inputs
stringlengths
312
52k
targets
stringlengths
1
3.1k
block_type
stringclasses
11 values
scenario
stringclasses
7 values
<filename>searcharray/searcharray/solr.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/postings.py def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns # searcharray/searcharray/postings.py def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs # searcharray/searcharray/postings.py def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs """ """Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] <fim_suffix> for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>term_scores = []
term_scores = []
STATEMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/postings.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") # searcharray/searcharray/term_dict.py def get_term(self, term_id): try: return self.id_to_terms[term_id] except KeyError: raise TermMissingError(f"Term at {term_id} not present in dictionary. Reindex to add.") # searcharray/searcharray/solr.py def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) """ """Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: <fim_suffix> except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>return self.posns.docfreq(self.term_dict.get_term_id(token))
return self.posns.docfreq(self.term_dict.get_term_id(token))
STATEMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/utils/roaringish.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/phrase/middle_out.py def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next # searcharray/searcharray/phrase/middle_out.py def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 # searcharray/searcharray/phrase/middle_out.py def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) """ """Roaring-ish bit array for storing sorted integers in numpy array. See - https://softwaredoug.com/blog/2024/01/21/search-array-phrase-algorithm """ import numpy as np import sortednp as snp import logging import numbers from typing import Optional, Tuple, List, Union logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) DEFAULT_KEY_MASK = np.uint64(0xFFFFFFF000000000) DEFAULT_KEY_BITS = np.uint64(28) DEFAULT_PAYLOAD_MSB_MASK = np.uint64(0x0000000FFFFC0000) DEFAULT_PAYLOAD_MSB_BITS = np.uint64(18) DEFAULT_PAYLOAD_LSB_MASK = np.uint64(0x000000000003FFFF) DEFAULT_PAYLOAD_LSB_BITS = np.uint64(18) # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) _algorithm = snp.GALLOPING_SEARCH def n_msb_mask(n: np.uint64) -> np.uint64: """Return the n most significant bits of num.""" return np.uint64(~(np.uint64(_1 << (_64 - n))) + _1) def sorted_unique(arr: np.ndarray) -> np.ndarray: return snp.intersect(arr, arr, duplicates=snp.DROP) class RoaringishEncoder: """An encoder for key->integer sets as a numpy array. Each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs | payload (different number of MSBs / payload bits can be specified) """ def __init__(self, key_bits: np.uint64 = DEFAULT_KEY_BITS): payload_bits = _64 - key_bits self.payload_msb_bits = payload_bits // _2 self.payload_lsb_bits = np.uint64(payload_bits - self.payload_msb_bits) self.key_bits = key_bits assert self.key_bits.dtype == np.uint64 # key bits MSB of 64 bits self.key_mask = n_msb_mask(key_bits) self.payload_msb_mask = n_msb_mask(np.uint64(self.payload_msb_bits + key_bits)) & ~self.key_mask assert self.payload_msb_bits.dtype == np.uint64, f"MSB bits dtype was {self.payload_msb_bits.dtype}" assert self.payload_msb_mask.dtype == np.uint64, f"MSB mask dtype was {self.payload_msb_mask.dtype}" self.payload_lsb_mask = (_1 << self.payload_lsb_bits) - np.uint64(1) assert self.payload_lsb_bits.dtype == np.uint64, f"LSB bits dtype was {self.payload_lsb_bits.dtype}" assert self.payload_lsb_mask.dtype == np.uint64, f"LSB mask dtype was {self.payload_lsb_mask.dtype}" if key_bits == DEFAULT_KEY_BITS: assert self.key_mask == DEFAULT_KEY_MASK assert self.payload_msb_mask == DEFAULT_PAYLOAD_MSB_MASK assert self.payload_lsb_mask == DEFAULT_PAYLOAD_LSB_MASK self.max_payload = np.uint64(2**self.payload_lsb_bits - 1) def validate_payload(self, payload: np.ndarray): """Optional validation of payload.""" if np.any(payload > self.max_payload): raise ValueError(f"Positions must be less than {2**self.payload_lsb_bits}") def encode(self, payload: np.ndarray, keys: Optional[np.ndarray] = None, boundaries: Optional[np.ndarray] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]: """Pack a sorted array of integers into compact bit numpy array. each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs| payload for later easy intersection of 32+16 msbs, then checking for adjacent positions If boundaries are provided, then we consider multiple distinct payloads being encoded simultaneously, and we return the boundaries of each """ cols = np.floor_divide(payload, self.payload_lsb_bits, dtype=np.uint64) # Header of bit to use cols <<= self.payload_msb_bits if keys is not None: cols |= keys.astype(np.uint64) << (_64 - self.key_bits) values = payload % self.payload_lsb_bits # Value to encode change_indices_one_doc = np.nonzero(np.diff(cols))[0] + 1 change_indices_one_doc = np.concatenate([[0], change_indices_one_doc]) if boundaries is not None: change_indices = snp.merge(change_indices_one_doc, boundaries, duplicates=snp.DROP) new_boundaries = snp.intersect(boundaries, change_indices, indices=True)[1][1] new_boundaries = np.concatenate([new_boundaries, [len(change_indices)]]) else: change_indices = change_indices_one_doc new_boundaries = None # 0 as a position, goes in bit 1, # 1 as a position, goes in bit 2, etc values = _1 << values cols |= values encoded = cols if len(encoded) == 0: return encoded, new_boundaries reduced = np.bitwise_or.reduceat(encoded, change_indices) return reduced, new_boundaries def decode(self, encoded: np.ndarray, get_keys: bool = True) -> Union[List[Tuple[np.uint64, np.ndarray]], List[np.ndarray]]: """Decode an encoded bit array into keys / payloads.""" keys = (encoded & self.key_mask) >> (_64 - self.key_bits) msbs = (encoded & self.payload_msb_mask) >> self.payload_msb_bits to_concat = [] for bit in range(self.payload_lsb_bits): mask = 1 << bit lsbs = encoded & mask set_lsbs = (lsbs != 0) this_keys = keys[set_lsbs] payload = bit + (msbs[set_lsbs] * self.payload_lsb_bits) doc_with_posn = np.dstack([this_keys, payload])[0] to_concat.append(doc_with_posn) stacked = np.vstack(to_concat) # Sort by doc_id, then posn sorted_payload = stacked[np.lexsort((stacked[:, 1], stacked[:, 0]))] keys, idx = np.unique(sorted_payload[:, 0], return_index=True) grouped = np.split(sorted_payload[:, 1], idx[1:]) if get_keys: return list(zip(keys, grouped)) else: return grouped def keys(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" return (encoded & self.key_mask) >> (_64 - self.key_bits) def keys_unique(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" keys = self.keys(encoded) intersected = sorted_unique(keys) return intersected def payload_msb(self, encoded: np.ndarray) -> np.ndarray: """Return payload MSBs from encoded.""" return (encoded & self.payload_msb_mask) >> self.payload_msb_bits def payload_lsb(self, encoded: np.ndarray) -> np.ndarray: """Return payload LSBs from encoded.""" return encoded & self.payload_lsb_mask def intersect_rshift(self, lhs: np.ndarray, rhs: np.ndarray, rshift: np.int64 = _neg1) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values rshift : int how much to shift rhs by to the right """ rhs_int = rhs assert rshift < 0, "rshift must be negative" rhs_int = rhs[self.payload_msb(rhs) >= np.abs(rshift)] rshft = rshift.view(np.uint64) rhs_shifted = (rhs_int >> self.payload_lsb_bits) + rshft # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" <fim_suffix> return lhs[lhs_idx], rhs_int[rhs_idx] def intersect(self, lhs: np.ndarray, rhs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values """ # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs >> self.payload_lsb_bits, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs[rhs_idx] def slice(self, encoded: np.ndarray, keys: np.ndarray) -> np.ndarray: """Get list of encoded that have values in keys.""" assert len(keys.shape) == 1 assert len(encoded.shape) == 1 encoded_keys = encoded.view(np.uint64) >> (_64 - self.key_bits) _, (idx_docs, idx_enc) = snp.intersect(keys, encoded_keys, indices=True, duplicates=snp.KEEP_MAX_N, algorithm=_algorithm) return encoded[idx_enc] def convert_keys(keys) -> np.ndarray: """Convert keys to range or np.ndarray of uint64.""" if isinstance(keys, numbers.Number): return np.asarray([keys], dtype=np.uint64) elif isinstance(keys, list): return np.asarray(keys, dtype=np.uint64) elif isinstance(keys, np.ndarray): return keys.astype(np.uint64) elif isinstance(keys, range) and len(keys) > 0: # UNFORTUNATE COPY return np.arange(keys[0], keys[-1] + 1, dtype=np.uint64) + keys[0] elif isinstance(keys, range): return np.asarray([], dtype=np.uint64) raise ValueError(f"Unknown type for keys: {type(keys)}") <fim_middle>_, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs_shifted, indices=True, algorithm=_algorithm)
_, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs_shifted, indices=True, algorithm=_algorithm)
STATEMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/utils/roaringish.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/utils/mat_set.py def __str__(self): as_str = [""] for idx, (row, row_next) in enumerate(zip(self.rows, self.rows[1:])): as_str.append(f"{idx}: {self.cols[row:row_next]}") return "\n".join(as_str) # searcharray/searcharray/indexing.py def _lex_sort(terms_w_posns): """Sort terms, then doc_id, then posn.""" # Because docs / posns already sorted, we can just sort on terms # Equivelant to np.lexsort(terms_w_posns[[::-1], :]) return np.argsort(terms_w_posns[0, :], kind='stable') # searcharray/searcharray/phrase/middle_out.py def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns """ """Roaring-ish bit array for storing sorted integers in numpy array. See - https://softwaredoug.com/blog/2024/01/21/search-array-phrase-algorithm """ import numpy as np import sortednp as snp import logging import numbers from typing import Optional, Tuple, List, Union logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) DEFAULT_KEY_MASK = np.uint64(0xFFFFFFF000000000) DEFAULT_KEY_BITS = np.uint64(28) DEFAULT_PAYLOAD_MSB_MASK = np.uint64(0x0000000FFFFC0000) DEFAULT_PAYLOAD_MSB_BITS = np.uint64(18) DEFAULT_PAYLOAD_LSB_MASK = np.uint64(0x000000000003FFFF) DEFAULT_PAYLOAD_LSB_BITS = np.uint64(18) # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) _algorithm = snp.GALLOPING_SEARCH def n_msb_mask(n: np.uint64) -> np.uint64: """Return the n most significant bits of num.""" return np.uint64(~(np.uint64(_1 << (_64 - n))) + _1) def sorted_unique(arr: np.ndarray) -> np.ndarray: return snp.intersect(arr, arr, duplicates=snp.DROP) class RoaringishEncoder: """An encoder for key->integer sets as a numpy array. Each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs | payload (different number of MSBs / payload bits can be specified) """ def __init__(self, key_bits: np.uint64 = DEFAULT_KEY_BITS): payload_bits = _64 - key_bits self.payload_msb_bits = payload_bits // _2 self.payload_lsb_bits = np.uint64(payload_bits - self.payload_msb_bits) self.key_bits = key_bits assert self.key_bits.dtype == np.uint64 # key bits MSB of 64 bits self.key_mask = n_msb_mask(key_bits) self.payload_msb_mask = n_msb_mask(np.uint64(self.payload_msb_bits + key_bits)) & ~self.key_mask assert self.payload_msb_bits.dtype == np.uint64, f"MSB bits dtype was {self.payload_msb_bits.dtype}" assert self.payload_msb_mask.dtype == np.uint64, f"MSB mask dtype was {self.payload_msb_mask.dtype}" self.payload_lsb_mask = (_1 << self.payload_lsb_bits) - np.uint64(1) assert self.payload_lsb_bits.dtype == np.uint64, f"LSB bits dtype was {self.payload_lsb_bits.dtype}" assert self.payload_lsb_mask.dtype == np.uint64, f"LSB mask dtype was {self.payload_lsb_mask.dtype}" if key_bits == DEFAULT_KEY_BITS: assert self.key_mask == DEFAULT_KEY_MASK assert self.payload_msb_mask == DEFAULT_PAYLOAD_MSB_MASK assert self.payload_lsb_mask == DEFAULT_PAYLOAD_LSB_MASK self.max_payload = np.uint64(2**self.payload_lsb_bits - 1) def validate_payload(self, payload: np.ndarray): """Optional validation of payload.""" if np.any(payload > self.max_payload): raise ValueError(f"Positions must be less than {2**self.payload_lsb_bits}") def encode(self, payload: np.ndarray, keys: Optional[np.ndarray] = None, boundaries: Optional[np.ndarray] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]: """Pack a sorted array of integers into compact bit numpy array. each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs| payload for later easy intersection of 32+16 msbs, then checking for adjacent positions If boundaries are provided, then we consider multiple distinct payloads being encoded simultaneously, and we return the boundaries of each """ cols = np.floor_divide(payload, self.payload_lsb_bits, dtype=np.uint64) # Header of bit to use cols <<= self.payload_msb_bits if keys is not None: cols |= keys.astype(np.uint64) << (_64 - self.key_bits) values = payload % self.payload_lsb_bits # Value to encode change_indices_one_doc = np.nonzero(np.diff(cols))[0] + 1 change_indices_one_doc = np.concatenate([[0], change_indices_one_doc]) if boundaries is not None: change_indices = snp.merge(change_indices_one_doc, boundaries, duplicates=snp.DROP) new_boundaries = snp.intersect(boundaries, change_indices, indices=True)[1][1] new_boundaries = np.concatenate([new_boundaries, [len(change_indices)]]) else: change_indices = change_indices_one_doc new_boundaries = None # 0 as a position, goes in bit 1, # 1 as a position, goes in bit 2, etc values = _1 << values cols |= values encoded = cols if len(encoded) == 0: return encoded, new_boundaries reduced = np.bitwise_or.reduceat(encoded, change_indices) return reduced, new_boundaries def decode(self, encoded: np.ndarray, get_keys: bool = True) -> Union[List[Tuple[np.uint64, np.ndarray]], List[np.ndarray]]: """Decode an encoded bit array into keys / payloads.""" keys = (encoded & self.key_mask) >> (_64 - self.key_bits) <fim_suffix> to_concat = [] for bit in range(self.payload_lsb_bits): mask = 1 << bit lsbs = encoded & mask set_lsbs = (lsbs != 0) this_keys = keys[set_lsbs] payload = bit + (msbs[set_lsbs] * self.payload_lsb_bits) doc_with_posn = np.dstack([this_keys, payload])[0] to_concat.append(doc_with_posn) stacked = np.vstack(to_concat) # Sort by doc_id, then posn sorted_payload = stacked[np.lexsort((stacked[:, 1], stacked[:, 0]))] keys, idx = np.unique(sorted_payload[:, 0], return_index=True) grouped = np.split(sorted_payload[:, 1], idx[1:]) if get_keys: return list(zip(keys, grouped)) else: return grouped def keys(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" return (encoded & self.key_mask) >> (_64 - self.key_bits) def keys_unique(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" keys = self.keys(encoded) intersected = sorted_unique(keys) return intersected def payload_msb(self, encoded: np.ndarray) -> np.ndarray: """Return payload MSBs from encoded.""" return (encoded & self.payload_msb_mask) >> self.payload_msb_bits def payload_lsb(self, encoded: np.ndarray) -> np.ndarray: """Return payload LSBs from encoded.""" return encoded & self.payload_lsb_mask def intersect_rshift(self, lhs: np.ndarray, rhs: np.ndarray, rshift: np.int64 = _neg1) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values rshift : int how much to shift rhs by to the right """ rhs_int = rhs assert rshift < 0, "rshift must be negative" rhs_int = rhs[self.payload_msb(rhs) >= np.abs(rshift)] rshft = rshift.view(np.uint64) rhs_shifted = (rhs_int >> self.payload_lsb_bits) + rshft # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs_shifted, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs_int[rhs_idx] def intersect(self, lhs: np.ndarray, rhs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values """ # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs >> self.payload_lsb_bits, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs[rhs_idx] def slice(self, encoded: np.ndarray, keys: np.ndarray) -> np.ndarray: """Get list of encoded that have values in keys.""" assert len(keys.shape) == 1 assert len(encoded.shape) == 1 encoded_keys = encoded.view(np.uint64) >> (_64 - self.key_bits) _, (idx_docs, idx_enc) = snp.intersect(keys, encoded_keys, indices=True, duplicates=snp.KEEP_MAX_N, algorithm=_algorithm) return encoded[idx_enc] def convert_keys(keys) -> np.ndarray: """Convert keys to range or np.ndarray of uint64.""" if isinstance(keys, numbers.Number): return np.asarray([keys], dtype=np.uint64) elif isinstance(keys, list): return np.asarray(keys, dtype=np.uint64) elif isinstance(keys, np.ndarray): return keys.astype(np.uint64) elif isinstance(keys, range) and len(keys) > 0: # UNFORTUNATE COPY return np.arange(keys[0], keys[-1] + 1, dtype=np.uint64) + keys[0] elif isinstance(keys, range): return np.asarray([], dtype=np.uint64) raise ValueError(f"Unknown type for keys: {type(keys)}") <fim_middle>msbs = (encoded & self.payload_msb_mask) >> self.payload_msb_bits
msbs = (encoded & self.payload_msb_mask) >> self.payload_msb_bits
STATEMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") # searcharray/searcharray/term_dict.py def get_term(self, term_id): try: return self.id_to_terms[term_id] except KeyError: raise TermMissingError(f"Term at {term_id} not present in dictionary. Reindex to add.") # searcharray/searcharray/solr.py def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) """ """Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: <fim_suffix> if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>return [np.array([], dtype=np.uint32)]
return [np.array([], dtype=np.uint32)]
STATEMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") # searcharray/searcharray/term_dict.py def get_term(self, term_id): try: return self.id_to_terms[term_id] except KeyError: raise TermMissingError(f"Term at {term_id} not present in dictionary. Reindex to add.") # searcharray/searcharray/solr.py def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) """ """Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) <fim_suffix> else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>return decs
return decs
STATEMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/solr.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/postings.py def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns # searcharray/searcharray/postings.py def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs # searcharray/searcharray/postings.py def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs """ """Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] <fim_suffix> term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score)
for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score)
FOR
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/solr.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/phrase/middle_out.py def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) # searcharray/searcharray/utils/row_viewable_matrix.py def __init__(self, mat: SparseMatSet, rows: Optional[np.ndarray] = None, subset=False): self.mat = mat self.col_cache: Dict[int, np.ndarray] = {} self.cols_cached: List[int] = [] if rows is None: self.rows = np.arange(self.mat.shape[0]) elif isinstance(rows, numbers.Integral): self.rows = np.array([rows]) else: self.rows = rows self.subset = subset # searcharray/searcharray/phrase/posn_diffs.py def stack_term_posns(term_posns: List[List[np.ndarray]], phrase_freqs: np.ndarray, width: int = 10): # Pad for easy difference computation keep_term_posns = [] # keep_mask = np.ones(len(self), dtype=bool) for term_posn in term_posns: this_term_posns = vstack_with_mask(term_posn, phrase_freqs, width=width) keep_term_posns.append(this_term_posns) return keep_term_posns """ """Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True <fim_suffix> return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False
for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False
FOR
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/solr.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/similarity.py def bm25_legacy_similarity(k1: float = 1.2, b: float = 0.75) -> Similarity: """BM25 similarity prior to LUCENE-8563 with k1 + 1 in numerator.""" # (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) def bm25(term_freqs: np.ndarray, doc_freqs: np.ndarray, doc_lens: np.ndarray, avg_doc_lens: int, num_docs: int) -> np.ndarray: """Calculate BM25 scores.""" # Sum doc freqs sum_dfs = np.sum(doc_freqs, axis=0) # Calculate idf idf = np.log(1 + (num_docs - sum_dfs + 0.5) / (sum_dfs + 0.5)) # Calculate tf tf = (term_freqs * (k1 + 1)) / (term_freqs + k1 * (1 - b + b * doc_lens / avg_doc_lens)) return idf * tf return bm25 # searcharray/searcharray/similarity.py def bm25_similarity(k1: float = 1.2, b: float = 0.75) -> Similarity: """BM25 similarity function, as in Lucene 9.""" def bm25(term_freqs: np.ndarray, doc_freqs: np.ndarray, doc_lens: np.ndarray, avg_doc_lens: int, num_docs: int) -> np.ndarray: """Calculate BM25 scores.""" # Sum doc freqs sum_dfs = np.sum(doc_freqs, axis=0) # Calculate idf idf = np.log(1 + (num_docs - sum_dfs + 0.5) / (sum_dfs + 0.5)) # Calculate tf tf = term_freqs / (term_freqs + k1 * (1 - b + b * doc_lens / avg_doc_lens)) return idf * tf return bm25 # searcharray/searcharray/phrase/middle_out.py def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs """ """Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] <fim_suffix> if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score)
