TMVishnu commited on
Commit
5a3a07c
·
verified ·
1 Parent(s): 53564b1

Create README.md (#2)

Browse files

- Create README.md (94ebc9d0b5b0ba686ecfe5b605faa1df967e2f29)

Files changed (1) hide show
  1. README.md +337 -0
README.md ADDED
@@ -0,0 +1,337 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - graph-ml
5
+ tags:
6
+ - horology
7
+ size_categories:
8
+ - 100K<n<1M
9
+ ---
10
+
11
+ # Watch Market Analysis Graph Neural Network Dataset
12
+
13
+ ## Executive Summary
14
+
15
+ This dataset transforms traditional watch market data into a Graph Neural Network (GNN) structure, specifically designed to capture the complex dynamics of the pre-owned luxury watch market.
16
+ It addresses three key market characteristics that traditional recommendation systems often miss:
17
+
18
+ - **Condition-Based Value Dynamics**: Captures how a watch's condition influences its market position and value relative to other timepieces
19
+ - **Temporal Price Behaviors**: Models non-linear price patterns where certain watches appreciate while others depreciate
20
+ - **Inter-Model Relationships**: Maps complex value relationships between different models that transcend traditional brand hierarchies
21
+
22
+ ### Key Statistics
23
+ - Total Watches: 284,491
24
+ - Total Brands: 28
25
+ - Price Range: $50 - $3.2M
26
+ - Year Range: 1559-2024
27
+
28
+ ### Primary Use Cases
29
+ - Advanced watch recommendation systems
30
+ - Market positioning analysis
31
+ - Value relationship modeling
32
+ - Temporal trend analysis
33
+
34
+ ## Dataset Description
35
+
36
+ ### Data Structure
37
+ The dataset is structured as a PyTorch Geometric Data object with three main components:
38
+ - Node features tensor (watch attributes)
39
+ - Edge index matrix (watch connections)
40
+ - Edge attributes (similarity weights)
41
+
42
+ ### Features
43
+ Key features include:
44
+ - **Brand Embeddings**: 128-dimensional vectors capturing brand identity and market position
45
+ - **Material Embeddings**: 64-dimensional vectors for material types and values
46
+ - **Movement Embeddings**: 64-dimensional vectors representing technical hierarchies
47
+ - **Temporal Features**: 32-dimensional cyclical embeddings for year and seasonal patterns
48
+ - **Condition Scores**: Standardized scale (0.5-1.0) based on watch condition
49
+ - **Price Features**: Log-transformed and normalized across market segments
50
+ - **Physical Attributes**: Standardized measurements in millimeters
51
+
52
+ ### Network Properties
53
+ - **Node Connections**: 3-5 edges per watch
54
+ - **Similarity Threshold**: 70% minimum similarity for edge creation
55
+ - **Edge Weights**: Based on multiple similarity factors:
56
+ - Price (50% influence)
57
+ - Brand similarity
58
+ - Material type
59
+ - Temporal proximity
60
+ - Condition score
61
+
62
+ ### Processing Parameters
63
+ - Batch Size: 50 watches per chunk
64
+ - Processing Window: 1000 watches
65
+ - Edge Generation Batch: 32 watches
66
+ - Network Architecture: Combined GCN and GAT layers with 4 attention heads
67
+
68
+
69
+ ## Exploratory Data Analysis
70
+
71
+ ### Brand Distribution
72
+ The treemap visualization provides a hierarchical view of market presence:
73
+ - Rolex dominates with the highest representation, reflecting its market leadership
74
+ - Omega and Seiko follow as major players, indicating strong market presence
75
+ - Distribution reveals clear tiers in the luxury watch market
76
+ - Brand representation correlates with market positioning and availability
77
+
78
+ [Treemap Image]
79
+
80
+ ### Feature Correlations
81
+ The correlation matrix reveals important market dynamics:
82
+ - **Size vs. Year**: Positive correlation indicating a trend toward larger case sizes in modern watches
83
+ - **Price vs. Size**: Moderate correlation showing larger watches generally command higher prices
84
+ - **Price vs. Year**: Notably low correlation, demonstrating that vintage watches maintain value
85
+ - Each feature contributes unique information, validated by the lack of strong correlations across all variables
86
+
87
+ [Correlation Matrix Image]
88
+
89
+ ### Market Structure Visualizations
90
+
91
+ #### UMAP Analysis
92
+ The UMAP visualization unveils complex market positioning dynamics:
93
