TMVishnu commited on
Commit
b811e0e
·
verified ·
1 Parent(s): 6818828

updated readme with website hosted for viz (#4)

Browse files

- updated readme with website hosted for viz (e6c8583cb795c27dd3d7f70de6a9e8b8d2fa4519)

Files changed (1) hide show
  1. README.md +45 -42
README.md CHANGED
@@ -65,9 +65,54 @@ Key features include:
65
  - Edge Generation Batch: 32 watches
66
  - Network Architecture: Combined GCN and GAT layers with 4 attention heads
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
  ## Exploratory Data Analysis
70
 
 
 
 
 
71
  ### Brand Distribution
72
 
73
  ![Brand Distribution Treemap](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/2.png)
@@ -240,48 +285,6 @@ While requiring:
240
  - Preserve attributions
241
 
242
 
243
- ## Technical Details
244
-
245
- ### Power Analysis
246
- Minimum sample requirements based on statistical analysis:
247
- - Basic Network: 10,671 nodes (95% confidence, 3% margin)
248
- - GNN Requirements: 14,400 samples (feature space dimensionality)
249
- - Brand Coverage: 768 watches per brand
250
- - Price Segments: 4,320 watches per segment
251
-
252
- Current dataset (284,491 watches) exceeds requirements with:
253
- - 5,000+ samples per major brand
254
- - 50,000+ samples per price segment
255
- - Sufficient network density
256
-
257
- ### Implementation Details
258
-
259
- #### Network Architecture
260
- - 3 GNN layers with residual connections
261
- - 64 hidden channels
262
- - 20% dropout rate
263
- - 4 attention heads
264
- - Learning rate: 0.001
265
-
266
- #### Embedding Dimensions
267
- - Brand: 128
268
- - Material: 64
269
- - Movement: 64
270
- - Temporal: 32
271
-
272
- #### Network Parameters
273
- - Connections per watch: 3-5
274
- - Similarity threshold: 70%
275
- - Batch size: 50 watches
276
- - Processing window: 1000 watches
277
-
278
- #### Condition Scoring
279
- - New: 1.0
280
- - Unworn: 0.95
281
- - Very Good: 0.8
282
- - Good: 0.7
283
- - Fair: 0.5
284
-
285
  ## Usage
286
 
287
  ### Required Files
 
65
  - Edge Generation Batch: 32 watches
66
  - Network Architecture: Combined GCN and GAT layers with 4 attention heads
67
 
68
+ ## Technical Details
69
+
70
+ ### Power Analysis
71
+ Minimum sample requirements based on statistical analysis:
72
+ - Basic Network: 10,671 nodes (95% confidence, 3% margin)
73
+ - GNN Requirements: 14,400 samples (feature space dimensionality)
74
+ - Brand Coverage: 768 watches per brand
75
+ - Price Segments: 4,320 watches per segment
76
+
77
+ Current dataset (284,491 watches) exceeds requirements with:
78
+ - 5,000+ samples per major brand
79
+ - 50,000+ samples per price segment
80
+ - Sufficient network density
81
+
82
+ ### Implementation Details
83
+
84
+ #### Network Architecture
85
+ - 3 GNN layers with residual connections
86
+ - 64 hidden channels
87
+ - 20% dropout rate
88
+ - 4 attention heads
89
+ - Learning rate: 0.001
90
+
91
+ #### Embedding Dimensions
92
+ - Brand: 128
93
+ - Material: 64
94
+ - Movement: 64
95
+ - Temporal: 32
96
+
97
+ #### Network Parameters
98
+ - Connections per watch: 3-5
99
+ - Similarity threshold: 70%
100
+ - Batch size: 50 watches
101
+ - Processing window: 1000 watches
102
+
103
+ #### Condition Scoring
104
+ - New: 1.0
105
+ - Unworn: 0.95
106
+ - Very Good: 0.8
107
+ - Good: 0.7
108
+ - Fair: 0.5
109
 
110
  ## Exploratory Data Analysis
111
 
112
+ **NOTE:**
113
+ Only certain selected visualizations have been mentioned here, to see all the visualizations that have been explored in high-quality interactive graphs, please visit this site:
114
+ [Watch Market Analysis Report](https://incomparable-torrone-ccda90.netlify.app/)
115
+
116
  ### Brand Distribution
117
 
118
  ![Brand Distribution Treemap](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/2.png)
 
285
  - Preserve attributions
286
 
287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288
  ## Usage
289
 
290
  ### Required Files