for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score)
FOR
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/solr.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/phrase/middle_out.py def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) # searcharray/searcharray/utils/row_viewable_matrix.py def __init__(self, mat: SparseMatSet, rows: Optional[np.ndarray] = None, subset=False): self.mat = mat self.col_cache: Dict[int, np.ndarray] = {} self.cols_cached: List[int] = [] if rows is None: self.rows = np.arange(self.mat.shape[0]) elif isinstance(rows, numbers.Integral): self.rows = np.array([rows]) else: self.rows = rows self.subset = subset # searcharray/searcharray/phrase/posn_diffs.py def stack_term_posns(term_posns: List[List[np.ndarray]], phrase_freqs: np.ndarray, width: int = 10): # Pad for easy difference computation keep_term_posns = [] # keep_mask = np.ones(len(self), dtype=bool) for term_posn in term_posns: this_term_posns = vstack_with_mask(term_posn, phrase_freqs, width=width) keep_term_posns.append(this_term_posns) return keep_term_posns """ """Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 <fim_suffix> if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1
for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1
FOR
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/solr.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/phrase/posn_diffs.py def compute_phrase_freqs(term_posns, phrase_freqs, slop=1, width=10): """Compute phrase freq using matrix-diff method for docs up to width posns. Skip others. Parameters ---------- term_posns: list of np.ndarray term positions for a given term across multiple docs phrase_freqs: np.ndarray, phrase freqs for each doc present in term_posns Returns ------- phrase_freqs: np.ndarray, phrase freqs for each doc present in mask See Also -------- Colab notebook: https://colab.research.google.com/drive/1NRxeO8Ya8jSlFP5YwZaGh1-43kDH4OXG?authuser=1#scrollTo=5JZV8svpauYB """ if len(term_posns[0]) != len(phrase_freqs): raise ValueError("term_posns and phrase_freqs must be same length") stacked = stack_term_posns(term_posns, phrase_freqs, width=width) phrase_freqs = _compute_phrase_freqs(stacked, phrase_freqs, slop=slop) phrase_freqs[phrase_freqs == -2] = -1 return phrase_freqs # searcharray/searcharray/postings.py def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 # searcharray/searcharray/postings.py def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) """ """Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) <fim_suffix> return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1])
for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1])
FOR
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/solr.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/postings.py def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns # searcharray/searcharray/postings.py def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs # searcharray/searcharray/postings.py def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs """ """Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] <fim_suffix> min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")")
for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")")
FOR
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/utils/roaringish.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/utils/mat_set.py def __str__(self): as_str = [""] for idx, (row, row_next) in enumerate(zip(self.rows, self.rows[1:])): as_str.append(f"{idx}: {self.cols[row:row_next]}") return "\n".join(as_str) # searcharray/searcharray/indexing.py def _lex_sort(terms_w_posns): """Sort terms, then doc_id, then posn.""" # Because docs / posns already sorted, we can just sort on terms # Equivelant to np.lexsort(terms_w_posns[[::-1], :]) return np.argsort(terms_w_posns[0, :], kind='stable') # searcharray/searcharray/phrase/middle_out.py def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns """ """Roaring-ish bit array for storing sorted integers in numpy array. See - https://softwaredoug.com/blog/2024/01/21/search-array-phrase-algorithm """ import numpy as np import sortednp as snp import logging import numbers from typing import Optional, Tuple, List, Union logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) DEFAULT_KEY_MASK = np.uint64(0xFFFFFFF000000000) DEFAULT_KEY_BITS = np.uint64(28) DEFAULT_PAYLOAD_MSB_MASK = np.uint64(0x0000000FFFFC0000) DEFAULT_PAYLOAD_MSB_BITS = np.uint64(18) DEFAULT_PAYLOAD_LSB_MASK = np.uint64(0x000000000003FFFF) DEFAULT_PAYLOAD_LSB_BITS = np.uint64(18) # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) _algorithm = snp.GALLOPING_SEARCH def n_msb_mask(n: np.uint64) -> np.uint64: """Return the n most significant bits of num.""" return np.uint64(~(np.uint64(_1 << (_64 - n))) + _1) def sorted_unique(arr: np.ndarray) -> np.ndarray: return snp.intersect(arr, arr, duplicates=snp.DROP) class RoaringishEncoder: """An encoder for key->integer sets as a numpy array. Each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs | payload (different number of MSBs / payload bits can be specified) """ def __init__(self, key_bits: np.uint64 = DEFAULT_KEY_BITS): payload_bits = _64 - key_bits self.payload_msb_bits = payload_bits // _2 self.payload_lsb_bits = np.uint64(payload_bits - self.payload_msb_bits) self.key_bits = key_bits assert self.key_bits.dtype == np.uint64 # key bits MSB of 64 bits self.key_mask = n_msb_mask(key_bits) self.payload_msb_mask = n_msb_mask(np.uint64(self.payload_msb_bits + key_bits)) & ~self.key_mask assert self.payload_msb_bits.dtype == np.uint64, f"MSB bits dtype was {self.payload_msb_bits.dtype}" assert self.payload_msb_mask.dtype == np.uint64, f"MSB mask dtype was {self.payload_msb_mask.dtype}" self.payload_lsb_mask = (_1 << self.payload_lsb_bits) - np.uint64(1) assert self.payload_lsb_bits.dtype == np.uint64, f"LSB bits dtype was {self.payload_lsb_bits.dtype}" assert self.payload_lsb_mask.dtype == np.uint64, f"LSB mask dtype was {self.payload_lsb_mask.dtype}" if key_bits == DEFAULT_KEY_BITS: assert self.key_mask == DEFAULT_KEY_MASK assert self.payload_msb_mask == DEFAULT_PAYLOAD_MSB_MASK assert self.payload_lsb_mask == DEFAULT_PAYLOAD_LSB_MASK self.max_payload = np.uint64(2**self.payload_lsb_bits - 1) def validate_payload(self, payload: np.ndarray): """Optional validation of payload.""" if np.any(payload > self.max_payload): raise ValueError(f"Positions must be less than {2**self.payload_lsb_bits}") def encode(self, payload: np.ndarray, keys: Optional[np.ndarray] = None, boundaries: Optional[np.ndarray] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]: """Pack a sorted array of integers into compact bit numpy array. each returned array represents a single term, with key as MSBS, ie: | 32 MSBs | 16 LSBs | 16 LSBs | key | bits msbs| payload for later easy intersection of 32+16 msbs, then checking for adjacent positions If boundaries are provided, then we consider multiple distinct payloads being encoded simultaneously, and we return the boundaries of each """ cols = np.floor_divide(payload, self.payload_lsb_bits, dtype=np.uint64) # Header of bit to use cols <<= self.payload_msb_bits if keys is not None: cols |= keys.astype(np.uint64) << (_64 - self.key_bits) values = payload % self.payload_lsb_bits # Value to encode change_indices_one_doc = np.nonzero(np.diff(cols))[0] + 1 change_indices_one_doc = np.concatenate([[0], change_indices_one_doc]) if boundaries is not None: change_indices = snp.merge(change_indices_one_doc, boundaries, duplicates=snp.DROP) new_boundaries = snp.intersect(boundaries, change_indices, indices=True)[1][1] new_boundaries = np.concatenate([new_boundaries, [len(change_indices)]]) else: change_indices = change_indices_one_doc new_boundaries = None # 0 as a position, goes in bit 1, # 1 as a position, goes in bit 2, etc values = _1 << values cols |= values encoded = cols if len(encoded) == 0: return encoded, new_boundaries reduced = np.bitwise_or.reduceat(encoded, change_indices) return reduced, new_boundaries def decode(self, encoded: np.ndarray, get_keys: bool = True) -> Union[List[Tuple[np.uint64, np.ndarray]], List[np.ndarray]]: """Decode an encoded bit array into keys / payloads.""" keys = (encoded & self.key_mask) >> (_64 - self.key_bits) msbs = (encoded & self.payload_msb_mask) >> self.payload_msb_bits to_concat = [] <fim_suffix> stacked = np.vstack(to_concat) # Sort by doc_id, then posn sorted_payload = stacked[np.lexsort((stacked[:, 1], stacked[:, 0]))] keys, idx = np.unique(sorted_payload[:, 0], return_index=True) grouped = np.split(sorted_payload[:, 1], idx[1:]) if get_keys: return list(zip(keys, grouped)) else: return grouped def keys(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" return (encoded & self.key_mask) >> (_64 - self.key_bits) def keys_unique(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" keys = self.keys(encoded) intersected = sorted_unique(keys) return intersected def payload_msb(self, encoded: np.ndarray) -> np.ndarray: """Return payload MSBs from encoded.""" return (encoded & self.payload_msb_mask) >> self.payload_msb_bits def payload_lsb(self, encoded: np.ndarray) -> np.ndarray: """Return payload LSBs from encoded.""" return encoded & self.payload_lsb_mask def intersect_rshift(self, lhs: np.ndarray, rhs: np.ndarray, rshift: np.int64 = _neg1) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values rshift : int how much to shift rhs by to the right """ rhs_int = rhs assert rshift < 0, "rshift must be negative" rhs_int = rhs[self.payload_msb(rhs) >= np.abs(rshift)] rshft = rshift.view(np.uint64) rhs_shifted = (rhs_int >> self.payload_lsb_bits) + rshft # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs_shifted, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs_int[rhs_idx] def intersect(self, lhs: np.ndarray, rhs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Return the MSBs that are common to both lhs and rhs (same keys, same MSBs) Parameters ---------- lhs : np.ndarray of uint64 (encoded) values rhs : np.ndarray of uint64 (encoded) values """ # assert np.all(np.diff(rhs_shifted) >= 0), "not sorted" _, (lhs_idx, rhs_idx) = snp.intersect(lhs >> self.payload_lsb_bits, rhs >> self.payload_lsb_bits, indices=True, algorithm=_algorithm) return lhs[lhs_idx], rhs[rhs_idx] def slice(self, encoded: np.ndarray, keys: np.ndarray) -> np.ndarray: """Get list of encoded that have values in keys.""" assert len(keys.shape) == 1 assert len(encoded.shape) == 1 encoded_keys = encoded.view(np.uint64) >> (_64 - self.key_bits) _, (idx_docs, idx_enc) = snp.intersect(keys, encoded_keys, indices=True, duplicates=snp.KEEP_MAX_N, algorithm=_algorithm) return encoded[idx_enc] def convert_keys(keys) -> np.ndarray: """Convert keys to range or np.ndarray of uint64.""" if isinstance(keys, numbers.Number): return np.asarray([keys], dtype=np.uint64) elif isinstance(keys, list): return np.asarray(keys, dtype=np.uint64) elif isinstance(keys, np.ndarray): return keys.astype(np.uint64) elif isinstance(keys, range) and len(keys) > 0: # UNFORTUNATE COPY return np.arange(keys[0], keys[-1] + 1, dtype=np.uint64) + keys[0] elif isinstance(keys, range): return np.asarray([], dtype=np.uint64) raise ValueError(f"Unknown type for keys: {type(keys)}") <fim_middle>for bit in range(self.payload_lsb_bits): mask = 1 << bit lsbs = encoded & mask set_lsbs = (lsbs != 0) this_keys = keys[set_lsbs] payload = bit + (msbs[set_lsbs] * self.payload_lsb_bits) doc_with_posn = np.dstack([this_keys, payload])[0] to_concat.append(doc_with_posn)
for bit in range(self.payload_lsb_bits): mask = 1 << bit lsbs = encoded & mask set_lsbs = (lsbs != 0) this_keys = keys[set_lsbs] payload = bit + (msbs[set_lsbs] * self.payload_lsb_bits) doc_with_posn = np.dstack([this_keys, payload])[0] to_concat.append(doc_with_posn)
FOR
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/postings.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/phrase/posn_diffs.py def stack_term_posns(term_posns: List[List[np.ndarray]], phrase_freqs: np.ndarray, width: int = 10): # Pad for easy difference computation keep_term_posns = [] # keep_mask = np.ones(len(self), dtype=bool) for term_posn in term_posns: this_term_posns = vstack_with_mask(term_posn, phrase_freqs, width=width) keep_term_posns.append(this_term_posns) return keep_term_posns # searcharray/searcharray/utils/row_viewable_matrix.py def rowwise_eq(mat: SparseMatSet, other: SparseMatSet) -> Union[bool, np.ndarray]: """Check equals on a row-by-row basis.""" if len(mat) != len(other): return False row_eq = np.zeros(mat.shape[0], dtype=np.dtype('bool')) for row_idx in range(len(mat)): if np.all(mat[row_idx] == other[row_idx]): row_eq[row_idx] = True return row_eq # searcharray/searcharray/utils/mat_set.py def __getitem__(self, key): # Iterate keys beg_keys = self.rows[:-1][key] end_keys = self.rows[1:][key] if not isinstance(beg_keys, np.ndarray): beg_keys = np.asarray([beg_keys]) end_keys = np.asarray([end_keys]) cols = [self.cols[beg:end] for beg, end in zip(beg_keys, end_keys)] rows = [0] + [len(row) for row in cols] rows = np.asarray(rows).flatten() rows = np.cumsum(rows) try: cols = np.concatenate(cols) except ValueError: cols = np.asarray([], dtype=np.uint32) return SparseMatSet(cols, rows) """ """Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) <fim_suffix> return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>for curr_mask in masks: mask = mask & curr_mask
for curr_mask in masks: mask = mask & curr_mask
FOR
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/utils/row_viewable_matrix.py def rowwise_eq(mat: SparseMatSet, other: SparseMatSet) -> Union[bool, np.ndarray]: """Check equals on a row-by-row basis.""" if len(mat) != len(other): return False row_eq = np.zeros(mat.shape[0], dtype=np.dtype('bool')) for row_idx in range(len(mat)): if np.all(mat[row_idx] == other[row_idx]): row_eq[row_idx] = True return row_eq # searcharray/searcharray/utils/roaringish.py def slice(self, encoded: np.ndarray, keys: np.ndarray) -> np.ndarray: """Get list of encoded that have values in keys.""" assert len(keys.shape) == 1 assert len(encoded.shape) == 1 encoded_keys = encoded.view(np.uint64) >> (_64 - self.key_bits) _, (idx_docs, idx_enc) = snp.intersect(keys, encoded_keys, indices=True, duplicates=snp.KEEP_MAX_N, algorithm=_algorithm) return encoded[idx_enc] # searcharray/searcharray/utils/roaringish.py def validate_payload(self, payload: np.ndarray): """Optional validation of payload.""" if np.any(payload > self.max_payload): raise ValueError(f"Positions must be less than {2**self.payload_lsb_bits}") """ """Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] <fim_suffix> phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0)
for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0)
FOR
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/solr.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/postings.py def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() # searcharray/searcharray/postings.py def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs # searcharray/searcharray/postings.py def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns """ """Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') <fim_suffix> return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1])
for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1])
FOR
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/term_dict.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/postings.py def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 # searcharray/searcharray/postings.py def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense # searcharray/searcharray/postings.py def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) """ import sys class TermMissingError(KeyError): def __init__(self, msg): super().__init__(msg) class TermDict: def __init__(self): self.term_to_ids = {} self.id_to_terms = {} def add_term(self, term): if term in self.term_to_ids: return self.term_to_ids[term] term_id = len(self.term_to_ids) self.term_to_ids[term] = term_id self.id_to_terms[term_id] = term return term_id def copy(self): new_dict = TermDict() new_dict.term_to_ids = dict(self.term_to_ids) new_dict.id_to_terms = dict(self.id_to_terms.copy()) return new_dict def get_term_id(self, term): <fim_suffix> except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") def get_term(self, term_id): try: return self.id_to_terms[term_id] except KeyError: raise TermMissingError(f"Term at {term_id} not present in dictionary. Reindex to add.") def compatible(self, other) -> bool: # Intersect the terms in both dictionaries terms_self = list(self.term_to_ids.keys()) terms_other = list(other.term_to_ids.keys()) shortest = min(len(terms_self), len(terms_other)) return terms_self[:shortest] == terms_other[:shortest] # If the intersection is empty, the dictionaries are not compatible def __len__(self): return len(self.term_to_ids) def __repr__(self): return repr(self.term_to_ids) @property def nbytes(self): bytes_used = sys.getsizeof(self.term_to_ids) + sys.getsizeof(self.id_to_terms) return bytes_used <fim_middle>try: return self.term_to_ids[term]
try: return self.term_to_ids[term]
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/solr.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/phrase/posn_diffs.py def compute_phrase_freqs(term_posns, phrase_freqs, slop=1, width=10): """Compute phrase freq using matrix-diff method for docs up to width posns. Skip others. Parameters ---------- term_posns: list of np.ndarray term positions for a given term across multiple docs phrase_freqs: np.ndarray, phrase freqs for each doc present in term_posns Returns ------- phrase_freqs: np.ndarray, phrase freqs for each doc present in mask See Also -------- Colab notebook: https://colab.research.google.com/drive/1NRxeO8Ya8jSlFP5YwZaGh1-43kDH4OXG?authuser=1#scrollTo=5JZV8svpauYB """ if len(term_posns[0]) != len(phrase_freqs): raise ValueError("term_posns and phrase_freqs must be same length") stacked = stack_term_posns(term_posns, phrase_freqs, width=width) phrase_freqs = _compute_phrase_freqs(stacked, phrase_freqs, slop=slop) phrase_freqs[phrase_freqs == -2] = -1 return phrase_freqs # searcharray/searcharray/postings.py def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 # searcharray/searcharray/postings.py def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) """ """Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): <fim_suffix> except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>try: return int(value)
try: return int(value)
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/postings.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/phrase/middle_out.py def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") # searcharray/searcharray/utils/row_viewable_matrix.py def rowwise_eq(mat: SparseMatSet, other: SparseMatSet) -> Union[bool, np.ndarray]: """Check equals on a row-by-row basis.""" if len(mat) != len(other): return False row_eq = np.zeros(mat.shape[0], dtype=np.dtype('bool')) for row_idx in range(len(mat)): if np.all(mat[row_idx] == other[row_idx]): row_eq[row_idx] = True return row_eq """ """Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) <fim_suffix> except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs)
try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs)
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/postings.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/utils/row_viewable_matrix.py def __getitem__(self, key): if isinstance(key, numbers.Integral): return self.copy_row_at(key) else: return self.slice(key) # searcharray/searcharray/phrase/middle_out.py def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] # searcharray/searcharray/utils/mat_set.py def __getitem__(self, key): # Iterate keys beg_keys = self.rows[:-1][key] end_keys = self.rows[1:][key] if not isinstance(beg_keys, np.ndarray): beg_keys = np.asarray([beg_keys]) end_keys = np.asarray([end_keys]) cols = [self.cols[beg:end] for beg, end in zip(beg_keys, end_keys)] rows = [0] + [len(row) for row in cols] rows = np.asarray(rows).flatten() rows = np.cumsum(rows) try: cols = np.concatenate(cols) except ValueError: cols = np.asarray([], dtype=np.uint32) return SparseMatSet(cols, rows) """ """Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): <fim_suffix> except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns)
try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns)
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/postings.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") # searcharray/searcharray/term_dict.py def get_term(self, term_id): try: return self.id_to_terms[term_id] except KeyError: raise TermMissingError(f"Term at {term_id} not present in dictionary. Reindex to add.") # searcharray/searcharray/solr.py def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) """ """Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears <fim_suffix> except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>try: return self.posns.docfreq(self.term_dict.get_term_id(token))