+ - Rolex maintains a dominant central position around coordinates (0, -5), showing unparalleled brand cohesion
94
+ - Omega and Breitling cluster in the left segment, indicating strategic market alignment
95
+ - Seiko and Longines occupy the upper-right quadrant, reflecting distinct value propositions
96
+ - Premium timepieces (yellower/greener hues) show tighter clustering, suggesting standardized luxury attributes
97
+ - Smaller, specialized clusters indicate distinct horological collections and style categories
98
+
99
+ [UMAP Image]
100
+
101
+ #### t-SNE Visualization
102
+ T-SNE analysis reveals clear market stratification with logarithmic pricing from $50 to $3.2M:
103
+ - **Entry-Level Segment ($50-$4,000)**
104
+ - Anchored by Seiko in the left segment
105
+ - High volume, accessible luxury positioning
106
+ - **Mid-Range Segment ($4,000-$35,000)**
107
+ - Occupies central space
108
+ - Shows competitive positioning between brands
109
+ - Cartier demonstrates strategic positioning between luxury and mid-range
110
+ - **Ultra-Luxury Segment ($35,000-$3.2M)**
111
+ - Dominated by Patek Philippe and Audemars Piguet
112
+ - Clear separation in right segment
113
+ - Strong brand clustering indicating market alignment
114
+
115
+ [t-SNE Image]
116
+
117
+ #### PCA Analysis
118
+ Principal Component Analysis provides robust market insights with 56.6% total explained variance:
119
+ - **First Principal Component (31.3%)**
120
+ - Predominantly captures price dynamics
121
+ - Shows clear separation between market segments
122
+ - **Second Principal Component (25.3%)**
123
+ - Reflects brand positioning and design philosophies
124
+ - Reveals vertical dispersion indicating intra-brand diversity
125
+ - **Brand Trajectory**
126
+ - Natural progression from Seiko through Longines, Breitling, and Omega
127
+ - Culminates in Rolex and Patek Philippe
128
+ - Diagonal trend line serves as market positioning indicator
129
+ - **Market Implications**
130
+ - Successful brands occupy optimal positions along both dimensions
131
+ - Clear differentiation between adjacent competitors
132
+ - Evidence of strategic market positioning
133
+
134
+ [PCA Image]
135
+
136
+ #### Network Visualizations
137
+
138
+ **Force-Directed Graph**
139
+ The force-directed layout reveals natural market clustering:
140
+ - Richard Mille's peripheral positioning highlights ultra-luxury strategy
141
+ - Dense central clustering shows mainstream luxury brand interconnectivity
142
+ - Edge patterns reveal shared market characteristics
143
+ - Node proximity indicates competitive positioning
144
+
145
+ [Force-Directed Graph Image]
146
+
147
+ **Starburst Visualization**
148
+ Radial architecture provides a hierarchical market perspective:
149
+ - Central node represents overall market
150
+ - Green nodes show brand territories with strategic spacing
151
+ - Blue peripheral nodes indicate individual timepieces
152
+ - Node density reveals:
153
+ - Brand portfolio breadth
154
+ - Market penetration depth
155
+ - Segment diversification
156
+ - Balanced spacing between brand nodes indicates market segmentation
157
+
158
+ [Starburst Graph Image]
159
+
160
+
161
+ ## Ethics and Limitations
162
+
163
+ ### Data Collection and Privacy
164
+ - Dataset consists of publicly available watch listings
165
+ - No personal information, seller details, or private transaction data
166
+ - Serial numbers and identifying marks removed
167
+ - Strict privacy standards maintained throughout collection
168
+
169
+ ### Known Biases
170
+
171
+ #### Connection Strength Bias
172
+ - Edge weights and connections based on author's domain expertise
173
+ - Similarity thresholds (70%) chosen based on personal market understanding
174
+ - Brand value weightings reflect author's market analysis
175
+ - Connection strengths may not universally reflect all market perspectives
176
+
177
+ #### Market Representation Bias
178
+ - Predominantly represents online listings
179
+ - May not fully capture private sales and in-person transactions
180
+ - Popular brands overrepresented (Rolex 25%, Omega 14%)
181
+ - Limited editions and rare pieces underrepresented
182
+
183
+ #### Temporal Bias
184
+ - Stronger representation of recent listings
185
+ - Historical data may be underrepresented
186
+ - Current market conditions more heavily weighted
187
