
96 |
-
"question": ex["utterance"],
|
97 |
-
"answers": _target_to_answers(ex["targetValue"]),
|
98 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|