try: return self.posns.docfreq(self.term_dict.get_term_id(token))
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/solr.py def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") # searcharray/searcharray/utils/roaringish.py def keys_unique(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" keys = self.keys(encoded) intersected = sorted_unique(keys) return intersected """ """Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: <fim_suffix> except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>try: return self.docfreq_cache[term_id]
try: return self.docfreq_cache[term_id]
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/postings.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") # searcharray/searcharray/term_dict.py def get_term(self, term_id): try: return self.id_to_terms[term_id] except KeyError: raise TermMissingError(f"Term at {term_id} not present in dictionary. Reindex to add.") # searcharray/searcharray/utils/mat_set.py def build(self): return SparseMatSet(cols=np.asarray(self.cols, dtype=np.uint32), rows=np.asarray(self.rows, dtype=np.uint32)) """ """Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) <fim_suffix> except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches
try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/postings.py def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) # searcharray/searcharray/solr.py def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") """ """Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: <fim_suffix> except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>try: return self.termfreq_cache[term_id]
try: return self.termfreq_cache[term_id]
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/solr.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") # searcharray/searcharray/term_dict.py def get_term(self, term_id): try: return self.id_to_terms[term_id] except KeyError: raise TermMissingError(f"Term at {term_id} not present in dictionary. Reindex to add.") # searcharray/searcharray/postings.py def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 """ """Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): <fim_suffix> except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>try: return int(value)
try: return int(value)
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") # searcharray/searcharray/term_dict.py def get_term(self, term_id): try: return self.id_to_terms[term_id] except KeyError: raise TermMissingError(f"Term at {term_id} not present in dictionary. Reindex to add.") # searcharray/searcharray/solr.py def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) """ """Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) <fim_suffix> except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids)
try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids)
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/postings.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/phrase/middle_out.py def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") # searcharray/searcharray/utils/row_viewable_matrix.py def rowwise_eq(mat: SparseMatSet, other: SparseMatSet) -> Union[bool, np.ndarray]: """Check equals on a row-by-row basis.""" if len(mat) != len(other): return False row_eq = np.zeros(mat.shape[0], dtype=np.dtype('bool')) for row_idx in range(len(mat)): if np.all(mat[row_idx] == other[row_idx]): row_eq[row_idx] = True return row_eq """ """Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) <fim_suffix> else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>except TermMissingError: return phrase_freqs
except TermMissingError: return phrase_freqs
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/solr.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/phrase/posn_diffs.py def compute_phrase_freqs(term_posns, phrase_freqs, slop=1, width=10): """Compute phrase freq using matrix-diff method for docs up to width posns. Skip others. Parameters ---------- term_posns: list of np.ndarray term positions for a given term across multiple docs phrase_freqs: np.ndarray, phrase freqs for each doc present in term_posns Returns ------- phrase_freqs: np.ndarray, phrase freqs for each doc present in mask See Also -------- Colab notebook: https://colab.research.google.com/drive/1NRxeO8Ya8jSlFP5YwZaGh1-43kDH4OXG?authuser=1#scrollTo=5JZV8svpauYB """ if len(term_posns[0]) != len(phrase_freqs): raise ValueError("term_posns and phrase_freqs must be same length") stacked = stack_term_posns(term_posns, phrase_freqs, width=width) phrase_freqs = _compute_phrase_freqs(stacked, phrase_freqs, slop=slop) phrase_freqs[phrase_freqs == -2] = -1 return phrase_freqs # searcharray/searcharray/postings.py def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 # searcharray/searcharray/postings.py def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) """ """Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) <fim_suffix> result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>except ValueError: raise ValueError(error_message)
except ValueError: raise ValueError(error_message)
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/postings.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/utils/row_viewable_matrix.py def __getitem__(self, key): if isinstance(key, numbers.Integral): return self.copy_row_at(key) else: return self.slice(key) # searcharray/searcharray/phrase/middle_out.py def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] # searcharray/searcharray/utils/mat_set.py def __getitem__(self, key): # Iterate keys beg_keys = self.rows[:-1][key] end_keys = self.rows[1:][key] if not isinstance(beg_keys, np.ndarray): beg_keys = np.asarray([beg_keys]) end_keys = np.asarray([end_keys]) cols = [self.cols[beg:end] for beg, end in zip(beg_keys, end_keys)] rows = [0] + [len(row) for row in cols] rows = np.asarray(rows).flatten() rows = np.cumsum(rows) try: cols = np.concatenate(cols) except ValueError: cols = np.asarray([], dtype=np.uint32) return SparseMatSet(cols, rows) """ """Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) <fim_suffix> else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>except IndexError: raise IndexError("index out of bounds")
except IndexError: raise IndexError("index out of bounds")
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/solr.py def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") # searcharray/searcharray/utils/roaringish.py def keys_unique(self, encoded: np.ndarray) -> np.ndarray: """Return keys from encoded.""" keys = self.keys(encoded) intersected = sorted_unique(keys) return intersected """ """Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] <fim_suffix> def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq
except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/postings.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") # searcharray/searcharray/term_dict.py def get_term(self, term_id): try: return self.id_to_terms[term_id] except KeyError: raise TermMissingError(f"Term at {term_id} not present in dictionary. Reindex to add.") # searcharray/searcharray/solr.py def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) """ """Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches except TermMissingError: return np.zeros(len(self), dtype=int) def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) <fim_suffix> def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>except TermMissingError: return 0
except TermMissingError: return 0
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/postings.py def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) # searcharray/searcharray/solr.py def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") """ """Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] <fim_suffix> def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs
except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/phrase/middle_out.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") # searcharray/searcharray/term_dict.py def get_term(self, term_id): try: return self.id_to_terms[term_id] except KeyError: raise TermMissingError(f"Term at {term_id} not present in dictionary. Reindex to add.") # searcharray/searcharray/solr.py def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) """ """Encode positions in bits along with some neighboring information for wrapping. See this notebook for motivation: https://colab.research.google.com/drive/10tIEkdlCE_1J_CcgEcV0jkLfBc-0H4am?authuser=1#scrollTo=XWzy-n9dF3PG """ import numpy as np import sortednp as snp from copy import deepcopy from typing import List, Tuple, Dict, Union, cast, Optional from searcharray.utils.roaringish import RoaringishEncoder, convert_keys, sorted_unique import numbers import logging from collections import defaultdict from searcharray.utils.bitcount import bit_count64 logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) encoder = RoaringishEncoder() # To not constantly type coerce _64 = np.uint64(64) _2 = np.uint64(2) _1 = np.uint64(1) _0 = np.uint64(0) _neg1 = np.int64(-1) MAX_POSN = encoder.max_payload def inner_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays, within a 64 bit word with same MSBs. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect(lhs, rhs) lhs_doc_ids = encoder.keys(lhs_int) if len(lhs_int) != len(rhs_int): raise ValueError("Encoding error, MSBs apparently are duplicated among your encoded posn arrays.") if len(lhs_int) == 0: return phrase_freqs, rhs_int same_term = (len(lhs_int) == len(rhs_int) and lhs_int[0] == rhs_int[0]) if same_term: # Find adjacent matches rhs_shift = rhs_int << _1 overlap = lhs_int & rhs_shift overlap = encoder.payload_lsb(overlap) adjacents = bit_count64(overlap).astype(np.int64) adjacents -= -np.floor_divide(adjacents, -2) # ceiling divide phrase_freqs[lhs_doc_ids] += adjacents return phrase_freqs, rhs_int overlap_bits = (lhs_int & encoder.payload_lsb_mask) & ((rhs_int & encoder.payload_lsb_mask) >> _1) rhs_next2 = (overlap_bits << _1) & encoder.payload_lsb_mask rhs_next2 |= (rhs_int & (encoder.key_mask | encoder.payload_msb_mask)) phrase_freqs2 = phrase_freqs.copy() matches2 = overlap_bits > 0 if np.any(matches2): transitions = np.argwhere(np.diff(lhs_doc_ids[matches2]) != 0).flatten() + 1 transitions = np.insert(transitions, 0, 0) counted_bits = bit_count64(overlap_bits[matches2]) reduced = np.add.reduceat(counted_bits, transitions) phrase_freqs2[np.unique(lhs_doc_ids[matches2])] += reduced return phrase_freqs2, rhs_next2 def adjacent_bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays where they occur in adjacent 64 bit words. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ lhs_int, rhs_int = encoder.intersect_rshift(lhs, rhs, rshift=_neg1) lhs_doc_ids = encoder.keys(lhs_int) # lhs lsb set and rhs lsb's most significant bit set upper_bit = _1 << (encoder.payload_lsb_bits - _1) matches = ((lhs_int & upper_bit) != 0) & ((rhs_int & _1) != 0) unique, counts = np.unique(lhs_doc_ids[matches], return_counts=True) phrase_freqs[unique] += counts rhs_next = rhs_int rhs_next[~matches] |= ~encoder.payload_lsb_mask rhs_next[matches] |= (encoder.payload_lsb_mask & _1) return phrase_freqs, rhs_next def bigram_freqs(lhs: np.ndarray, rhs: np.ndarray, phrase_freqs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Count bigram matches between two encoded arrays. Returns: -------- count: number of matches per doc rhs_next: the next rhs array to continue matching """ # Combine lhs and rhs matches from two strategies phrase_freqs, rhs_next_inner = inner_bigram_freqs(lhs, rhs, phrase_freqs) phrase_freqs, rhs_next_adj = adjacent_bigram_freqs(lhs, rhs, phrase_freqs) rhs_next = np.sort(np.concatenate([rhs_next_inner, rhs_next_adj])) # Combine return phrase_freqs, rhs_next def trim_phrase_search(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> List[np.ndarray]: """Trim long phrases by searching the rarest terms first.""" # Start with rarest term shortest_keys = None shortest_idx = None min_len = 1e100 max_len = 0 for idx, enc_posn in enumerate(encoded_posns): if len(enc_posn) < min_len: shortest_keys = encoder.keys(enc_posn) shortest_idx = idx min_len = len(enc_posn) if len(enc_posn) > max_len: max_len = len(enc_posn) if shortest_keys is None: return encoded_posns for enc_posn_idx in range(len(encoded_posns)): if enc_posn_idx == shortest_idx: continue if len(encoded_posns[enc_posn_idx]) > (10 * min_len): encoded_posns[enc_posn_idx] = encoder.slice(encoded_posns[enc_posn_idx], shortest_keys) return encoded_posns def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs class PosnBitArrayFromFlatBuilder: """ Build from sorted array shape num terms x 3. 0th is term id 1st is doc id 2nd is posn Sorted by term id then posns """ def __init__(self, flat_array: np.ndarray): self.flat_array = flat_array def build(self): """Slice the flat array into a 2d array of doc ids and posns.""" term_boundaries = np.argwhere(np.diff(self.flat_array[0]) > 0).flatten() + 1 term_boundaries = np.concatenate([[0], term_boundaries, [len(self.flat_array[1])]]) encoded, enc_term_boundaries = encoder.encode(keys=self.flat_array[1].view(np.uint64), boundaries=term_boundaries[:-1], payload=self.flat_array[2].view(np.uint64)) term_ids = self.flat_array[0][term_boundaries[:-1]] encoded_term_posns = {} for into_terms, (beg_idx, end_idx) in enumerate(zip(enc_term_boundaries[:-1], enc_term_boundaries[1:])): sliced = encoded[beg_idx:end_idx] encoded_term_posns[term_ids[into_terms]] = sliced return PosnBitArray(encoded_term_posns, self.flat_array[1].max()) class PosnBitArrayBuilder: def __init__(self): self.term_posns = defaultdict(list) self.term_posn_doc_ids = defaultdict(list) self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns: List[int]): doc_ids = [doc_id] * len(posns) self.term_posns[term_id].extend(posns) self.term_posn_doc_ids[term_id].extend(doc_ids) def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): encoded_term_posns = {} for term_id, posns in self.term_posns.items(): if len(posns) == 0: posns = np.asarray([], dtype=np.uint32).flatten() elif isinstance(posns, list): posns_arr = np.asarray(posns, dtype=np.uint32).flatten() posns = posns_arr doc_ids = self.term_posn_doc_ids[term_id] if isinstance(doc_ids, list): doc_ids = np.asarray(doc_ids, dtype=np.uint32) encoded = encoder.encode(keys=doc_ids, payload=posns) if check: decode_again = encoder.decode(encoded) docs_to_posns = dict(decode_again) doc_ids_again = [] posns_again = [] for doc_id, posns_dec in docs_to_posns.items(): for posn in posns_dec: doc_ids_again.append(doc_id) posns_again.append(posn) assert np.array_equal(doc_ids_again, doc_ids) assert np.array_equal(posns, posns_again) encoded_term_posns[term_id] = encoded return PosnBitArray(encoded_term_posns, self.max_doc_id) class PosnBitArrayAlreadyEncBuilder: def __init__(self): self.encoded_term_posns = {} self.max_doc_id = 0 def add_posns(self, doc_id: int, term_id: int, posns): self.encoded_term_posns[term_id] = posns def ensure_capacity(self, doc_id): self.max_doc_id = max(self.max_doc_id, doc_id) def build(self, check=False): return PosnBitArray(self.encoded_term_posns, self.max_doc_id) def index_range(rng, key): if key is None: return rng if isinstance(rng, np.ndarray): return rng[key] if isinstance(key, slice): return rng[key] elif isinstance(key, numbers.Number): return rng[key] elif isinstance(key, np.ndarray): try: # UNFORTUNATE COPY r_val = np.asarray(list(rng))[key] return r_val except IndexError as e: raise e # Last resort # UNFORTUNATE COPY # Here probably elipses or a tuple of various things return np.asarray(list(rng))[key] class PosnBitArray: def __init__(self, encoded_term_posns, max_doc_id: int): self.encoded_term_posns = encoded_term_posns self.max_doc_id = max_doc_id self.docfreq_cache : Dict[int, np.uint64] = {} self.termfreq_cache : Dict[int, Tuple[np.ndarray, np.ndarray]] = {} def copy(self): new = PosnBitArray(deepcopy(self.encoded_term_posns), self.max_doc_id) return new def concat(self, other): """Merge other into self. Assumes other's doc ids are not overlapping with self's doc ids. """ # Shared terms shared_terms = set(self.encoded_term_posns.keys()).intersection(set(other.encoded_term_posns.keys())) for term_id in shared_terms: # Append then sort self.encoded_term_posns[term_id] = np.concatenate([self.encoded_term_posns[term_id], other.encoded_term_posns[term_id]]) self.encoded_term_posns[term_id].sort() only_other_terms = set(other.encoded_term_posns.keys()).difference(set(self.encoded_term_posns.keys())) for term_id in only_other_terms: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] self.max_doc_id = max(self.max_doc_id, other.max_doc_id) # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def slice(self, key): sliced_term_posns = {} doc_ids = convert_keys(key) max_doc_id = np.max(doc_ids) for term_id, posns in self.encoded_term_posns.items(): encoded = self.encoded_term_posns[term_id] assert len(encoded.shape) == 1 sliced_term_posns[term_id] = encoder.slice(encoded, keys=doc_ids) return PosnBitArray(sliced_term_posns, max_doc_id) def __getitem__(self, key): return self.slice(key) def merge(self, other): # Unique terms unique_terms = set(self.encoded_term_posns.keys()).union(set(other.encoded_term_posns.keys())) for term_id in unique_terms: if term_id not in other.encoded_term_posns: continue elif term_id not in self.encoded_term_posns: self.encoded_term_posns[term_id] = other.encoded_term_posns[term_id] else: posns_self = self.encoded_term_posns[term_id] posns_other = other.encoded_term_posns[term_id] self.encoded_term_posns[term_id] = snp.merge(posns_self, posns_other) self.max_doc_id = self.max_doc_id + other.max_doc_id # Empty caches self.termfreq_cache = {} self.docfreq_cache = {} def doc_encoded_posns(self, term_id: int, doc_id: int) -> np.ndarray: term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np.asarray([doc_id], dtype=np.uint64)) return term_posns def phrase_freqs(self, term_ids: List[int], phrase_freqs: np.ndarray, doc_ids: np.ndarray) -> np.ndarray: if len(term_ids) < 2: raise ValueError("Must have at least two terms") if phrase_freqs.shape[0] == self.max_doc_id + 1: enc_term_posns = [self.encoded_term_posns[term_id] for term_id in term_ids] else: enc_term_posns = [encoder.slice(self.encoded_term_posns[term_id], keys=doc_ids.view(np.uint64)) for term_id in term_ids] return compute_phrase_freqs(enc_term_posns, phrase_freqs) def positions(self, term_id: int, doc_ids) -> Union[List[np.ndarray], np.ndarray]: if isinstance(doc_ids, numbers.Number): doc_ids = np.asarray([doc_ids]) try: np_doc_ids = convert_keys(doc_ids) term_posns = encoder.slice(self.encoded_term_posns[term_id], keys=np_doc_ids) <fim_suffix> decoded = encoder.decode(encoded=term_posns, get_keys=True) if len(decoded) == 0: return [np.array([], dtype=np.uint32)] if len(decoded) != len(doc_ids): # Fill non matches decoded = cast(List[Tuple[np.uint64, np.ndarray]], decoded) as_dict: Dict[np.uint64, np.ndarray] = dict(decoded) decs = [] for doc_id in doc_ids: if doc_id in as_dict: decs.append(as_dict[doc_id]) else: decs.append(np.array([], dtype=np.uint32)) return decs else: decs = [dec[1] for dec in decoded] return decs def termfreqs(self, term_id: int, doc_ids: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]: """Count term freqs using unique positions.""" if doc_ids is None: return self._termfreqs_with_cache(term_id) encoded = self.encoded_term_posns[term_id] term_posns = encoded term_posns = encoder.slice(encoded, keys=doc_ids.astype(np.uint64)) return self._computed_term_freqs(term_posns) def _computed_term_freqs(self, term_posns) -> Tuple[np.ndarray, np.ndarray]: doc_ids = encoder.keys(term_posns) change_indices = np.nonzero(np.diff(doc_ids))[0] change_indices = np.concatenate((np.asarray([0]), change_indices + 1)) posns = term_posns & encoder.payload_lsb_mask bit_counts = bit_count64(posns) term_freqs = np.add.reduceat(bit_counts, change_indices) return sorted_unique(doc_ids), term_freqs def _termfreqs_with_cache(self, term_id: int) -> Tuple[np.ndarray, np.ndarray]: try: return self.termfreq_cache[term_id] except KeyError: term_posns = self.encoded_term_posns[term_id] doc_ids, term_freqs = self._computed_term_freqs(term_posns) if self._is_cached(term_id): self.termfreq_cache[term_id] = (doc_ids, term_freqs) return doc_ids, term_freqs def _is_cached(self, term_id: int) -> bool: return term_id in self.docfreq_cache def _docfreq_from_cache(self, term_id: int) -> np.uint64: return self.docfreq_cache[term_id] def _maybe_cache_docfreq(self, term_id: int, docfreq: np.uint64): if self.max_doc_id >= 100000 and docfreq > (self.max_doc_id // 100): self.docfreq_cache[term_id] = docfreq def docfreq(self, term_id: int) -> np.uint64: try: return self.docfreq_cache[term_id] except KeyError: encoded = self.encoded_term_posns[term_id] docfreq = np.uint64(encoder.keys_unique(encoded).size) self._maybe_cache_docfreq(term_id, docfreq) return docfreq def insert(self, key, term_ids_to_posns, is_encoded=False): new_posns = PosnBitArrayBuilder() if is_encoded: new_posns = PosnBitArrayAlreadyEncBuilder() max_doc_id = 0 for doc_id, new_posns_row in enumerate(term_ids_to_posns): for term_id, positions in new_posns_row: new_posns.add_posns(doc_id, term_id, positions) max_doc_id = max(doc_id, max_doc_id) new_posns.max_doc_id = max_doc_id ins_arr = new_posns.build() self.merge(ins_arr) @property def nbytes(self): arr_bytes = 0 for doc_id, posn in self.encoded_term_posns.items(): arr_bytes += posn.nbytes for term_id, (doc_ids, term_freqs) in self.termfreq_cache.items(): arr_bytes += doc_ids.nbytes arr_bytes += term_freqs.nbytes for term_id, docfreq in self.docfreq_cache.items(): arr_bytes += docfreq.nbytes return arr_bytes <fim_middle>except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val