+ - Seasonal variations may affect price patterns
188
+
189
+ #### Brand and Model Bias
190
+ - Skewed toward mainstream luxury brands
191
+ - Limited representation of boutique manufacturers
192
+ - Popular models have more data points
193
+ - Vintage and discontinued models may lack comprehensive data
194
+
195
+ #### Price Bias
196
+ - Asking prices may differ from actual transaction values
197
+ - Regional price variations not fully captured
198
+ - Currency conversion effects on price relationships
199
+ - Market fluctuations may not be fully represented
200
+
201
+ ### Usage Guidelines
202
+
203
+ #### Appropriate Uses
204
+ - Market research and analysis
205
+ - Academic research
206
+ - Watch relationship modeling
207
+ - Price trend studies
208
+ - Educational purposes
209
+
210
+ #### Prohibited Uses
211
+ - Price manipulation or market distortion
212
+ - Unfair trading practices
213
+ - Personal data extraction
214
+ - Misleading market analysis
215
+ - Anti-competitive practices
216
+
217
+ ### License
218
+ This dataset is released under the Apache 2.0 License, which allows:
219
+ - Commercial use
220
+ - Modification
221
+ - Distribution
222
+ - Private use
223
+
224
+ While requiring:
225
+ - License and copyright notice
226
+ - State changes
227
+ - Preserve attributions
228
+
229
+
230
+ ## Technical Details
231
+
232
+ ### Power Analysis
233
+ Minimum sample requirements based on statistical analysis:
234
+ - Basic Network: 10,671 nodes (95% confidence, 3% margin)
235
+ - GNN Requirements: 14,400 samples (feature space dimensionality)
236
+ - Brand Coverage: 768 watches per brand
237
+ - Price Segments: 4,320 watches per segment
238
+
239
+ Current dataset (284,491 watches) exceeds requirements with:
240
+ - 5,000+ samples per major brand
241
+ - 50,000+ samples per price segment
242
+ - Sufficient network density
243
+
244
+ ### Implementation Details
245
+
246
+ #### Network Architecture
247
+ - 3 GNN layers with residual connections
248
+ - 64 hidden channels
249
+ - 20% dropout rate
250
+ - 4 attention heads
251
+ - Learning rate: 0.001
252
+
253
+ #### Embedding Dimensions
254
+ - Brand: 128
255
+ - Material: 64
256
+ - Movement: 64
257
+ - Temporal: 32
258
+
259
+ #### Network Parameters
260
+ - Connections per watch: 3-5
261
+ - Similarity threshold: 70%
262
+ - Batch size: 50 watches
263
+ - Processing window: 1000 watches
264
+
265
+ #### Condition Scoring
266
+ - New: 1.0
267
+ - Unworn: 0.95
268
+ - Very Good: 0.8
269
+ - Good: 0.7
270
+ - Fair: 0.5
271
+
272
+ ## Usage
273
+
274
+ ### Required Files
275
+ The dataset consists of three main files:
276
+ - `watch_gnn_data.pt` (315 MB): Main PyTorch Geometric data object
277
+ - `edges.npz` (20.5 MB): Edge information
278
+ - `features.npy` (596 MB): Node features
279
+
280
+ ### Loading the Dataset
281
+
282
+ ```python
283
+ import torch
284
+ from torch_geometric.data import Data
285
+
286
+ # Load the main dataset
287
+ data = torch.load('watch_gnn_data.pt')
288
+ ```
289
+
290
+ #### Access components
291
+
292
+ ```
293
+ node_features = data.x # Shape: [284491, combined_embedding_dim]
294
+ edge_index = data.edge_index # Shape: [2, num_edges]
295
+ edge_attr = data.edge_attr # Shape: [num_edges, 1]
296
+ ```
297
+ #### For direct feature access
298
+ ```
299
+ features = np.load('features.npy')
300
+ ```
301
+ #### Get number of nodes
302
+ ```
303
+ num_nodes = data.num_nodes
304
+ ```
305
+
306
+ #### Get number of edges
307
+ ```
308
+ num_edges = data.num_edges
309
+ ```
310
+
311
+ #### Find similar watches (k-nearest neighbors)
312
+ ```
313
+ def find_similar_watches(watch_id, k=5):
314
+ # Get watch features
315
+ watch_features = data.x[watch_id]
316
+
317
+ # Calculate similarities
318
+ similarities = torch.cosine_similarity(
319
+ watch_features.unsqueeze(0),
320
+ data.x,
321
+ dim=1
322
+ )
323
+
324
+ # Get top k similar watches
325
+ _, indices = similarities.topk(k+1) # +1 to exclude self
326
+ return indices[1:] # Exclude self
327
+
328
+ # Get watch features
329
+ def get_watch_features(watch_id):
330
+ return data.x[watch_id]
331
+
332
+ ```
333
+
334
+ ## Note
335
+ - The dataset is optimized for PyTorch Geometric operations
336
+ - Recommended to use GPU for large-scale operations
337
+ - Consider batch processing for memory efficiency