except KeyError: r_val = [np.array([], dtype=np.uint32) for doc_id in doc_ids] if len(r_val) == 1 and len(doc_ids) == 1 and isinstance(doc_ids[0], numbers.Number): return [r_val[0]] return r_val
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/postings.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") # searcharray/searcharray/term_dict.py def get_term(self, term_id): try: return self.id_to_terms[term_id] except KeyError: raise TermMissingError(f"Term at {term_id} not present in dictionary. Reindex to add.") # searcharray/searcharray/utils/mat_set.py def build(self): return SparseMatSet(cols=np.asarray(self.cols, dtype=np.uint32), rows=np.asarray(self.rows, dtype=np.uint32)) """ """Tokenized, searchable text as a pandas dtype.""" import pandas as pd import numbers from pandas.api.extensions import ExtensionDtype, ExtensionArray, register_extension_dtype from pandas.api.types import is_list_like from pandas.api.extensions import take import json from collections import Counter import warnings import logging from typing import List, Union, Optional, Iterable import numpy as np from searcharray.phrase.scan_merge import scan_merge_ins from searcharray.phrase.posn_diffs import compute_phrase_freqs from searcharray.phrase.middle_out import PosnBitArray from searcharray.similarity import Similarity, default_bm25 from searcharray.indexing import build_index_from_tokenizer, build_index_from_terms_list from searcharray.term_dict import TermMissingError logger = logging.getLogger(__name__) # When running in pytest import sys # noqa handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.ERROR) formatter = logging.Formatter("[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) class Terms: """An indexed search doc - a single bag of tokenized words and positions.""" def __init__(self, postings, doc_len: int = 0, posns: Optional[dict] = None, encoded=False): self.postings = postings self.posns = None self.encoded = encoded self.doc_len = doc_len self.posns = posns def _validate_posns(self): # (For testing/assertions) - Confirm every term in positions also in postings if self.posns is None: return for term in self.posns: if term not in self.postings: raise ValueError(f"Term {term} in positions but not in postings. ") def termfreq(self, token): return self.postings[token] def terms(self): return self.postings.items() def positions(self, term=None): if self.posns is None: return {} if term is None: posns = self.posns.items() else: posns = self.posns[term] return posns def raw_positions(self, term_dict, term=None): if self.posns is None: return {} if term is None: posns = [(term_dict.get_term_id(term), posns) for term, posns in self.posns.items()] else: posns = [(term_dict.get_term_id(term), self.posns[term])] return posns def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense def __len__(self): return len(self.postings) def __repr__(self): posting_keys = set(self.postings.keys()) rval = f"Terms({posting_keys})" return rval def __str__(self): return repr(self) def __eq__(self, other): # Flip to the other implementation if we're comparing to a SearchArray # to get a boolean array back if isinstance(other, SearchArray): return other == self same_postings = isinstance(other, Terms) and self.postings == other.postings if same_postings and self.doc_len == other.doc_len: return True def __lt__(self, other): # return isinstance(other, Terms) and hash(self) < hash(other) keys_both = set(self.postings.keys()).union(set(other.postings.keys())) # Sort lexically keys_both = sorted(keys_both) # Iterate as if these are two vectors of the same large dimensional vector sparse for key in keys_both: lhs_val = 0 rhs_val = 0 try: lhs_val = self.postings[key] except KeyError: pass try: rhs_val = other.postings[key] except KeyError: pass if lhs_val < rhs_val: return True elif lhs_val > rhs_val: return False else: continue return False def __le__(self, other): return self < other or self == other def __gt__(self, other): return not (self < other) and self != other def __hash__(self): return hash(json.dumps(self.postings, sort_keys=True)) class TermsDtype(ExtensionDtype): """Pandas dtype for terms.""" name = 'tokenized_text' type = Terms kind = 'O' @classmethod def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) @classmethod def construct_array_type(cls): return SearchArray def __repr__(self): return 'TermsDtype()' @property def na_value(self): return Terms({}) def valid_value(self, value): return isinstance(value, dict) or pd.isna(value) or isinstance(value, Terms) register_extension_dtype(TermsDtype) def ws_tokenizer(string): if pd.isna(string): return [] if not isinstance(string, str): raise ValueError("Expected a string") return string.split() def _row_to_postings_row(doc_id, row, doc_len, term_dict, posns: PosnBitArray): tfs = {} labeled_posns = {} for term_idx in row.cols: term = term_dict.get_term(term_idx) tfs[term] = 1 enc_term_posns = posns.doc_encoded_posns(term_idx, doc_id=doc_id) labeled_posns[term] = enc_term_posns result = Terms(tfs, posns=labeled_posns, doc_len=doc_len, encoded=True) return result class SearchArray(ExtensionArray): """An array of tokenized text (Termss).""" dtype = TermsDtype() def __init__(self, postings, tokenizer=ws_tokenizer, avoid_copies=True): # Check dtype, raise TypeError if not is_list_like(postings): raise TypeError("Expected list-like object, got {}".format(type(postings))) self.avoid_copies = avoid_copies self.tokenizer = tokenizer self.term_mat, self.posns, \ self.term_dict, self.avg_doc_length, \ self.doc_lens = build_index_from_terms_list(postings, Terms) @classmethod def index(cls, array: Iterable, tokenizer=ws_tokenizer, truncate=False, batch_size=100000, avoid_copies=True) -> 'SearchArray': """Index an array of strings using tokenizer.""" if not is_list_like(array): raise TypeError("Expected list-like object, got {}".format(type(array))) term_mat, posns, term_dict, avg_doc_length, doc_lens =\ build_index_from_tokenizer(array, tokenizer, batch_size=batch_size, truncate=truncate) postings = cls([], tokenizer=tokenizer, avoid_copies=avoid_copies) postings.term_mat = term_mat postings.posns = posns postings.term_dict = term_dict postings.avg_doc_length = avg_doc_length postings.doc_lens = doc_lens return postings @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new SearchArray from a sequence of scalars (PostingRow or convertible into).""" if dtype is not None: if not isinstance(dtype, TermsDtype): return scalars if isinstance(scalars, np.ndarray) and scalars.dtype == TermsDtype(): return cls(scalars) # String types elif isinstance(scalars, np.ndarray) and scalars.dtype.kind in 'US': return cls(scalars) # Other objects elif isinstance(scalars, np.ndarray) and scalars.dtype != object: return scalars return cls(scalars) def memory_usage(self, deep=False): """Return memory usage of this array in bytes.""" return self.nbytes @property def nbytes(self): return self.term_mat.nbytes + self.posns.nbytes + self.doc_lens.nbytes + self.term_dict.nbytes def __getitem__(self, key): key = pd.api.indexers.check_array_indexer(self, key) # Want to take rows of term freqs if isinstance(key, numbers.Integral): try: rows = self.term_mat[key] doc_len = self.doc_lens[key] doc_id = key if doc_id < 0: doc_id += len(self) return _row_to_postings_row(doc_id, rows[0], doc_len, self.term_dict, self.posns) except IndexError: raise IndexError("index out of bounds") else: # Construct a sliced view of this array sliced_tfs = self.term_mat.slice(key) sliced_posns = self.posns.slice(sliced_tfs.rows) if not self.avoid_copies else self.posns arr = SearchArray([], tokenizer=self.tokenizer) arr.term_mat = sliced_tfs arr.doc_lens = self.doc_lens[key] arr.posns = sliced_posns arr.term_dict = self.term_dict arr.avg_doc_length = self.avg_doc_length return arr def __setitem__(self, key, value): """Set an item in the array.""" key = pd.api.indexers.check_array_indexer(self, key) if isinstance(value, pd.Series): value = value.values if isinstance(value, pd.DataFrame): value = value.values.flatten() if isinstance(value, SearchArray): value = value.to_numpy() if isinstance(value, list): value = np.asarray(value, dtype=object) if not isinstance(value, np.ndarray) and not self.dtype.valid_value(value): raise ValueError(f"Cannot set non-object array to SearchArray -- you passed type:{type(value)} -- {value}") # Cant set a single value to an array if isinstance(key, numbers.Integral) and isinstance(value, np.ndarray): raise ValueError("Cannot set a single value to an array") try: is_encoded = False posns = None term_mat = np.asarray([]) doc_lens = np.asarray([]) if isinstance(value, float): term_mat = np.asarray([value]) doc_lens = np.asarray([0]) elif isinstance(value, Terms): term_mat = np.asarray([value.tf_to_dense(self.term_dict)]) doc_lens = np.asarray([value.doc_len]) is_encoded = value.encoded posns = [value.raw_positions(self.term_dict)] elif isinstance(value, np.ndarray): term_mat = np.asarray([x.tf_to_dense(self.term_dict) for x in value]) doc_lens = np.asarray([x.doc_len for x in value]) is_encoded = value[0].encoded if len(value) > 0 else False posns = [x.raw_positions(self.term_dict) for x in value] np.nan_to_num(term_mat, copy=False, nan=0) self.term_mat[key] = term_mat self.doc_lens[key] = doc_lens if posns is not None: self.posns.insert(key, posns, is_encoded) # Assume we have a positions for each term, doc pair. We can just update it. # Otherwise we would have added new terms except TermMissingError: self._add_new_terms(key, value) def _add_new_terms(self, key, value): msg = """Adding new terms! This might not be good if you tokenized this new text with a different tokenizer. Also. This is slow.""" warnings.warn(msg) scan_value = value if isinstance(value, Terms): scan_value = np.asarray([value]) for row in scan_value: for term in row.terms(): self.term_dict.add_term(term[0]) self.term_mat.resize((self.term_mat.shape[0], len(self.term_dict))) # Ensure posns_lookup has at least max self.posns self[key] = value def value_counts( self, dropna: bool = True, ): if dropna: counts = Counter(self[:]) counts.pop(Terms({}), None) else: counts = Counter(self[:]) return pd.Series(counts) def __len__(self): len_rval = len(self.term_mat.rows) return len_rval def __ne__(self, other): if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented return ~(self == other) def __eq__(self, other): """Return a boolean numpy array indicating elementwise equality.""" # When other is a dataframe or series, not implemented if isinstance(other, pd.DataFrame) or isinstance(other, pd.Series) or isinstance(other, pd.Index): return NotImplemented # When other is an ExtensionArray if isinstance(other, SearchArray): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) else: # Compatible term dicts, and same term freqs # (not looking at positions, maybe we should?) if self.term_dict.compatible(other.term_dict): return (self.term_mat == other.term_mat) & (self.doc_lens == other.doc_lens) else: return np.zeros(len(self), dtype=bool) # return np.array(self[:]) == np.array(other[:]) # When other is a scalar value elif isinstance(other, Terms): other = SearchArray([other], tokenizer=self.tokenizer) warnings.warn("Comparing a scalar value to a SearchArray. This is slow.") return np.array(self[:]) == np.array(other[:]) # When other is a sequence but not an ExtensionArray # its an array of dicts elif is_list_like(other): if len(self) != len(other): return False elif len(other) == 0: return np.array([], dtype=bool) # We actually don't know how it was tokenized other = SearchArray(other, tokenizer=self.tokenizer) return np.array(self[:]) == np.array(other[:]) # Return False where 'other' is neither the same length nor a scalar else: return np.full(len(self), False) def isna(self): # Every row with all 0s empties = self.doc_lens == 0 return empties def take(self, indices, allow_fill=False, fill_value=None): # Want to take rows of term freqs row_indices = np.arange(len(self.term_mat.rows)) # Take within the row indices themselves result_indices = take(row_indices, indices, allow_fill=allow_fill, fill_value=-1) if allow_fill and -1 in result_indices: if fill_value is None or pd.isna(fill_value): fill_value = Terms({}, encoded=True) to_fill_mask = result_indices == -1 # This is slow as it rebuilds all the term dictionaries # on the subsequent assignment lines # However, this case tends to be the exception for # most dataframe operations taken = SearchArray([fill_value] * len(result_indices)) taken[~to_fill_mask] = self[result_indices[~to_fill_mask]].copy() return taken else: taken = self[result_indices].copy() return taken def copy(self): postings_arr = SearchArray([], tokenizer=self.tokenizer) postings_arr.doc_lens = self.doc_lens.copy() postings_arr.term_mat = self.term_mat.copy() postings_arr.posns = self.posns postings_arr.term_dict = self.term_dict postings_arr.avg_doc_length = self.avg_doc_length if not self.avoid_copies: postings_arr.posns = self.posns.copy() postings_arr.term_dict = self.term_dict.copy() return postings_arr @classmethod def _concat_same_type(cls, to_concat): concatenated_data = np.concatenate([ea[:] for ea in to_concat]) return SearchArray(concatenated_data, tokenizer=to_concat[0].tokenizer) @classmethod def _from_factorized(cls, values, original): return cls(values) def _values_for_factorize(self): """Return an array and missing value suitable for factorization (ie grouping).""" arr = np.asarray(self[:], dtype=object) return arr, Terms({}) def _check_token_arg(self, token): if isinstance(token, str): return token elif isinstance(token, list) and len(token) == 1: return token[0] elif isinstance(token, list): return token else: raise TypeError("Expected a string or list of strings for phrases") # *********************************************************** # Search functionality # *********************************************************** def termfreqs(self, token: Union[List[str], str]) -> np.ndarray: token = self._check_token_arg(token) if isinstance(token, list): return self.phrase_freq(token) try: term_id = self.term_dict.get_term_id(token) matches = np.zeros(len(self), dtype=int) slice_of_rows = None if self.term_mat.subset: slice_of_rows = self.term_mat.rows doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) mask = np.isin(self.term_mat.rows, doc_ids) matches[mask] = termfreqs return matches else: doc_ids, termfreqs = self.posns.termfreqs(term_id, doc_ids=slice_of_rows) matches[doc_ids] = termfreqs return matches <fim_suffix> def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 def doclengths(self) -> np.ndarray: return self.doc_lens def match(self, token: Union[List[str], str], slop: int = 1) -> np.ndarray: """Return a boolean numpy array indicating which elements contain the given term.""" token = self._check_token_arg(token) if isinstance(token, list): term_freq = self.phrase_freq(token) else: term_freq = self.termfreqs(token) return term_freq > 0 def score(self, token: Union[str, List[str]], similarity: Similarity = default_bm25) -> np.ndarray: """Score each doc using a similarity function. Parameters ---------- token : str or list of str of what to search (already tokenized) similarity : How to score the documents. Default is BM25. """ # Get term freqs per token token = self._check_token_arg(token) # For expensive toknes, we compute doc freq first, so we # cache them in the DF cache, to let TF cache know it should be cached tokens_l = [token] if isinstance(token, str) else token all_dfs = np.asarray([self.docfreq(token) for token in tokens_l]) tfs = self.termfreqs(token) token = self._check_token_arg(token) doc_lens = self.doclengths() scores = similarity(term_freqs=tfs, doc_freqs=all_dfs, doc_lens=doc_lens, avg_doc_lens=self.avg_doc_length, num_docs=len(self)) return scores def positions(self, token: str, key=None) -> List[np.ndarray]: """Return a list of lists of positions of the given term.""" term_id = self.term_dict.get_term_id(token) key = self.term_mat.rows[key] if key is not None else self.term_mat.rows posns = self.posns.positions(term_id, doc_ids=key) return posns def and_query(self, tokens: Union[List[str], List[List[str]]]) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.ones(len(self), dtype=bool) for curr_mask in masks: mask = mask & curr_mask return mask def or_query(self, tokens: Union[List[str], List[List[str]]], min_should_match: int = 1) -> np.ndarray: """Return a mask on the postings array indicating which elements contain all terms.""" masks = [self.match(term) for term in tokens] mask = np.sum(masks, axis=0) >= min_should_match return mask def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) def phrase_freq_scan(self, tokens: List[str], mask=None, slop=1) -> np.ndarray: if mask is None: mask = self.and_query(tokens) if np.sum(mask) == 0: return mask # Gather positions posns = [self.positions(token, mask) for token in tokens] phrase_freqs = np.zeros(len(self)) phrase_freqs[mask] = scan_merge_ins(posns, phrase_freqs[mask], slop=slop) return phrase_freqs def phrase_freq_every_diff(self, tokens: List[str], slop=1) -> np.ndarray: phrase_freqs = -np.ones(len(self)) mask = self.and_query(tokens) phrase_freqs[~mask] = 0 if np.sum(mask) == 0: return phrase_freqs term_posns = [self.positions(term, mask) for term in tokens] for width in [10, 20, 30, 40]: phrase_freqs[mask] = compute_phrase_freqs(term_posns, phrase_freqs[mask], slop=slop, width=width) remaining_mask = phrase_freqs == -1 if np.any(remaining_mask): remainder_freqs = self.phrase_freq_scan(tokens, mask=remaining_mask, slop=slop) phrase_freqs[remaining_mask] = remainder_freqs[remaining_mask] return phrase_freqs <fim_middle>except TermMissingError: return np.zeros(len(self), dtype=int)
except TermMissingError: return np.zeros(len(self), dtype=int)
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/solr.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/term_dict.py def get_term_id(self, term): try: return self.term_to_ids[term] except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.") # searcharray/searcharray/term_dict.py def get_term(self, term_id): try: return self.id_to_terms[term_id] except KeyError: raise TermMissingError(f"Term at {term_id} not present in dictionary. Reindex to add.") # searcharray/searcharray/postings.py def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 """ """Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) <fim_suffix> result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>except ValueError: raise ValueError(error_message)
except ValueError: raise ValueError(error_message)
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/term_dict.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/postings.py def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 # searcharray/searcharray/postings.py def tf_to_dense(self, term_dict): """Convert to a dense vector of term frequencies.""" dense = np.zeros(len(term_dict)) for term, freq in self.terms(): dense[term_dict.get_term_id(term)] = freq return dense # searcharray/searcharray/postings.py def phrase_freq(self, tokens: List[str], slop=1) -> np.ndarray: if slop == 1 and len(tokens) == len(set(tokens)): phrase_freqs = np.zeros(len(self)) try: doc_ids = self.term_mat.rows term_ids = [self.term_dict.get_term_id(token) for token in tokens] return self.posns.phrase_freqs(term_ids, doc_ids=doc_ids, phrase_freqs=phrase_freqs) except TermMissingError: return phrase_freqs else: return self.phrase_freq_every_diff(tokens, slop=slop) """ import sys class TermMissingError(KeyError): def __init__(self, msg): super().__init__(msg) class TermDict: def __init__(self): self.term_to_ids = {} self.id_to_terms = {} def add_term(self, term): if term in self.term_to_ids: return self.term_to_ids[term] term_id = len(self.term_to_ids) self.term_to_ids[term] = term_id self.id_to_terms[term_id] = term return term_id def copy(self): new_dict = TermDict() new_dict.term_to_ids = dict(self.term_to_ids) new_dict.id_to_terms = dict(self.id_to_terms.copy()) return new_dict def get_term_id(self, term): try: return self.term_to_ids[term] <fim_suffix> def get_term(self, term_id): try: return self.id_to_terms[term_id] except KeyError: raise TermMissingError(f"Term at {term_id} not present in dictionary. Reindex to add.") def compatible(self, other) -> bool: # Intersect the terms in both dictionaries terms_self = list(self.term_to_ids.keys()) terms_other = list(other.term_to_ids.keys()) shortest = min(len(terms_self), len(terms_other)) return terms_self[:shortest] == terms_other[:shortest] # If the intersection is empty, the dictionaries are not compatible def __len__(self): return len(self.term_to_ids) def __repr__(self): return repr(self.term_to_ids) @property def nbytes(self): bytes_used = sys.getsizeof(self.term_to_ids) + sys.getsizeof(self.id_to_terms) return bytes_used <fim_middle>except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.")
except KeyError: raise TermMissingError(f"Term {term} not present in dictionary. Reindex to add.")
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/solr.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/similarity.py def bm25_legacy_similarity(k1: float = 1.2, b: float = 0.75) -> Similarity: """BM25 similarity prior to LUCENE-8563 with k1 + 1 in numerator.""" # (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) def bm25(term_freqs: np.ndarray, doc_freqs: np.ndarray, doc_lens: np.ndarray, avg_doc_lens: int, num_docs: int) -> np.ndarray: """Calculate BM25 scores.""" # Sum doc freqs sum_dfs = np.sum(doc_freqs, axis=0) # Calculate idf idf = np.log(1 + (num_docs - sum_dfs + 0.5) / (sum_dfs + 0.5)) # Calculate tf tf = (term_freqs * (k1 + 1)) / (term_freqs + k1 * (1 - b + b * doc_lens / avg_doc_lens)) return idf * tf return bm25 # searcharray/searcharray/similarity.py def bm25_similarity(k1: float = 1.2, b: float = 0.75) -> Similarity: """BM25 similarity function, as in Lucene 9.""" def bm25(term_freqs: np.ndarray, doc_freqs: np.ndarray, doc_lens: np.ndarray, avg_doc_lens: int, num_docs: int) -> np.ndarray: """Calculate BM25 scores.""" # Sum doc freqs sum_dfs = np.sum(doc_freqs, axis=0) # Calculate idf idf = np.log(1 + (num_docs - sum_dfs + 0.5) / (sum_dfs + 0.5)) # Calculate tf tf = term_freqs / (term_freqs + k1 * (1 - b + b * doc_lens / avg_doc_lens)) return idf * tf return bm25 # searcharray/searcharray/phrase/middle_out.py def compute_phrase_freqs(encoded_posns: List[np.ndarray], phrase_freqs: np.ndarray) -> np.ndarray: if len(encoded_posns) < 2: raise ValueError("phrase must have at least two terms") # Trim long phrases by searching the rarest terms first if len(encoded_posns) > 3: encoded_posns = trim_phrase_search(encoded_posns, phrase_freqs) mask = np.ones(len(phrase_freqs), dtype=bool) lhs = encoded_posns[0] for rhs in encoded_posns[1:]: # Only count the count of the last bigram (ignoring the ones where priors did not match) phrase_freqs[mask] = 0 phrase_freqs, lhs = bigram_freqs(lhs, rhs, phrase_freqs) mask &= (phrase_freqs > 0) phrase_freqs[~mask] = 0 return phrase_freqs """ """Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message) result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ <fim_suffix> query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>def listify(x): return x if isinstance(x, list) else [x]
def listify(x): return x if isinstance(x, list) else [x]
METHOD
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>searcharray/searcharray/solr.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # searcharray/searcharray/phrase/posn_diffs.py def compute_phrase_freqs(term_posns, phrase_freqs, slop=1, width=10): """Compute phrase freq using matrix-diff method for docs up to width posns. Skip others. Parameters ---------- term_posns: list of np.ndarray term positions for a given term across multiple docs phrase_freqs: np.ndarray, phrase freqs for each doc present in term_posns Returns ------- phrase_freqs: np.ndarray, phrase freqs for each doc present in mask See Also -------- Colab notebook: https://colab.research.google.com/drive/1NRxeO8Ya8jSlFP5YwZaGh1-43kDH4OXG?authuser=1#scrollTo=5JZV8svpauYB """ if len(term_posns[0]) != len(phrase_freqs): raise ValueError("term_posns and phrase_freqs must be same length") stacked = stack_term_posns(term_posns, phrase_freqs, width=width) phrase_freqs = _compute_phrase_freqs(stacked, phrase_freqs, slop=slop) phrase_freqs[phrase_freqs == -2] = -1 return phrase_freqs # searcharray/searcharray/postings.py def docfreq(self, token: str) -> int: if not isinstance(token, str): raise TypeError("Expected a string") # Count number of rows where the term appears try: return self.posns.docfreq(self.term_dict.get_term_id(token)) except TermMissingError: return 0 # searcharray/searcharray/postings.py def construct_from_string(cls, string): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got {}".format(type(string)) ) elif string == cls.name: return cls() else: raise TypeError( "Cannot construct a '{}' from '{}'".format(cls.__name__, string) ) """ """Utility functions for Solr users of searcharray.""" import re import pandas as pd import numpy as np from typing import List, Optional, Dict, Tuple from searcharray.postings import SearchArray from searcharray.similarity import Similarity, default_bm25 def parse_min_should_match(num_clauses: int, spec: str) -> int: """Parse Solr's min should match (ie mm) spec. See this ChatGPT translation of mm code from Solr's Java code for parsing this https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb Parameters ---------- num_clauses : int spec : str Returns ------- int : the number of clauses that must match """ <fim_suffix> result = num_clauses spec = spec.strip() if '<' in spec: # we have conditional spec(s) space_around_less_than_pattern = re.compile(r'\s*<\s*') spec = space_around_less_than_pattern.sub('<', spec) for s in spec.split(): parts = s.split('<', 1) if len(parts) < 2: raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") if num_clauses <= upper_bound: return result else: result = parse_min_should_match(num_clauses, parts[1]) return result # otherwise, simple expression if '%' in spec: # percentage - assume the % was the last char. If not, let int() fail. spec = spec[:-1] percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") calc = (result * percent) * (1 / 100) result = result + int(calc) if calc < 0 else int(calc) else: calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") result = result + calc if calc < 0 else calc return min(num_clauses, max(result, 0)) def parse_field_boosts(field_lists: List[str]) -> dict: """Parse Solr's qf, pf, pf2, pf3 field boosts.""" if not field_lists: return {} out = {} carat_pattern = re.compile(r'\^') for field in field_lists: parts = carat_pattern.split(field) out[parts[0]] = None if len(parts) == 1 else float(parts[1]) return out def get_field(frame, field) -> SearchArray: if field not in frame.columns: raise ValueError(f"Field {field} not in dataframe") if not isinstance(frame[field].array, SearchArray): raise ValueError(f"Field {field} is not a searcharray field") return frame[field].array def parse_query_terms(frame: pd.DataFrame, query: str, query_fields: List[str]): search_terms: Dict[str, List[str]] = {} num_search_terms = 0 term_centric = True for field in query_fields: arr = get_field(frame, field) tokenizer = arr.tokenizer search_terms[field] = [] field_num_search_terms = 0 for posn, term in enumerate(tokenizer(query)): search_terms[field].append(term) field_num_search_terms += 1 if num_search_terms == 0: num_search_terms = field_num_search_terms elif field_num_search_terms != num_search_terms: term_centric = False return num_search_terms, search_terms, term_centric def _edismax_term_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity) -> Tuple[np.ndarray, str]: explain = [] term_scores = [] for term_posn in range(num_search_terms): max_scores = np.zeros(len(frame)) term_explain = [] for field, boost in query_fields.items(): term = search_terms[field][term_posn] post_arr = get_field(frame, field) field_term_score = post_arr.score(term, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" term_explain.append(f"{field}:{term}^{boost_exp}") max_scores = np.maximum(max_scores, field_term_score) term_scores.append(max_scores) explain.append("(" + " | ".join(term_explain) + ")") min_should_match = parse_min_should_match(num_search_terms, spec=mm) qf_scores = np.asarray(term_scores) matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match qf_scores = np.sum(term_scores, axis=0) qf_scores[~matches_gt_mm] = 0 return qf_scores, "(" + " ".join(explain) + f")~{min_should_match}" def _edismax_field_centric(frame: pd.DataFrame, query_fields: Dict[str, float], num_search_terms: int, search_terms: Dict[str, List[str]], mm: str, similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: field_scores = [] explain = [] for field, boost in query_fields.items(): post_arr = get_field(frame, field) term_scores = np.array([post_arr.score(term, similarity=similarity) for term in search_terms[field]]) min_should_match = parse_min_should_match(len(search_terms[field]), spec=mm) exp = " ".join([f"{field}:{term}" for term in search_terms[field]]) boost_exp = f"{boost}" if boost is not None else "1" exp = "(" + exp + f")~{min(min_should_match, len(search_terms[field]))}" exp = "(" + exp + f")^{boost_exp}" matches_gt_mm = np.sum(term_scores > 0, axis=0) >= min(min_should_match, len(search_terms[field])) sum_terms_bm25 = np.sum(term_scores, axis=0) sum_terms_bm25[~matches_gt_mm] = 0 field_scores.append(sum_terms_bm25 * (1 if boost is None else boost)) explain.append(exp) # Take maximum field scores as qf qf_scores = np.asarray(field_scores) qf_scores = np.max(qf_scores, axis=0) return qf_scores, " | ".join(explain) def edismax(frame: pd.DataFrame, q: str, qf: List[str], mm: Optional[str] = None, pf: Optional[List[str]] = None, pf2: Optional[List[str]] = None, pf3: Optional[List[str]] = None, q_op: str = "OR", similarity: Similarity = default_bm25) -> Tuple[np.ndarray, str]: """Run edismax search over dataframe with searcharray fields. Parameters ---------- q : str The query string mm : str The minimum should match spec qf : list The fields to search pf : list The fields to search for phrase matches pf2 : list The fields to search for bigram matches pf3 : list The fields to search for trigram matches q_op : str, optional The default operator, by default "OR" Returns ------- np.ndarray The search results """ def listify(x): return x if isinstance(x, list) else [x] query_fields = parse_field_boosts(listify(qf)) phrase_fields = parse_field_boosts(listify(pf)) if pf else {} if mm is None: mm = "1" if q_op == "AND": mm = "100%" # bigram_fields = parse_field_boosts(pf2) if pf2 else {} # trigram_fields = parse_field_boosts(pf3) if pf3 else {} num_search_terms, search_terms, term_centric = parse_query_terms(frame, q, list(query_fields.keys())) if term_centric: qf_scores, explain = _edismax_term_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) else: qf_scores, explain = _edismax_field_centric(frame, query_fields, num_search_terms, search_terms, mm, similarity=similarity) phrase_scores = [] for field, boost in phrase_fields.items(): arr = get_field(frame, field) terms = search_terms[field] field_phrase_score = arr.score(terms, similarity=similarity) * (1 if boost is None else boost) boost_exp = f"{boost}" if boost is not None else "1" explain += f" ({field}:\"{' '.join(terms)}\")^{boost_exp}" phrase_scores.append(field_phrase_score) if len(phrase_scores) > 0: phrase_scores = np.sum(phrase_scores, axis=0) # Add where term_scores > 0 term_match_idx = np.where(qf_scores)[0] qf_scores[term_match_idx] += phrase_scores[term_match_idx] return qf_scores, explain <fim_middle>def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message)
def checked_parse_int(value, error_message): try: return int(value) except ValueError: raise ValueError(error_message)
METHOD
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/language_models/language_model_manager.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/language_models/embedding_model_manager.py def get_embedding_case(self, args, function_description: FunctionDescription, kwargs, examples=None): # example_input = f"Examples:{examples}\n" if examples else "" content = f"Name: {function_description.name}\nArgs: {args}\nKwargs: {kwargs}" function_hash = function_description.__hash__() if function_hash in self.function_modeler.teacher_models_override: # check for overrides model = self.function_modeler.teacher_models_override[function_hash][0] # take currently the first model else: model = DEFAULT_EMBEDDING_MODELS[DEFAULT_EMBEDDING_MODEL_NAME] # loggings if function_hash not in self.initialized_functions: logging.info(f"Generating function embeddings for {function_description.name} with {model.model_name}") self.initialized_functions[function_hash] = model.model_name elif self.initialized_functions[function_hash] != model.model_name: logging.info(f"Switching embeddings generation for {function_description.name} from {self.initialized_functions[function_hash]} to {model.model_name}") self.initialized_functions[function_hash] = model.model_name return content, model # tanuki_py/src/tanuki/language_models/llm_api_abc.py def generate(self, model, system_message, prompt, **kwargs): """ The main generation function, given the args, kwargs, function_modeler, function description and model type, generate a response and check if the datapoint can be saved to the finetune dataset """ pass # tanuki_py/src/tanuki/utils.py def get_key(args, kwargs) -> tuple: args_tuple = _deep_tuple(args) kwargs_tuple = _deep_tuple(kwargs) return args_tuple, kwargs_tuple """ import json from typing import Any, Dict from tanuki.function_modeler import FunctionModeler from tanuki.language_models.llm_api_abc import LLM_API from tanuki.models.function_description import FunctionDescription from tanuki.models.function_example import FunctionExample from tanuki.models.language_model_output import LanguageModelOutput from tanuki.utils import approximate_token_count from tanuki.validator import Validator from tanuki.models.api_manager import APIManager from tanuki.language_models.llm_configs.abc_base_config import BaseModelConfig import logging class LanguageModelManager(object): """ The LanguageModelManager is responsible for managing the language models and their outputs operationally, this includes: - Generating outputs from the language models - Repairing outputs from the language models - Saving outputs from the language models - Finetuning the language models from the saved outputs """ def __init__(self, function_modeler: FunctionModeler, api_provider: APIManager, generation_token_limit=512,) -> None: self.api_provider = api_provider self.function_modeler = function_modeler self.default_generation_length = generation_token_limit self.initialized_functions = {} self.token_counts = {} def __call__(self, args, function_description: FunctionDescription, kwargs, validator: Validator, generation_parameters: dict) -> Any: # add the generation length if not there if "max_new_tokens" not in generation_parameters: generation_parameters["max_new_tokens"] = self.default_generation_length output = self.generate(args, kwargs, function_description, generation_parameters) # start parsing the object, very hacky way for the time being choice_parsed = self._parse_choice(output) valid = validator.check_type(choice_parsed, function_description.output_type_hint) if not valid: choice, choice_parsed, successful_repair = self.repair_output(args, kwargs, function_description, output.generated_response, validator, generation_parameters) if not successful_repair: raise TypeError( f"Output type was not valid. Expected an object of type {function_description.output_type_hint}, got '{output.generated_response}'") output.generated_response = choice output.distilled_model = False datapoint = FunctionExample(args, kwargs, output.generated_response) if output.suitable_for_finetuning and not output.distilled_model: self.function_modeler.postprocess_symbolic_datapoint(function_description.__hash__(), function_description, datapoint, repaired=not valid) instantiated = validator.instantiate(choice_parsed, function_description.output_type_hint) return instantiated def _parse_choice(self, output): try: # json load choice_parsed = json.loads(output.generated_response) except: # if it fails, it's not a json object, try eval try: choice_parsed = eval(output.generated_response) except: choice_parsed = output.generated_response return choice_parsed def generate(self, args, kwargs, function_description, llm_parameters={}): """ The main generation function, given the args, kwargs, function description and model type, generate a response and check if the datapoint can be saved to the finetune dataset """ func_hash = function_description.__hash__() prompt, model, save_to_finetune, is_distilled_model = self.get_generation_case(args, kwargs, function_description, llm_parameters, func_hash) # loggings current_function_setup = self.initialized_functions.get(func_hash, None) # getting the current function setup - model and align statements if current_function_setup: generator_model = current_function_setup["model"] if is_distilled_model: logging.info(f"Generating function outputs for {function_description.name} with a finetuned model: {model.model_name}.") self.initialized_functions[func_hash]["model"] = model.model_name elif generator_model == "": logging.info(f"Found {len(current_function_setup['examples'])} align statements for {function_description.name}. Generating function outputs with {model.model_name}.") self.initialized_functions[func_hash]["model"] = model.model_name elif generator_model != model.model_name: logging.info(f"Switching output generation from {generator_model} to {model.model_name} for function {function_description.name}.") self.initialized_functions[func_hash]["model"] = model.model_name choice = self._synthesise_answer(prompt, model, llm_parameters) output = LanguageModelOutput(choice, save_to_finetune, is_distilled_model) return output def _synthesise_answer(self, prompt, model, llm_parameters): """ Synthesise an answer given the prompt, model, model_type and llm_parameters Args: prompt (str): The prompt to send to the model model (BaseModelConfig): The model to use for generation llm_parameters (dict): The parameters to use for generation return: choice (str): The generated response """ system_message = model.system_message return self.api_provider[model.provider].generate(model, system_message, prompt, **llm_parameters) def get_generation_case(self, args, kwargs, function_description, llm_parameters, func_hash): """ Get the generation case with the correct prompt and model First get the current model, then if distilled model, do zero-shot prompt and return False as suitable_for_finetune If not distilled model, check if suitable for finetuning, create the prompt and return the correct model given the token count """ f = str(function_description.__dict__.__repr__()) distilled_model, teacher_models = self.function_modeler.get_models(function_description) is_distilled_model = distilled_model.model_name != "" suitable_for_distillation, input_prompt_token_count = self.suitable_for_finetuning_token_check(args, kwargs, f, distilled_model) if func_hash not in self.initialized_functions: # initialise the initialized_functions dict self.initialized_functions[func_hash] = {"model": "", "examples": []} # no examples needed, using a finetuned model. Dont save to finetune dataset if is_distilled_model and suitable_for_distillation: prompt = self.construct_prompt(f, args, kwargs, [], distilled_model) return prompt, distilled_model, suitable_for_distillation, True else: aligns = self.function_modeler.get_symbolic_alignments(function_description.__hash__(), max=16) examples = [f"Inputs:\nArgs: {align['args']}\nKwargs: {align['kwargs']}\nOutput: {align['output']}" for align in aligns] # update the examples in the initialized_functions dict self.initialized_functions[func_hash]["examples"] = examples examples_token_count = sum([approximate_token_count(example) for example in examples]) generation_tokens = llm_parameters.get("max_new_tokens", self.default_generation_length) model = self.choose_model_from_tokens(teacher_models, examples_token_count + input_prompt_token_count + generation_tokens, len(examples)) if model: examples_with_parsing_tokens = [f"Inputs:\nArgs: {align['args']}\nKwargs: {align['kwargs']}\nOutput:{model.parsing_helper_tokens['start_token']}{align['output']}{model.parsing_helper_tokens['end_token']}" for align in aligns] prompt = self.construct_prompt(f, args, kwargs, examples_with_parsing_tokens, model) return prompt, model, suitable_for_distillation, False else: raise ValueError( "The input content and align statements combined are too long, please shorten it. The maximum currently allowed token limit is 32000") def suitable_for_finetuning_token_check(self, args, kwargs, f, distilled_model: BaseModelConfig): <fim_suffix> # check if finetunable finetuning_prompt = f"Function: {f}\n---\nInputs:\nArgs: {args}\nKwargs: {kwargs}\nOutput:" input_prompt_token_count = approximate_token_count(finetuning_prompt) if distilled_model.system_message_token_count < 0: distilled_model.system_message_token_count = approximate_token_count(distilled_model.system_message) if distilled_model.instruction_token_count < 0: distilled_model.instruction_token_count = approximate_token_count(distilled_model.instructions) suitable_for_finetune = input_prompt_token_count + distilled_model.instruction_token_count + distilled_model.system_message_token_count < distilled_model.context_length return suitable_for_finetune, input_prompt_token_count def construct_prompt(self, f, args, kwargs, examples, model): """ Construct a prompt given the model, function description, args, kwargs and examples Args: model (BaseModelConfig): The model to use for generation f (str): The function description args (tuple): The args of the function kwargs (tuple): The kwargs of the function examples (list): The examples of the function Returns: content (str): The prompt to send to the model """ if examples: final_examples = "\n".join( [f"{align}" for align in examples]) example_input = f"Examples:{final_examples}\n" else: example_input = "" instruction_prompt = model.instructions content = f"{instruction_prompt}\nFunction: {f}\n{example_input}---\nInputs:\nArgs: {args}\nKwargs: {kwargs}\nOutput:" return content def repair_generate(self, args, kwargs, f, failed_outputs_list, aligns, models, llm_parameters): """ Repair the output given the input, function description, failed outputs list, examples and models """ # get the token counts examples = [f"Inputs:\nArgs: {align['args']}\nKwargs: {align['kwargs']}\nOutput: {align['output']}" for align in aligns] examples_token_count = sum([approximate_token_count(example) for example in examples]) failed_examples_token_count = sum([approximate_token_count(failed_output[0]) + approximate_token_count(failed_output[1]) for failed_output in failed_outputs_list]) input_prompt_token_count = approximate_token_count(f"Function: {f}\n---\nInputs:\nArgs: {args}\nKwargs: {kwargs}\nOutput:") generation_tokens = llm_parameters.get("max_new_tokens", self.default_generation_length) model = self.choose_model_from_tokens(models, examples_token_count+input_prompt_token_count+generation_tokens+failed_examples_token_count, len(examples)) if model: prompt = self.generate_repair_prompt(args, kwargs, f, failed_outputs_list, examples, model) logging.info(f"Previous output failed type validation, attempting to repair with {model.model_name}") choice = self._synthesise_answer(prompt, model, llm_parameters) return choice else: return None def generate_repair_prompt(self, args, kwargs, f, failed_outputs_list, examples, model): """ Generate a repair prompt given the args, kwargs, function description, failed outputs list and examples """ if examples: final_examples = "\n".join( [f"{model.parsing_helper_tokens['start_token']}{align}{model.parsing_helper_tokens['end_token']}" for align in examples]) successful_examples = f"Examples:{final_examples}\n" else: successful_examples = "" failed_examples = "" for failed_output in failed_outputs_list: failed_examples += f"Output: {failed_output[0]}\nError: {failed_output[1]}\n\n" end_token_addition = "" if model.parsing_helper_tokens["end_token"]: end_token_addition = f"Make sure to add the {model.parsing_helper_tokens['end_token']} token at the end of the output." prompt = f"{model.repair_instruction}{end_token_addition}\nFUNCTION DESCRIPTION: {f}\n{successful_examples}---{model.parsing_helper_tokens['start_token']}Inputs:\nArgs: {args}\nKwargs: {kwargs}\nFAILED EXAMPLES: {failed_examples}Correct output:" return prompt def choose_model_from_tokens(self, models, input_token_count, nr_of_examples=0): """ Choose a model from the models given the token count and number of examples Args: models (list): The models to choose from input_token_count (int): The token count of the input nr_of_examples (int): The number of examples Returns: model (BaseModelConfig): The chosen model """ for model in models: # check if input token count is less than the context length # If the model config has custom messages, then use those, otherwise use the default ones if model.system_message_token_count < 0: model.system_message_token_count = approximate_token_count(model.system_message) if model.instruction_token_count < 0: model.instruction_token_count = approximate_token_count(model.instructions) if model.parsing_helper_tokens["start_token"]: input_token_count += 2*nr_of_examples if model.parsing_helper_tokens["end_token"]: input_token_count += 2*nr_of_examples total_token_count = input_token_count + model.instruction_token_count + model.system_message_token_count if total_token_count < model.context_length: return model return None def repair_output(self, args: tuple, kwargs: dict, function_description: FunctionDescription, choice, validator: Validator, generation_parameters: dict) -> tuple: """ Repair an output, that failed type validation by generating a new output using the teacher model and the error Args: args (tuple): The args of the function kwargs (dict): The kwargs of the function function_description (FunctionDescription): The function description choice: The output that failed type validation, type is arbitrary validator (Validator): The validator object Returns: choice (str): The choice that was generated by the language model choice_parsed: The parsed choice, type is arbitrary valid (bool): Whether the output was correctly repaired was valid """ # get the teacher models teacher_models = self.function_modeler.get_models(function_description)[1] valid = False retry_index = 5 f = str(function_description.__dict__.__repr__() + "\n") error = f"Output type was not valid. Expected an valid object of type {function_description.output_type_hint}, got '{choice}'" # instantiate the failed outputs list failed_outputs_list = [(choice, error)] while retry_index > 0 and not valid: # get the alignments aligns = self.function_modeler.get_symbolic_alignments(function_description.__hash__(), max=5) # Generate the reparied LLM output choice = self.repair_generate(args, kwargs, f, failed_outputs_list, aligns, teacher_models, generation_parameters) if not choice: # if no choice then the input was too long for the model # no specific error but the retry index goes down retry_index -= 1 continue # start parsing the object try: # json load choice_parsed = json.loads(choice) except: # if it fails, it's not a json object, try eval try: choice_parsed = eval(choice) except: choice_parsed = choice valid = validator.check_type(choice_parsed, function_description.output_type_hint) if not valid: # if it's not valid, add it to the failed outputs list error = f"Output type was not valid. Expected an object of type {function_description.output_type_hint}, got '{choice}'" failed_outputs_list.append((choice, error)) retry_index -= 1 if valid: logging.info(f"Successfully repaired output.") return choice, choice_parsed, valid <fim_middle>""" Check if the inputs are suitable for finetuning, i.e are below the finetuning token count """
""" Check if the inputs are suitable for finetuning, i.e are below the finetuning token count """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/function_modeler.py def _construct_config_from_finetune(self, finetune_hash: str, finetune: FinetuneJob): """ Construct a valid function config from a finetune job Args: finetune_hash: The hash of the function finetune: The finetune job Returns: config: The function config """ model = finetune.fine_tuned_model # get the ending location of finetune hash in the model name finetune_hash_end = model.model_name.find(finetune_hash) + len(finetune_hash) # get the next character after the finetune hash next_char = model.model_name[finetune_hash_end] # get the number of training runs nr_of_training_runs = decode_int(next_char) + 1 nr_of_training_points = (2 ** (nr_of_training_runs - 1)) * 200 config = { "distilled_model": model, "current_model_stats": { "trained_on_datapoints": nr_of_training_points, "running_faults": []}, "last_training_run": {"trained_on_datapoints": nr_of_training_points}, "current_training_run": {}, "teacher_models": [], # default teacher models, will be overwritten if needed "nr_of_training_runs": nr_of_training_runs} config = FunctionConfig().load_from_dict(config) return config # tanuki_py/src/tanuki/utils.py def _deep_tuple(obj): """ Convert a list or dict to a tuple recursively to allow for hashing and becoming a key for mock_behaviors :param obj: :return: """ # transform pydantic objects into dicts if hasattr(obj, "__dict__"): obj = obj.__dict__ if isinstance(obj, list) or isinstance(obj, tuple): return tuple(_deep_tuple(e) for e in obj) elif isinstance(obj, dict): return tuple((k, _deep_tuple(v)) for k, v in sorted(obj.items())) else: return obj # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: <fim_suffix> if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>""" Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """
""" Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/utils.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/validator.py def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False # tanuki_py/src/tanuki/function_modeler.py def check_for_finetuning(self, function_description, func_hash): """ Check for finetuning status If already finetuning, check for finetuning status If not finetuning, check for finetuning condition and execute finetuning if condition is met """ try: # check if already finetuning if "job_id" in self.function_configs[func_hash].current_training_run: # check for job status self._check_finetuning_status(func_hash, function_description) else: # check for finetuning condition if self._check_finetuning_condition(func_hash, function_description): self._execute_finetuning(function_description, func_hash) except Exception as e: print(e) print("Error checking for finetuning") # tanuki_py/src/tanuki/trackers/abc_buffered_logger.py def get_patch_location_for_function(self, func_hash, extension="") -> str: """ Get the address of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ pass """ import dataclasses import datetime import inspect import json import typing from typing import get_args, Literal import string import types def json_default(thing): try: return dataclasses.asdict(thing) except TypeError: pass if isinstance(thing, datetime.datetime): return thing.isoformat(timespec='microseconds') if isinstance(thing, type): return thing.__name__ #if hasattr(typing, "_GenericAlias") and isinstance(thing, typing._GenericAlias): if hasattr(typing, "_UnionGenericAlias"): if isinstance(thing, typing._UnionGenericAlias): return { "Union": [json_default(arg) for arg in get_args(thing)] } if thing == Literal[...]: return { "Literal": thing.__args__ } if isinstance(thing, type(None)): return "None" if isinstance(thing, typing._SpecialForm): return thing._name if isinstance(thing, typing._GenericAlias) or isinstance(thing, types.GenericAlias): return { "GenericAlias": [json_default(arg) for arg in get_args(thing)] } if isinstance(thing, str): return thing if isinstance(thing, list) or isinstance(thing, tuple) or isinstance(thing, set): return [json_default(item) for item in thing] if isinstance(thing, dict): return {json_default(key): json_default(value) for key, value in thing.items()} raise TypeError(f"object of type {type(thing).__name__} not serializable") def json_dumps(thing): return json.dumps( thing, default=json_default, ensure_ascii=False, sort_keys=True, indent=None, separators=(',', ':'), ) def get_model(content, logger, func_hash): """ Get the model from the content and the logger. Decide on model depending on the length of the content. if is finetunable, return model, true, otherwise return model, false Args: content (str): the content to be aligned logger (buffered logger): the logger func_hash (str): the function hash Returns: model (str): the model to be used finetunable (bool): whether the model is finetunable """ num_tokens = approximate_token_count(content) finetune_limit = logger.finetune_token_limit finetune_model, teacher_models = logger.get_models(func_hash) if num_tokens < finetune_limit: return finetune_model, True else: # this is just for backwards compatibility currently if len(teacher_models) == 0 or isinstance(teacher_models[0], str): teacher_models = [("gpt-4", 7000),("gpt-4-32k", 31000)] for model, token_limit in teacher_models: if num_tokens < token_limit: return model, False raise ValueError("The input content and align statements combined are too long, please shorten it. The maximum currently allowed token limit is 32000") def approximate_token_count(content): """ Approximate the token count of input Number of tokens is word tokens (nr of words * 1.33) + nr of special characters (which are usually their own tokens) Args: content (str, bytes): the content to be approximated Returns: number_of_tokens (int): the number of tokens """ common_special_characters = r"\/(){}[]<>|`~@#$%^&*+=-_:;\"" # check if input type is string if isinstance(content, str): number_of_word_tokens = int(len(content.split(" "))*1.333) nr_of_special_characters = sum([content.count(char) for char in common_special_characters]) return number_of_word_tokens + nr_of_special_characters # check if input is a byte string if isinstance(content, bytes): number_of_word_tokens = int(len(content.split(b" "))*1.333) nr_of_special_characters = sum([content.count(char.encode("utf-8")) for char in common_special_characters]) return number_of_word_tokens + nr_of_special_characters def _deep_tuple(obj): """ Convert a list or dict to a tuple recursively to allow for hashing and becoming a key for mock_behaviors :param obj: :return: """ # transform pydantic objects into dicts if hasattr(obj, "__dict__"): obj = obj.__dict__ if isinstance(obj, list) or isinstance(obj, tuple): return tuple(_deep_tuple(e) for e in obj) elif isinstance(obj, dict): return tuple((k, _deep_tuple(v)) for k, v in sorted(obj.items())) else: return obj def get_key(args, kwargs) -> tuple: args_tuple = _deep_tuple(args) kwargs_tuple = _deep_tuple(kwargs) return args_tuple, kwargs_tuple def prepare_object_for_saving(input_object): <fim_suffix> # check if list if isinstance(input_object, list): return [prepare_object_for_saving(item) for item in input_object] # check if tuple elif isinstance(input_object, tuple): return tuple([prepare_object_for_saving(item) for item in input_object]) # check if dict elif isinstance(input_object, dict): return {key: prepare_object_for_saving(value) for key, value in input_object.items()} # check if pydantic object if hasattr(input_object, "__dict__"): attributes = input_object.__dict__ for key, value in attributes.items(): attributes[key] = prepare_object_for_saving(value) return attributes # # check if datetime for custom logic elif isinstance(input_object, datetime.datetime) or isinstance(input_object, datetime.date) or isinstance(input_object, datetime.time): attrs = ['year', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'tzinfo'] attributes = {attr: getattr(input_object, attr, None) for attr in attrs if getattr(input_object, attr, None) is not None} return attributes return input_object def encode_int(n): # Define the character set for encoding charset = string.ascii_lowercase + string.digits + "_" return charset[n] def decode_int(s): # Define the character set for encoding charset = string.ascii_lowercase + string.digits + "_" return charset.index(s) def _get_source_ipython(func) -> str: """ Get the source code of a function from IPython (to support Colab and Jupyter notebooks) :param func: The function to get the source code from :return: The source code of the function """ # Get the IPython instance from IPython import get_ipython ipython = get_ipython() # Get the input history input_cells = ipython.history_manager.input_hist_parsed class_name = func.__name__ source_code = None for cell in input_cells: if f"class {class_name}" in cell: source_code = cell break # If found, print the source code return source_code def get_source(func) -> str: """ Get the source code of a function Args: func (function): the function to get the source code from Returns: source (str): the source code of the function """ try: return inspect.getsource(func) except Exception: return _get_source_ipython(func)<fim_middle>""" Get a dictionary representation of the object """
""" Get a dictionary representation of the object """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/trackers/abc_buffered_logger.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/function_modeler.py def _save_contrastive_alignment_pair(self, function_hash: str, args, kwargs, pair, positive=True): """ Save a contrastive pair """ example = FunctionExample(args, kwargs, pair) if function_hash not in self.store_data_blacklist: successfully_saved, new_datapoint = self.data_worker.log_embeddable_align(function_hash, example, positive) else: successfully_saved = False new_datapoint = True if successfully_saved: if positive: if function_hash in self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS]: self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS][function_hash] = 1 if not positive: if function_hash in self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS]: self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS][function_hash] = 1 if new_datapoint: # update align buffer if function_hash not in self.embeddable_align_buffer: self.embeddable_align_buffer[function_hash] = bytearray() self.embeddable_align_buffer[function_hash].extend(str(example.__dict__).encode('utf-8') + b'\r\n') # tanuki_py/src/tanuki/function_modeler.py def save_symbolic_align_statements(self, function_hash, args, kwargs, output): """ Save the align statements and add to the align buffer Do not save if the function hash is in the store data blacklist Then just add the datapoints to the align buffer """ # prepare output for saving and later parsing # make a deepcopy of the output to avoid changing the original object copy_output = copy.deepcopy(output) parsed_output = prepare_object_for_saving(copy_output) # prepare args and kwargs for saving copy_args = copy.deepcopy(args) copy_kwargs = copy.deepcopy(kwargs) parsed_args = prepare_object_for_saving(copy_args) parsed_kwargs = prepare_object_for_saving(copy_kwargs) example = FunctionExample(parsed_args, parsed_kwargs, parsed_output) if function_hash not in self.store_data_blacklist: successfully_saved, new_datapoint = self.data_worker.log_symbolic_align(function_hash, example) else: successfully_saved = False new_datapoint = True if successfully_saved: if function_hash in self.dataset_sizes[SYMBOLIC_ALIGNMENTS]: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = 1 if new_datapoint: # update align buffer if function_hash not in self.symbolic_align_buffer: self.symbolic_align_buffer[function_hash] = bytearray() self.symbolic_align_buffer[function_hash].extend(str(example.__dict__).encode('utf-8') + b'\r\n') # tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py def get_patch_location_for_function(self, func_hash, extension: Union[ ALIGN_FILE_EXTENSION_TYPE, PATCH_FILE_EXTENSION_TYPE] = "") -> str: """ Get the local location of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ return os.path.join(self.log_directory, func_hash + extension) """ import json from abc import abstractmethod from typing import Dict, Any, Literal from tanuki.bloom_filter import BloomFilter from tanuki.constants import EXPECTED_ITEMS, FALSE_POSITIVE_RATE, ALIGN_FILE_EXTENSION, \ POSITIVE_FILE_EXTENSION, NEGATIVE_FILE_EXTENSION, PATCH_FILE_EXTENSION from tanuki.persistence.filter.bloom_interface import IBloomFilterPersistence from tanuki.trackers.dataset_worker import DatasetWorker from tanuki.models.function_config import FunctionConfig # PATCH_FILE_EXTENSION_TYPE = Literal[".patches"] # ALIGN_FILE_EXTENSION_TYPE = Literal[".alignments"] # POSITIVE_EMBEDDING_FILE_EXTENSION_TYPE = Literal[".positive_embedding"] # NEGATIVE_EMBEDDING_FILE_EXTENSION_TYPE = Literal[".negative_embedding"] # # PATCH_FILE_EXTENSION: PATCH_FILE_EXTENSION_TYPE = ".patches" # ALIGN_FILE_EXTENSION: ALIGN_FILE_EXTENSION_TYPE = ".alignments" # POSITIVE_EMBEDDING_FILE_EXTENSION: POSITIVE_EMBEDDING_FILE_EXTENSION_TYPE = ".contrastive_positives" # NEGATIVE_EMBEDDING_FILE_EXTENSION: NEGATIVE_EMBEDDING_FILE_EXTENSION_TYPE = ".contrastive_negatives" # # EXPECTED_ITEMS = 10000 # FALSE_POSITIVE_RATE = 0.01 # LIB_NAME = "tanuki" # ENVVAR = "TANUKI_LOG_DIR" class ABCBufferedLogger(DatasetWorker): def __init__(self, name, level=15): self.buffers = {} self.mapped_files = {} self.miss_count = 0 self.hit_count = 0 self.flush_limit = {} self.buffer_rolling_size = {} self.write_count = 0 self.write_limit = 1000 # Save the Bloom filter every 1000 writes super().__init__(name, level) self.bloom_filter = self.create_bloom_filter() self.load_bloom_filter() self.default_function_config = FunctionConfig() @abstractmethod def get_bloom_filter_persistence(self) -> IBloomFilterPersistence: """ Get an instance of the bloom filter persistence provider. This exposes some persistent file storage, that must support reading and writing raw byte streams. :return: """ pass @abstractmethod def load_existing_datasets(self) -> Dict[str, Dict[str, Any]]: """ Get the lengths of all datasets backing the registered functions, including aligns. :return: """ pass @abstractmethod def ensure_persistence_location_exists(self): """ Ensure that the place we will be writing to actually exists. If not, create it. """ pass @abstractmethod def get_patch_location_for_function(self, func_hash, extension="") -> str: """ Get the address of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ pass @abstractmethod def write(self, path, data, mode="a") -> None: pass @abstractmethod def read(self, path) -> str: pass @abstractmethod def get_hash_from_path(self, path) -> str: pass @abstractmethod def does_object_exist(self, path) -> bool: pass def create_bloom_filter(self): bloom_filter_persistence = self.get_bloom_filter_persistence() bloom_filter = BloomFilter( bloom_filter_persistence, expected_number_of_elements=EXPECTED_ITEMS, false_positive_probability=FALSE_POSITIVE_RATE) return bloom_filter def load_bloom_filter(self): try: self.bloom_filter.load() except FileNotFoundError: self.debug("No Bloom filter found. Creating a new one.") def write_symbolic_align_call(self, func_hash, example) -> bool: log_file_path = self.get_patch_location_for_function(func_hash, extension=ALIGN_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False def write_embeddable_align_call(self, func_hash, example, positive=True) -> bool: if positive: log_file_path = self.get_patch_location_for_function(func_hash, extension=POSITIVE_FILE_EXTENSION) else: log_file_path = self.get_patch_location_for_function(func_hash, extension=NEGATIVE_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False def log_embeddable_align(self, func_hash, example, positive=True, **kws): """ Log a contrastive function invocation Args: func_hash: A string representation of the function signature and input parameters example: The example object positive: Whether the example is positive or negative **kws: """ successfully_saved, new_datapoint = False, False try: self.ensure_persistence_location_exists() except Exception as e: return successfully_saved, new_datapoint # prepend the function hash to the example bloom_filter_representation = func_hash + '_' + str(example.__dict__) + '\n' # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): return successfully_saved, new_datapoint new_datapoint = True # add to bloom filter self.bloom_filter.add(bloom_filter_representation) self.save_bloom_filter() successfully_saved = self.write_embeddable_align_call(func_hash, example, positive) return successfully_saved, new_datapoint def log_symbolic_align(self, func_hash, *args, **kws): """ Log an align function invocation to the file system :param func_hash: A string representation of the function signature and input parameters :param args: Example objects :param kws: :return: """ successfully_saved, new_datapoint = False, False try: self.ensure_persistence_location_exists() except Exception as e: return successfully_saved, new_datapoint example = args[0] # prepend the function hash to the example bloom_filter_representation = func_hash + '_' + str(example.__dict__) + '\n' # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): return successfully_saved, new_datapoint new_datapoint = True # add to bloom filter self.bloom_filter.add(bloom_filter_representation) self.save_bloom_filter() successfully_saved = self.write_symbolic_align_call(func_hash, example) return successfully_saved, new_datapoint def log_symbolic_patch(self, func_hash, example): <fim_suffix> if not isinstance(func_hash, str): func_hash = str(func_hash) example_data = str(example.__dict__).encode('utf-8') + b'\n' bloom_filter_representation = func_hash + '_' + example_data.decode('utf-8') # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): self.hit_count += 1 return {} self.miss_count += 1 # Add to Bloom Filter self.bloom_filter.add(bloom_filter_representation) try: self.ensure_persistence_location_exists() except Exception as e: return {} log_file_path = self.get_patch_location_for_function(func_hash, extension=PATCH_FILE_EXTENSION) if log_file_path not in self.buffers: self.buffers[log_file_path] = bytearray() if log_file_path not in self.flush_limit: self.flush_limit[log_file_path] = 1 self.buffers[log_file_path].extend(example_data) self.write_count += 1 if log_file_path not in self.buffer_rolling_size: self.buffer_rolling_size[log_file_path] = 1 else: self.buffer_rolling_size[log_file_path] += 1 if self.write_count >= self.write_limit: written_datapoints = self.flush() self.save_bloom_filter() self.write_count = 0 # Reset counter return written_datapoints if len(self.buffers[log_file_path]) >= min(self.flush_limit[log_file_path], 4096): # Flush after reaching 4KB written_datapoints = {} try: self.write(log_file_path, self.buffers[log_file_path], mode="a+b") # update buffers written_datapoints[func_hash] = self.buffer_rolling_size[log_file_path] self.buffers[log_file_path].clear() self.buffer_rolling_size[log_file_path] = 0 self.flush_limit[log_file_path] = 2 * self.flush_limit[log_file_path] self.save_bloom_filter() except Exception as e: pass return written_datapoints return {} def save_bloom_filter(self): try: self.bloom_filter.save() except Exception as e: self.warning("Could not save Bloom filter: {}".format(e)) def flush(self): # get log directory written_datapoints = {} for log_file_path, buffer in self.buffers.items(): if len(buffer) > 0: try: self.write(log_file_path, buffer, mode="a+b") written_datapoints[self.get_hash_from_path(log_file_path)] = self.buffer_rolling_size[log_file_path] self.buffer_rolling_size[log_file_path] = 0 buffer.clear() except Exception as e: pass return written_datapoints def load_function_config(self, func_hash): """ Get the config file for the function. Uses the message and log directory Config file has to be in .json """ default = False try: # try to get the config from the disk. If inaccessible, create a new default one self.ensure_persistence_location_exists() log_file_path = self.get_patch_location_for_function(func_hash) config_path = f"{log_file_path}.json" if not self.does_object_exist(config_path): function_config = self.default_function_config default = True func_config_dict = function_config.to_dict() # remove teacher_models from the config func_config_dict.pop("teacher_models") self.write_json(config_path, func_config_dict) else: function_config = FunctionConfig().load_from_dict(self.read_json(config_path)) except Exception as e: function_config = self.default_function_config default = True return function_config, default def update_function_config(self, func_hash, config_to_be_saved): """ Save the config file """ log_file_path = self.get_patch_location_for_function(func_hash) config_path = f"{log_file_path}.json" try: func_config_dict = config_to_be_saved.to_dict() # remove teacher_models from the config func_config_dict.pop("teacher_models") self.write_json(config_path, func_config_dict) except Exception as e: pass def write_json(self, path, data): self.write(path, json.dumps(data)) def read_json(self, path): return json.loads(self.read(path)) <fim_middle>""" Log a patched function invocation to the file system :param func_hash: A string representation of the function signature and input parameters :param example: :return: """
""" Log a patched function invocation to the file system :param func_hash: A string representation of the function signature and input parameters :param example: :return: """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/persistence/filter/filesystem_bloom.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py def get_patch_location_for_function(self, func_hash, extension: Union[ ALIGN_FILE_EXTENSION_TYPE, PATCH_FILE_EXTENSION_TYPE] = "") -> str: """ Get the local location of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ return os.path.join(self.log_directory, func_hash + extension) # tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py def load_dataset(self, dataset_type, func_hash, return_type="both") -> Optional[int]: """ Get the size of the dataset for a function hash """ log_directory = self._get_log_directory() dataset_type_map = {"alignments": ALIGN_FILE_EXTENSION, "positive": POSITIVE_FILE_EXTENSION, "negative": NEGATIVE_FILE_EXTENSION, "patches": PATCH_FILE_EXTENSION} log_file_path = os.path.join(log_directory, func_hash + dataset_type_map[dataset_type]) if not os.path.exists(log_file_path): if return_type == "both": return 0, None elif return_type == "dataset": return None elif return_type == "length": return 0 try: with open(log_file_path, "rb") as f: dataset = f.read() dataset_string = repr(dataset) dataset_length = dataset_string.count("\\n") - dataset_string.count("\\\\n") if return_type == "both": return dataset_length, dataset elif return_type == "dataset": return dataset elif return_type == "length": return dataset_length except Exception as e: if return_type == "both": return 0, None elif return_type == "dataset": return None elif return_type == "length": return 0 # tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py def read(self, path: str) -> str: """ Read data from a file """ with open(path, "r") as f: return f.read() """ import os from bitarray._bitarray import bitarray from tanuki.persistence.filter.bloom_interface import IBloomFilterPersistence class BloomFilterFileSystemDriver(IBloomFilterPersistence): """ This is a Filesystem implementation of a Bloom Filter persistence layer. """ def __init__(self, log_directory: str): self.log_directory = log_directory def save(self, bit_array: bitarray) -> None: """ Write a bloom filter array of bits to the local filesystem. :param bloom_filter: A bloom filter which tracks unique function invocations """ bloom_filter_path = os.path.join(self.log_directory, 'bloom_filter_state.bin') # Append 0 bits to make the length a multiple of 8 while len(bit_array) % 8 != 0: bit_array.append(0) with open(bloom_filter_path, 'wb') as f: f.write(bit_array.tobytes()) def load(self) -> bitarray: <fim_suffix> bloom_filter_path = os.path.join(self.log_directory, 'bloom_filter_state.bin') with open(bloom_filter_path, 'rb') as f: bit_array = bitarray() bit_array.frombytes(f.read()) while len(bit_array) % 8 != 0: bit_array.append(0) return bit_array<fim_middle>""" Load a bloom filter from the local filesystem. :return: A bloom filter object containing the state of unique function invocations """
""" Load a bloom filter from the local filesystem. :return: A bloom filter object containing the state of unique function invocations """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/models/function_config.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/function_modeler.py def _construct_config_from_finetune(self, finetune_hash: str, finetune: FinetuneJob): """ Construct a valid function config from a finetune job Args: finetune_hash: The hash of the function finetune: The finetune job Returns: config: The function config """ model = finetune.fine_tuned_model # get the ending location of finetune hash in the model name finetune_hash_end = model.model_name.find(finetune_hash) + len(finetune_hash) # get the next character after the finetune hash next_char = model.model_name[finetune_hash_end] # get the number of training runs nr_of_training_runs = decode_int(next_char) + 1 nr_of_training_points = (2 ** (nr_of_training_runs - 1)) * 200 config = { "distilled_model": model, "current_model_stats": { "trained_on_datapoints": nr_of_training_points, "running_faults": []}, "last_training_run": {"trained_on_datapoints": nr_of_training_points}, "current_training_run": {}, "teacher_models": [], # default teacher models, will be overwritten if needed "nr_of_training_runs": nr_of_training_runs} config = FunctionConfig().load_from_dict(config) return config # tanuki_py/src/tanuki/function_modeler.py def _update_finetune_config(self, response: FinetuneJob, func_hash, function_description): """ Update the config file to reflect the new model and switch the current model to the finetuned model """ self.function_configs[func_hash].update_with_finetuned_response(response) logging.info(f"Finetuning for {function_description.name} using {self.function_configs[func_hash].distilled_model.provider} finished with status: {response.status}."\ f" The id of the finetuned model is {response.fine_tuned_model.model_name}") try: self._update_config_file(func_hash) except Exception as e: logging.info(f"Could not update the function configuration file with the finetuned model for {function_description.name}. Error: {e}") pass # tanuki_py/src/tanuki/function_modeler.py def get_models(self, function_description): """ Return the current model from the config file """ func_hash = function_description.__hash__() if func_hash in self.function_configs: func_config = self.function_configs[func_hash] else: func_config = self.load_function_config(func_hash, function_description) return func_config.distilled_model, func_config.teacher_models """ from pydantic import BaseModel from typing import Dict, List from tanuki.language_models.llm_configs.abc_base_config import BaseModelConfig from tanuki.language_models.llm_configs import DEFAULT_TEACHER_MODELS, DEFAULT_STUDENT_MODELS from tanuki.constants import DEFAULT_TEACHER_MODEL_NAMES, DEFAULT_DISTILLED_MODEL_NAME, \ DISTILLED_MODEL, TEACHER_MODEL from tanuki.language_models.llm_configs.model_config_factory import ModelConfigFactory config_factory = ModelConfigFactory() class FunctionConfig(BaseModel): """ The function config to execute the inference for the function and distillation. Parameters ---------- distilled_model : BaseModelConfig -- the distilled model config current_model_stats : Dict -- the current model stats last_training_run : Dict -- the last training run current_training_run : Dict -- the current training run teacher_models : List[BaseModelConfig] -- the teacher models nr_of_training_runs : int -- the number of training runs """ distilled_model: BaseModelConfig = DEFAULT_STUDENT_MODELS[DEFAULT_DISTILLED_MODEL_NAME] current_model_stats : Dict = { "trained_on_datapoints": 0, "running_faults": []} last_training_run : Dict = {"trained_on_datapoints": 0} current_training_run : Dict = {} teacher_models : List[BaseModelConfig] = [DEFAULT_TEACHER_MODELS[teacher_model_name] for teacher_model_name in DEFAULT_TEACHER_MODEL_NAMES] nr_of_training_runs : int = 0 def load_from_dict(self, json_dict): """ Load the function config from a dict Args: json_dict: The dict to load the function config from Returns: The function config """ self.distilled_model = config_factory.create_config(json_dict["distilled_model"], DISTILLED_MODEL) self.current_model_stats = json_dict["current_model_stats"] self.last_training_run = json_dict["last_training_run"] self.current_training_run = json_dict["current_training_run"] self.nr_of_training_runs = json_dict["nr_of_training_runs"] if "teacher_models" in json_dict and len(json_dict["teacher_models"]) > 0: self.teacher_models = [config_factory.create_config(teacher_model, TEACHER_MODEL) for teacher_model in json_dict["teacher_models"]] return self def to_dict(self): """ Convert the function config to a dict Returns: The dict """ try: config_dictionary = self.model_dump() except AttributeError as e: config_dictionary = self.dict() return config_dictionary def update_with_finetuned_response(self, response): <fim_suffix> if response.status == "failed": self.current_training_run = {} else: self.distilled_model = response.fine_tuned_model self.last_training_run = self.current_training_run self.current_model_stats = { "trained_on_datapoints": self.current_training_run[ "trained_on_datapoints"], "running_faults": []} self.nr_of_training_runs += 1 self.current_training_run = {} <fim_middle>""" Update the function config with the finetuned response Args: response: The finetuned response """
""" Update the function config with the finetuned response Args: response: The finetuned response """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py def does_object_exist(self, path: str) -> bool: """ Check to see if a path exists on the filesystem. :param path: :return: """ return os.path.exists(path) # tanuki_py/src/tanuki/static_assertion_visitor.py def process_assert_helper_lr(self, left, right, iter_name=None, op=None): input_args, input_kwargs = self.extract_args(left, iter_name) if isinstance(op, In): output = Or(self.extract_output(right)) else: output = self.extract_output(right) key = get_key(input_args, input_kwargs) self.mocks[key] = output # tanuki_py/src/tanuki/language_models/aws_bedrock_api.py def __init__(self) -> None: # initialise the abstract base class super().__init__() self.bedrock_runtime = None """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: <fim_suffix> if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>"""Validate base types."""
"""Validate base types."""
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/function_modeler.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/models/function_config.py def update_with_finetuned_response(self, response): """ Update the function config with the finetuned response Args: response: The finetuned response """ if response.status == "failed": self.current_training_run = {} else: self.distilled_model = response.fine_tuned_model self.last_training_run = self.current_training_run self.current_model_stats = { "trained_on_datapoints": self.current_training_run[ "trained_on_datapoints"], "running_faults": []} self.nr_of_training_runs += 1 self.current_training_run = {} # tanuki_py/src/tanuki/models/api_manager.py def __getitem__(self, provider: str) -> Any: if provider not in self.api_providers: self.add_api_provider(provider) return self.api_providers[provider] # tanuki_py/src/tanuki/trackers/abc_buffered_logger.py def write_embeddable_align_call(self, func_hash, example, positive=True) -> bool: if positive: log_file_path = self.get_patch_location_for_function(func_hash, extension=POSITIVE_FILE_EXTENSION) else: log_file_path = self.get_patch_location_for_function(func_hash, extension=NEGATIVE_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False """ import ast import datetime import io import json from typing import List, Tuple, Dict, Union import logging from tanuki.constants import EXAMPLE_ELEMENT_LIMIT, PATCHES, SYMBOLIC_ALIGNMENTS, POSITIVE_EMBEDDABLE_ALIGNMENTS, \ NEGATIVE_EMBEDDABLE_ALIGNMENTS, OPENAI_PROVIDER from tanuki.models.function_type import FunctionType from tanuki.language_models.llm_configs import DEFAULT_TEACHER_MODELS, DEFAULT_EMBEDDING_MODELS, DEFAULT_STUDENT_MODELS from tanuki.language_models.llm_configs.abc_base_config import BaseModelConfig from tanuki.language_models.llm_finetune_api_abc import LLM_Finetune_API from tanuki.models.finetune_job import FinetuneJob from tanuki.models.function_description import FunctionDescription from tanuki.models.function_example import FunctionExample from tanuki.trackers.dataset_worker import DatasetWorker from tanuki.utils import approximate_token_count, prepare_object_for_saving, encode_int, decode_int import copy from tanuki.models.function_config import FunctionConfig from tanuki.models.api_manager import APIManager class FunctionModeler(object): """ This class manages the registered function models and their datasets comprised of symbolic and embeddable alignments, and symbolic and embeddable patches """ def __init__(self, data_worker: DatasetWorker, api_provider: APIManager, environment_id=0, ) -> None: self.function_configs = {} self.data_worker = data_worker self.distillation_token_limit = 3000 # the token limit for finetuning self.symbolic_align_buffer = {} self.embeddable_align_buffer = {} self._get_datasets() self.environment_id = environment_id self.check_finetune_blacklist = [] self.execute_finetune_blacklist = [] self.store_data_blacklist = [] self.api_provider = api_provider self.teacher_models_override = {} self.student_model_override = {} self.startup_logging_checker = {} def _get_dataset_info(self, dataset_type, func_hash, type="length"): """ Get the dataset size for a function hash """ return self.data_worker.load_dataset(dataset_type, func_hash, return_type=type) def _configure_function_models(self, teacher_models: List[Union[str, BaseModelConfig]], student_model: str, func_hash: str, task_type: str): """ Configure the function models """ if teacher_models: self._configure_teacher_models(teacher_models, func_hash, task_type) if student_model: self._configure_student_model(student_model, func_hash, task_type) if teacher_models and not student_model: for model_config in self.teacher_models_override[func_hash]: # ban all non-openai models from finetuning if teacher is not openai and student is not specified because it doesnt make sense if model_config.provider != OPENAI_PROVIDER and func_hash not in self.check_finetune_blacklist: self.check_finetune_blacklist.append(func_hash) if model_config.provider != OPENAI_PROVIDER and func_hash not in self.execute_finetune_blacklist: self.execute_finetune_blacklist.append(func_hash) def _configure_teacher_models(self, teacher_models: List[Union[str, BaseModelConfig]], func_hash: str, task_type: str): """ Add custom teacher models to the function config First this is added to the teacher_models_override dict, which is used to override the teacher models Args: teacher_models: A list of teacher models to use for the function hash func_hash: The function hash to add the teacher models to """ if func_hash not in self.teacher_models_override: self.teacher_models_override[func_hash] = [] if task_type == FunctionType.EMBEDDABLE: preconfigured_models = DEFAULT_EMBEDDING_MODELS elif task_type == FunctionType.SYMBOLIC: preconfigured_models = DEFAULT_TEACHER_MODELS for model in teacher_models: if isinstance(model, str): if model not in preconfigured_models: raise Exception(f"Teacher model {model} not supported by default. Please include it in the list in extended config format") model_config = preconfigured_models[model] elif isinstance(model, BaseModelConfig): model_config = model self.teacher_models_override[func_hash].append(model_config) def _configure_student_model(self, student_model: str, func_hash: str, task_type: str): """ Add custom student models to the function config First this is added to the teacher_models_override dict, which is used to override the teacher models Args: teacher_models: A list of teacher models to use for the function hash func_hash: The function hash to add the teacher models to """ if task_type == FunctionType.EMBEDDABLE: logging.info("Embeddable function type does not support student models") preconfigured_models = DEFAULT_STUDENT_MODELS if student_model not in preconfigured_models: raise Exception(f"Student model {student_model} is currently not supported.") model_config = preconfigured_models[student_model] self.student_model_override[func_hash] = model_config def _get_datasets(self): """ Get the existing datasets from the data worker """ self.dataset_sizes = self.data_worker.load_existing_datasets() def save_embeddable_align_statements(self, function_hash: str, args, kwargs, positive_pairs: List[Tuple[List, Dict]], negative_pairs: List[Tuple[List, Dict]]): """ Save the contrastive align statements for the embeddable function. Do not save if the function hash is in the store data blacklist Args: function_hash: A unique hash for the function args: The arguments of the function kwargs: The keyword arguments of the function positive_pairs: A list of the other function invocations that are should have equivalent embeddings negative_pairs: A list of the other function invocations that are should have different embeddings """ # prepare args and kwargs for saving copy_args = copy.deepcopy(args) copy_kwargs = copy.deepcopy(kwargs) parsed_args = prepare_object_for_saving(copy_args) parsed_kwargs = prepare_object_for_saving(copy_kwargs) # prepare positive pairs for saving parsed_positive_pairs = [] for pair in positive_pairs: copy_pair = copy.deepcopy(pair) parsed_pair = prepare_object_for_saving(copy_pair) parsed_positive_pairs.append(parsed_pair) # prepare negative pairs for saving parsed_negative_pairs = [] for pair in negative_pairs: copy_pair = copy.deepcopy(pair) parsed_pair = prepare_object_for_saving(copy_pair) parsed_negative_pairs.append(parsed_pair) # save the contrastive pairs for pair in parsed_positive_pairs: self._save_contrastive_alignment_pair(function_hash, parsed_args, parsed_kwargs, pair, positive=True) for pair in parsed_negative_pairs: self._save_contrastive_alignment_pair(function_hash, parsed_args, parsed_kwargs, pair, positive=False) def _save_contrastive_alignment_pair(self, function_hash: str, args, kwargs, pair, positive=True): """ Save a contrastive pair """ example = FunctionExample(args, kwargs, pair) if function_hash not in self.store_data_blacklist: successfully_saved, new_datapoint = self.data_worker.log_embeddable_align(function_hash, example, positive) else: successfully_saved = False new_datapoint = True if successfully_saved: if positive: if function_hash in self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS]: self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS][function_hash] = 1 if not positive: if function_hash in self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS]: self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS][function_hash] = 1 if new_datapoint: # update align buffer if function_hash not in self.embeddable_align_buffer: self.embeddable_align_buffer[function_hash] = bytearray() self.embeddable_align_buffer[function_hash].extend(str(example.__dict__).encode('utf-8') + b'\r\n') def save_symbolic_align_statements(self, function_hash, args, kwargs, output): """ Save the align statements and add to the align buffer Do not save if the function hash is in the store data blacklist Then just add the datapoints to the align buffer """ # prepare output for saving and later parsing # make a deepcopy of the output to avoid changing the original object copy_output = copy.deepcopy(output) parsed_output = prepare_object_for_saving(copy_output) # prepare args and kwargs for saving copy_args = copy.deepcopy(args) copy_kwargs = copy.deepcopy(kwargs) parsed_args = prepare_object_for_saving(copy_args) parsed_kwargs = prepare_object_for_saving(copy_kwargs) example = FunctionExample(parsed_args, parsed_kwargs, parsed_output) if function_hash not in self.store_data_blacklist: successfully_saved, new_datapoint = self.data_worker.log_symbolic_align(function_hash, example) else: successfully_saved = False new_datapoint = True if successfully_saved: if function_hash in self.dataset_sizes[SYMBOLIC_ALIGNMENTS]: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = 1 if new_datapoint: # update align buffer if function_hash not in self.symbolic_align_buffer: self.symbolic_align_buffer[function_hash] = bytearray() self.symbolic_align_buffer[function_hash].extend(str(example.__dict__).encode('utf-8') + b'\r\n') def save_symbolic_datapoint(self, func_hash, example): """ Save datapoint to the training data """ written_datapoints = self.data_worker.log_symbolic_patch(func_hash, example) for func_hash, datapoints in written_datapoints.items(): if func_hash in self.dataset_sizes[PATCHES]: # if the dataset size is -1, it means we havent read in the dataset size yet if self.dataset_sizes[PATCHES][func_hash] == -1: self.dataset_sizes[PATCHES][func_hash] = self._get_dataset_info(PATCHES, func_hash, type="length") else: self.dataset_sizes[PATCHES][func_hash] += datapoints else: self.dataset_sizes[PATCHES][func_hash] = datapoints return len(written_datapoints) > 0 def get_symbolic_alignments(self, func_hash, max=20): """ Get all symbolic aligns for a function hash """ if func_hash not in self.symbolic_align_buffer: return [] buffer = self.symbolic_align_buffer[func_hash] return self._get_examples_from_alignment_buffer(buffer, max) def get_embeddable_alignments(self, func_hash, max=20): """ Get all embeddable aligns for a function hash """ if func_hash not in self.embeddable_align_buffer: return [] buffer = self.embeddable_align_buffer[func_hash] return self._get_examples_from_alignment_buffer(buffer, max) def _get_examples_from_alignment_buffer(self, buffer, max=20): """ Get examples from a buffer """ split_buffer = bytes(buffer).split(b"\n") # byte array of stringed python dicts into dict objects example_set = set() for example in split_buffer: if example == b"": continue example_set.add(example) # easy and straightforward way to get nr of words (not perfect but doesnt need to be) # Can do the proper way of tokenizing later, it might be slower and we dont need 100% accuracy example_element_limit = EXAMPLE_ELEMENT_LIMIT examples = [] for example_bytes in split_buffer: if example_bytes in example_set: nr_of_elements = approximate_token_count(example_bytes) example_element_limit -= nr_of_elements if example_element_limit < 0: break example = example_bytes.decode('utf-8') # json load the example try: example = json.loads(example) except: example = ast.literal_eval(example) examples.append(example) example_set.remove(example_bytes) return list(examples)[:max] def load_symbolic_align_statements(self, function_hash): """ Load all align statements First check the data storage blacklist, if the func hash is in the blacklist, then set the dataset size to 0 and the align buffer to empty bytearray """ if function_hash in self.store_data_blacklist: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = 0 self.symbolic_align_buffer[function_hash] = bytearray() elif function_hash not in self.symbolic_align_buffer: dataset_size, align_dataset = self._get_dataset_info(SYMBOLIC_ALIGNMENTS, function_hash, type="both") if align_dataset: self.symbolic_align_buffer[function_hash] = bytearray(align_dataset) self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = dataset_size def postprocess_symbolic_datapoint(self, func_hash, function_description, example, repaired=True): """ Postprocess the datapoint First check if the datapoint should be added to the training data Add the datapoint if it should be added Then check if the function should be finetuned and execute finetuning if it should """ try: if func_hash not in self.store_data_blacklist: added = self.save_symbolic_datapoint(func_hash, example) if added: self._update_datapoint_config(repaired, func_hash) except Exception as e: print(e) print("Could not add datapoint to training data") if func_hash not in self.execute_finetune_blacklist: self.check_for_finetuning(function_description, func_hash) def load_function_config(self, func_hash, function_description): """ Load the config file for a function hash """ config, default = self.data_worker.load_function_config(func_hash) if func_hash in self.student_model_override and config.distilled_model.model_name == "": config.distilled_model = self.student_model_override[func_hash] if default and func_hash not in self.check_finetune_blacklist: finetuned, finetune_config = self._check_for_finetunes(function_description, config.distilled_model) if finetuned: config = finetune_config # update teachers if not default if func_hash in self.teacher_models_override: config.teacher_models = self.teacher_models_override[func_hash] self.function_configs[func_hash] = config return config def _check_for_finetunes(self, function_description: FunctionDescription, model_config : BaseModelConfig) -> Tuple[bool, Dict]: # hash the function_hash into 16 characters (to embed it into the name of OpenAI finetunes, for later retrieval) logging.info(f"Checking for finetunes for {function_description.name} using {model_config.provider}") finetune_hash = function_description.__hash__(purpose="finetune") + encode_int(self.environment_id) # List 10 fine-tuning jobs finetunes: List[FinetuneJob] = self.api_provider[model_config.provider].list_finetuned(model_config, limit=1000) # Check if the function_hash is in the fine-tuning jobs # the finetunes are in chronological order starting from newest # So this gets the latest finetune for finetune in finetunes: # check if the finetune hash is in the fine-tuned model name if finetune.status == "succeeded" and finetune_hash in finetune.fine_tuned_model.model_name: try: config = self._construct_config_from_finetune(finetune_hash, finetune) # save the config self.data_worker.update_function_config(function_description.__hash__(), config) logging.info(f"Found finetuned model for {function_description.name} [{config.distilled_model.model_name}]") return True, config except: logging.info(f"Found finetuned model for {function_description.name} [{finetune.fine_tuned_model.model_name}] but could not load it") return False, {} logging.info(f"No finetuned model found for {function_description.name}") return False, {} def _construct_config_from_finetune(self, finetune_hash: str, finetune: FinetuneJob): """ Construct a valid function config from a finetune job Args: finetune_hash: The hash of the function finetune: The finetune job Returns: config: The function config """ model = finetune.fine_tuned_model # get the ending location of finetune hash in the model name finetune_hash_end = model.model_name.find(finetune_hash) + len(finetune_hash) # get the next character after the finetune hash next_char = model.model_name[finetune_hash_end] # get the number of training runs nr_of_training_runs = decode_int(next_char) + 1 nr_of_training_points = (2 ** (nr_of_training_runs - 1)) * 200 config = { "distilled_model": model, "current_model_stats": { "trained_on_datapoints": nr_of_training_points, "running_faults": []}, "last_training_run": {"trained_on_datapoints": nr_of_training_points}, "current_training_run": {}, "teacher_models": [], # default teacher models, will be overwritten if needed "nr_of_training_runs": nr_of_training_runs} config = FunctionConfig().load_from_dict(config) return config def get_models(self, function_description): <fim_suffix> func_hash = function_description.__hash__() if func_hash in self.function_configs: func_config = self.function_configs[func_hash] else: func_config = self.load_function_config(func_hash, function_description) return func_config.distilled_model, func_config.teacher_models def _update_datapoint_config(self, repaired, func_hash): """ Update the config to reflect the new datapoint in the training data First adds 1 to the current datapoints Then updates running faults depending if priority is True or not and takes last 100 Then checks the revert condition, i.e if last 10 datapoints are 50% faulty Finally updates the config file Args: priority (bool): whether the datapoint was fixed by the teacher model/should be added to the training data """ try: if repaired: self.function_configs[func_hash].current_model_stats["running_faults"].append(1) else: self.function_configs[func_hash].current_model_stats["running_faults"].append(0) # take the last 100 datapoints self.function_configs[func_hash].current_model_stats["running_faults"] = \ self.function_configs[func_hash].current_model_stats["running_faults"][-100:] # check if the last 10 datapoints are 50% faulty, this is the switch condition if sum(self.function_configs[func_hash].current_model_stats["running_faults"][-10:]) / 10 > 0.5: self.function_configs[func_hash].distilled_model.model_name = "" self.function_configs[func_hash].current_model_stats["trained_on_datapoints"] = 0 self.function_configs[func_hash].current_model_stats["running_faults"] = [] self._update_config_file(func_hash) except Exception as e: print(e) print("Could not update config file") pass def _update_config_file(self, func_hash): self.data_worker.update_function_config(func_hash, self.function_configs[func_hash]) def check_for_finetuning(self, function_description, func_hash): """ Check for finetuning status If already finetuning, check for finetuning status If not finetuning, check for finetuning condition and execute finetuning if condition is met """ try: # check if already finetuning if "job_id" in self.function_configs[func_hash].current_training_run: # check for job status self._check_finetuning_status(func_hash, function_description) else: # check for finetuning condition if self._check_finetuning_condition(func_hash, function_description): self._execute_finetuning(function_description, func_hash) except Exception as e: print(e) print("Error checking for finetuning") def _check_finetuning_condition(self, func_hash, function_description): """ Check if the finetuning condition is met Currently finetuning condition is dependent on the number of symbolic datapoints since last finetuning """ if func_hash not in self.function_configs: return False training_threshold = (2 ** self.function_configs[func_hash].nr_of_training_runs) * 200 align_dataset_size = self.dataset_sizes[SYMBOLIC_ALIGNMENTS][func_hash] if func_hash in self.dataset_sizes[ SYMBOLIC_ALIGNMENTS] else 0 patch_dataset_size = self.dataset_sizes[PATCHES][func_hash] if func_hash in self.dataset_sizes[PATCHES] else 0 if patch_dataset_size == -1: # if havent read in the patch dataset size, read it in patch_dataset_size = self._get_dataset_info(PATCHES, func_hash, type="length") self.dataset_sizes[PATCHES][func_hash] = patch_dataset_size if func_hash not in self.startup_logging_checker: logging.info(f"Function {function_description.name} [{align_dataset_size} aligns | {patch_dataset_size} runs] will be finetuned from"\ f" {self.function_configs[func_hash].teacher_models[0].model_name} using {self.function_configs[func_hash].distilled_model.provider} in "\ f"{training_threshold-(patch_dataset_size + align_dataset_size)} runs") self.startup_logging_checker[func_hash] = True return (patch_dataset_size + align_dataset_size) > training_threshold def _execute_finetuning(self, function_description, func_hash): """ Execute the finetuning First create the OpenAI compatible dataset with jsonL file and upload it Then submit the OpenAI finetuning job Finally update the config file to reflect the new finetuning job as current """ # get function description function_string = str(function_description.__dict__.__repr__() + "\n") # get the align dataset align_dataset = self._get_dataset_info(SYMBOLIC_ALIGNMENTS, func_hash, type="dataset") if not align_dataset: align_dataset = "" else: align_dataset = align_dataset.decode('utf-8') # get the patch dataset patch_dataset = self._get_dataset_info(PATCHES, func_hash, type="dataset") if not patch_dataset: patch_dataset = "" else: patch_dataset = patch_dataset.decode('utf-8') if align_dataset == "" and patch_dataset == "": return dataset = align_dataset + patch_dataset dataset.replace("\\n", "[SEP_TOKEN]") dataset = dataset.split("\n") dataset = [x.replace("[SEP_TOKEN]", "\\n") for x in dataset if x != ""] # read in the dataset file dataset = [ast.literal_eval(x) for x in dataset] # # create the openai dataset instruction = "You are given below a function description and input data. The function description of what the function must carry out can be found in the Function section, with input and output type hints. The input data can be found in Input section. Using the function description, apply the function to the Input and return a valid output type, that is acceptable by the output_class_definition and output_class_hint. Return None if you can't apply the function to the input or if the output is optional and the correct output is None.\nINCREDIBLY IMPORTANT: Only output a JSON-compatible string in the correct response format." finetuning_dataset = [{"messages": [ { "role": "system", "content": f"You are a skillful and accurate language model, who applies a described function on input data. Make sure the function is applied accurately and correctly and the outputs follow the output type hints and are valid outputs given the output types." }, {"role": "user", "content": f"{instruction}\nFunction: {function_string}---\nInputs:\nArgs: {x['args']}\nKwargs: {x['kwargs']}\nOutput:"}, {"role": "assistant", "content": str(x['output']) if x['output'] is not None else "None"}]} for x in dataset] # Create an in-memory text stream temp_file = io.BytesIO() # Write data to the stream for idx, item in enumerate(finetuning_dataset): temp_file.write(json.dumps(item).encode('utf-8')) if idx != len(finetuning_dataset) - 1: temp_file.write("\n".encode('utf-8')) # Reset the stream position to the beginning temp_file.seek(0) # create the finetune hash finetune_hash = function_description.__hash__(purpose="finetune") nr_of_training_runs = self.function_configs[func_hash].nr_of_training_runs finetune_hash += encode_int(self.environment_id) finetune_hash += encode_int(nr_of_training_runs) # here can be sure that datasets were read in as that is checked in the finetune_check align_dataset_size = self.dataset_sizes[SYMBOLIC_ALIGNMENTS][func_hash] if func_hash in self.dataset_sizes[ SYMBOLIC_ALIGNMENTS] else 0 patch_dataset_size = self.dataset_sizes[PATCHES][func_hash] if func_hash in self.dataset_sizes[PATCHES] else 0 total_dataset_size = align_dataset_size + patch_dataset_size # Use the stream as a file try: finetune_provider = self.function_configs[func_hash].distilled_model.provider logging.info(f"Starting finetuning for {function_description.name} using {finetune_provider} for {self.function_configs[func_hash].distilled_model.base_model_for_sft}") finetuning_response: FinetuneJob = self.api_provider[finetune_provider].finetune(file=temp_file, suffix=finetune_hash, model_config = self.function_configs[func_hash].distilled_model,) except Exception as e: logging.info(f"Could not start finetuning for {function_description.name} using {finetune_provider}. Error: {e}") return self.function_configs[func_hash].current_training_run = {"job_id": finetuning_response.id, "trained_on_datapoints": total_dataset_size, "last_checked": datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S")} # update the config json file try: self._update_config_file(func_hash) except Exception as e: print(e) print("Could not update config file to register a finetuning run") def _check_finetuning_status(self, func_hash, function_description): """ Check the status of the current finetuning job If the job is finished, update the config file to reflect the new model """ job_id = self.function_configs[func_hash].current_training_run["job_id"] last_checked = self.function_configs[func_hash].current_training_run["last_checked"] # check if last checked was more than 30 mins ago if (datetime.datetime.now() - datetime.datetime.strptime(last_checked, "%Y-%m-%d %H:%M:%S")).total_seconds() > 1800: finetune_provider = self.function_configs[func_hash].distilled_model.provider response = self.api_provider[finetune_provider].get_finetuned(job_id, model_config = self.function_configs[func_hash].distilled_model) self.function_configs[func_hash].current_training_run["last_checked"] = datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S") if response.status == "succeeded" or response.status == "failed": self._update_finetune_config(response, func_hash, function_description) else: self._update_config_file(func_hash) def _update_finetune_config(self, response: FinetuneJob, func_hash, function_description): """ Update the config file to reflect the new model and switch the current model to the finetuned model """ self.function_configs[func_hash].update_with_finetuned_response(response) logging.info(f"Finetuning for {function_description.name} using {self.function_configs[func_hash].distilled_model.provider} finished with status: {response.status}."\ f" The id of the finetuned model is {response.fine_tuned_model.model_name}") try: self._update_config_file(func_hash) except Exception as e: logging.info(f"Could not update the function configuration file with the finetuned model for {function_description.name}. Error: {e}") pass <fim_middle>""" Return the current model from the config file """
""" Return the current model from the config file """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/abc_buffered_logger.py def get_bloom_filter_persistence(self) -> IBloomFilterPersistence: """ Get an instance of the bloom filter persistence provider. This exposes some persistent file storage, that must support reading and writing raw byte streams. :return: """ pass # tanuki_py/src/tanuki/trackers/abc_buffered_logger.py def log_symbolic_align(self, func_hash, *args, **kws): """ Log an align function invocation to the file system :param func_hash: A string representation of the function signature and input parameters :param args: Example objects :param kws: :return: """ successfully_saved, new_datapoint = False, False try: self.ensure_persistence_location_exists() except Exception as e: return successfully_saved, new_datapoint example = args[0] # prepend the function hash to the example bloom_filter_representation = func_hash + '_' + str(example.__dict__) + '\n' # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): return successfully_saved, new_datapoint new_datapoint = True # add to bloom filter self.bloom_filter.add(bloom_filter_representation) self.save_bloom_filter() successfully_saved = self.write_symbolic_align_call(func_hash, example) return successfully_saved, new_datapoint # tanuki_py/src/tanuki/trackers/abc_buffered_logger.py def get_patch_location_for_function(self, func_hash, extension="") -> str: """ Get the address of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ pass """ import os from enum import Enum from typing import Literal, Union, Optional, Dict from appdirs import user_data_dir from tanuki.constants import * from tanuki.persistence.filter.bloom_interface import IBloomFilterPersistence from tanuki.persistence.filter.filesystem_bloom import BloomFilterFileSystemDriver from tanuki.trackers.abc_buffered_logger import ABCBufferedLogger class FilesystemBufferedLogger(ABCBufferedLogger): """ A class that handles the reading and writing of patch invocations and align statements. It includes the logic for a bloom filter, to ensure that we only store unique invocations. """ def __init__(self, name, level=15): self.log_directory = self._get_log_directory() super().__init__(name, level) def get_bloom_filter_persistence(self) -> IBloomFilterPersistence: <fim_suffix> return BloomFilterFileSystemDriver(log_directory=self.log_directory) def get_patch_location_for_function(self, func_hash, extension: Union[ ALIGN_FILE_EXTENSION_TYPE, PATCH_FILE_EXTENSION_TYPE] = "") -> str: """ Get the local location of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ return os.path.join(self.log_directory, func_hash + extension) def ensure_persistence_location_exists(self) -> None: """ Ensure that the location on the filesystem we will be writing to actually exists. If not, create it. """ log_directory = self.log_directory # Create the folder if it doesn't exist if not os.path.exists(log_directory): os.makedirs(log_directory) def does_object_exist(self, path: str) -> bool: """ Check to see if a path exists on the filesystem. :param path: :return: """ return os.path.exists(path) def _get_log_directory(self) -> str: """ Find a location on the filesystem to write our logs to. :return: """ filename = "functions" # If explicitly defined env_dir = os.getenv(ENVVAR) if env_dir and os.path.isdir(env_dir): return os.path.join(env_dir, filename) # If installed as a library library_dir = os.path.join(user_data_dir(LIB_NAME), filename) if os.path.isdir(library_dir) or not os.path.exists(library_dir): return library_dir # If installed in a project that contains a git repo - place it in the same folder as the git repo current_dir = os.getcwd() while current_dir != os.path.root: if ".git" in os.listdir(current_dir): return os.path.join(current_dir, filename) current_dir = os.path.dirname(current_dir) return os.path.join(os.getcwd(), filename) def load_dataset(self, dataset_type, func_hash, return_type="both") -> Optional[int]: """ Get the size of the dataset for a function hash """ log_directory = self._get_log_directory() dataset_type_map = {"alignments": ALIGN_FILE_EXTENSION, "positive": POSITIVE_FILE_EXTENSION, "negative": NEGATIVE_FILE_EXTENSION, "patches": PATCH_FILE_EXTENSION} log_file_path = os.path.join(log_directory, func_hash + dataset_type_map[dataset_type]) if not os.path.exists(log_file_path): if return_type == "both": return 0, None elif return_type == "dataset": return None elif return_type == "length": return 0 try: with open(log_file_path, "rb") as f: dataset = f.read() dataset_string = repr(dataset) dataset_length = dataset_string.count("\\n") - dataset_string.count("\\\\n") if return_type == "both": return dataset_length, dataset elif return_type == "dataset": return dataset elif return_type == "length": return dataset_length except Exception as e: if return_type == "both": return 0, None elif return_type == "dataset": return None elif return_type == "length": return 0 def load_existing_datasets(self) -> Dict[str, Dict[str, str]]: log_directory = self.log_directory dataset_lengths = { SYMBOLIC_ALIGNMENTS: {}, POSITIVE_EMBEDDABLE_ALIGNMENTS: {}, NEGATIVE_EMBEDDABLE_ALIGNMENTS: {}, PATCHES: {}, } try: if not os.path.exists(log_directory): os.makedirs(log_directory) # get all the files in the log directory files = os.listdir(log_directory) # discard all .json files files = [x for x in files if ".json" not in x] except Exception as e: return dataset_lengths for file in files: if ALIGN_FILE_EXTENSION not in file \ and PATCH_FILE_EXTENSION not in file \ and POSITIVE_FILE_EXTENSION not in file \ and NEGATIVE_FILE_EXTENSION not in file: continue elif ALIGN_FILE_EXTENSION in file: dataset_type = SYMBOLIC_ALIGNMENTS elif POSITIVE_FILE_EXTENSION in file: dataset_type = POSITIVE_EMBEDDABLE_ALIGNMENTS elif NEGATIVE_FILE_EXTENSION in file: dataset_type = NEGATIVE_EMBEDDABLE_ALIGNMENTS else: dataset_type = PATCHES func_hash = file.replace(ALIGN_FILE_EXTENSION, "").replace(PATCH_FILE_EXTENSION, "") dataset_lengths[dataset_type][func_hash] = -1 return dataset_lengths def write(self, path: str, data: str, mode: Literal["w", "a", "a+b"] = "w") -> None: """ Write data to a file """ with open(path, mode) as f: f.write(data) def read(self, path: str) -> str: """ Read data from a file """ with open(path, "r") as f: return f.read() def get_hash_from_path(self, path) -> str: """ Given a path with a hash, return only the hash :param path: The path to the file :return: The hash """ return path.replace(PATCH_FILE_EXTENSION, ""). \ replace(self.log_directory, ""). \ lstrip("/"). \ lstrip("\\") <fim_middle>""" Get an instance of the bloom filter persistence provider. Typically this will be a file system provider. :return: A persistence provider """
""" Get an instance of the bloom filter persistence provider. Typically this will be a file system provider. :return: A persistence provider """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/function_modeler.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/models/function_config.py def update_with_finetuned_response(self, response): """ Update the function config with the finetuned response Args: response: The finetuned response """ if response.status == "failed": self.current_training_run = {} else: self.distilled_model = response.fine_tuned_model self.last_training_run = self.current_training_run self.current_model_stats = { "trained_on_datapoints": self.current_training_run[ "trained_on_datapoints"], "running_faults": []} self.nr_of_training_runs += 1 self.current_training_run = {} # tanuki_py/src/tanuki/register.py def get_class_definition(class_type): """Helper function to get class definition source if not a built-in type""" if hasattr(class_type, "__origin__"): # Check if it's a generic type origin_type = class_type.__origin__ if origin_type is Literal: # Handle Literal case return [literal for literal in class_type.__args__] elif hasattr(class_type, "__args__"): # Access inner types return [get_class_definition(arg) for arg in class_type.__args__ if arg is not None] elif inspect.isclass(class_type) and class_type.__module__ != "builtins": return get_source(class_type) return class_type.__name__ # tanuki_py/src/tanuki/__init__.py def generate_from_embedding_model_manager(function_description): choice_parsed = [] instantiated = function_description.output_type_hint(choice_parsed) return instantiated """ import ast import datetime import io import json from typing import List, Tuple, Dict, Union import logging from tanuki.constants import EXAMPLE_ELEMENT_LIMIT, PATCHES, SYMBOLIC_ALIGNMENTS, POSITIVE_EMBEDDABLE_ALIGNMENTS, \ NEGATIVE_EMBEDDABLE_ALIGNMENTS, OPENAI_PROVIDER from tanuki.models.function_type import FunctionType from tanuki.language_models.llm_configs import DEFAULT_TEACHER_MODELS, DEFAULT_EMBEDDING_MODELS, DEFAULT_STUDENT_MODELS from tanuki.language_models.llm_configs.abc_base_config import BaseModelConfig from tanuki.language_models.llm_finetune_api_abc import LLM_Finetune_API from tanuki.models.finetune_job import FinetuneJob from tanuki.models.function_description import FunctionDescription from tanuki.models.function_example import FunctionExample from tanuki.trackers.dataset_worker import DatasetWorker from tanuki.utils import approximate_token_count, prepare_object_for_saving, encode_int, decode_int import copy from tanuki.models.function_config import FunctionConfig from tanuki.models.api_manager import APIManager class FunctionModeler(object): """ This class manages the registered function models and their datasets comprised of symbolic and embeddable alignments, and symbolic and embeddable patches """ def __init__(self, data_worker: DatasetWorker, api_provider: APIManager, environment_id=0, ) -> None: self.function_configs = {} self.data_worker = data_worker self.distillation_token_limit = 3000 # the token limit for finetuning self.symbolic_align_buffer = {} self.embeddable_align_buffer = {} self._get_datasets() self.environment_id = environment_id self.check_finetune_blacklist = [] self.execute_finetune_blacklist = [] self.store_data_blacklist = [] self.api_provider = api_provider self.teacher_models_override = {} self.student_model_override = {} self.startup_logging_checker = {} def _get_dataset_info(self, dataset_type, func_hash, type="length"): """ Get the dataset size for a function hash """ return self.data_worker.load_dataset(dataset_type, func_hash, return_type=type) def _configure_function_models(self, teacher_models: List[Union[str, BaseModelConfig]], student_model: str, func_hash: str, task_type: str): """ Configure the function models """ if teacher_models: self._configure_teacher_models(teacher_models, func_hash, task_type) if student_model: self._configure_student_model(student_model, func_hash, task_type) if teacher_models and not student_model: for model_config in self.teacher_models_override[func_hash]: # ban all non-openai models from finetuning if teacher is not openai and student is not specified because it doesnt make sense if model_config.provider != OPENAI_PROVIDER and func_hash not in self.check_finetune_blacklist: self.check_finetune_blacklist.append(func_hash) if model_config.provider != OPENAI_PROVIDER and func_hash not in self.execute_finetune_blacklist: self.execute_finetune_blacklist.append(func_hash) def _configure_teacher_models(self, teacher_models: List[Union[str, BaseModelConfig]], func_hash: str, task_type: str): """ Add custom teacher models to the function config First this is added to the teacher_models_override dict, which is used to override the teacher models Args: teacher_models: A list of teacher models to use for the function hash func_hash: The function hash to add the teacher models to """ if func_hash not in self.teacher_models_override: self.teacher_models_override[func_hash] = [] if task_type == FunctionType.EMBEDDABLE: preconfigured_models = DEFAULT_EMBEDDING_MODELS elif task_type == FunctionType.SYMBOLIC: preconfigured_models = DEFAULT_TEACHER_MODELS for model in teacher_models: if isinstance(model, str): if model not in preconfigured_models: raise Exception(f"Teacher model {model} not supported by default. Please include it in the list in extended config format") model_config = preconfigured_models[model] elif isinstance(model, BaseModelConfig): model_config = model self.teacher_models_override[func_hash].append(model_config) def _configure_student_model(self, student_model: str, func_hash: str, task_type: str): """ Add custom student models to the function config First this is added to the teacher_models_override dict, which is used to override the teacher models Args: teacher_models: A list of teacher models to use for the function hash func_hash: The function hash to add the teacher models to """ if task_type == FunctionType.EMBEDDABLE: logging.info("Embeddable function type does not support student models") preconfigured_models = DEFAULT_STUDENT_MODELS if student_model not in preconfigured_models: raise Exception(f"Student model {student_model} is currently not supported.") model_config = preconfigured_models[student_model] self.student_model_override[func_hash] = model_config def _get_datasets(self): """ Get the existing datasets from the data worker """ self.dataset_sizes = self.data_worker.load_existing_datasets() def save_embeddable_align_statements(self, function_hash: str, args, kwargs, positive_pairs: List[Tuple[List, Dict]], negative_pairs: List[Tuple[List, Dict]]): """ Save the contrastive align statements for the embeddable function. Do not save if the function hash is in the store data blacklist Args: function_hash: A unique hash for the function args: The arguments of the function kwargs: The keyword arguments of the function positive_pairs: A list of the other function invocations that are should have equivalent embeddings negative_pairs: A list of the other function invocations that are should have different embeddings """ # prepare args and kwargs for saving copy_args = copy.deepcopy(args) copy_kwargs = copy.deepcopy(kwargs) parsed_args = prepare_object_for_saving(copy_args) parsed_kwargs = prepare_object_for_saving(copy_kwargs) # prepare positive pairs for saving parsed_positive_pairs = [] for pair in positive_pairs: copy_pair = copy.deepcopy(pair) parsed_pair = prepare_object_for_saving(copy_pair) parsed_positive_pairs.append(parsed_pair) # prepare negative pairs for saving parsed_negative_pairs = [] for pair in negative_pairs: copy_pair = copy.deepcopy(pair) parsed_pair = prepare_object_for_saving(copy_pair) parsed_negative_pairs.append(parsed_pair) # save the contrastive pairs for pair in parsed_positive_pairs: self._save_contrastive_alignment_pair(function_hash, parsed_args, parsed_kwargs, pair, positive=True) for pair in parsed_negative_pairs: self._save_contrastive_alignment_pair(function_hash, parsed_args, parsed_kwargs, pair, positive=False) def _save_contrastive_alignment_pair(self, function_hash: str, args, kwargs, pair, positive=True): """ Save a contrastive pair """ example = FunctionExample(args, kwargs, pair) if function_hash not in self.store_data_blacklist: successfully_saved, new_datapoint = self.data_worker.log_embeddable_align(function_hash, example, positive) else: successfully_saved = False new_datapoint = True if successfully_saved: if positive: if function_hash in self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS]: self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS][function_hash] = 1 if not positive: if function_hash in self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS]: self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS][function_hash] = 1 if new_datapoint: # update align buffer if function_hash not in self.embeddable_align_buffer: self.embeddable_align_buffer[function_hash] = bytearray() self.embeddable_align_buffer[function_hash].extend(str(example.__dict__).encode('utf-8') + b'\r\n') def save_symbolic_align_statements(self, function_hash, args, kwargs, output): """ Save the align statements and add to the align buffer Do not save if the function hash is in the store data blacklist Then just add the datapoints to the align buffer """ # prepare output for saving and later parsing # make a deepcopy of the output to avoid changing the original object copy_output = copy.deepcopy(output) parsed_output = prepare_object_for_saving(copy_output) # prepare args and kwargs for saving copy_args = copy.deepcopy(args) copy_kwargs = copy.deepcopy(kwargs) parsed_args = prepare_object_for_saving(copy_args) parsed_kwargs = prepare_object_for_saving(copy_kwargs) example = FunctionExample(parsed_args, parsed_kwargs, parsed_output) if function_hash not in self.store_data_blacklist: successfully_saved, new_datapoint = self.data_worker.log_symbolic_align(function_hash, example) else: successfully_saved = False new_datapoint = True if successfully_saved: if function_hash in self.dataset_sizes[SYMBOLIC_ALIGNMENTS]: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = 1 if new_datapoint: # update align buffer if function_hash not in self.symbolic_align_buffer: self.symbolic_align_buffer[function_hash] = bytearray() self.symbolic_align_buffer[function_hash].extend(str(example.__dict__).encode('utf-8') + b'\r\n') def save_symbolic_datapoint(self, func_hash, example): """ Save datapoint to the training data """ written_datapoints = self.data_worker.log_symbolic_patch(func_hash, example) for func_hash, datapoints in written_datapoints.items(): if func_hash in self.dataset_sizes[PATCHES]: # if the dataset size is -1, it means we havent read in the dataset size yet if self.dataset_sizes[PATCHES][func_hash] == -1: self.dataset_sizes[PATCHES][func_hash] = self._get_dataset_info(PATCHES, func_hash, type="length") else: self.dataset_sizes[PATCHES][func_hash] += datapoints else: self.dataset_sizes[PATCHES][func_hash] = datapoints return len(written_datapoints) > 0 def get_symbolic_alignments(self, func_hash, max=20): """ Get all symbolic aligns for a function hash """ if func_hash not in self.symbolic_align_buffer: return [] buffer = self.symbolic_align_buffer[func_hash] return self._get_examples_from_alignment_buffer(buffer, max) def get_embeddable_alignments(self, func_hash, max=20): """ Get all embeddable aligns for a function hash """ if func_hash not in self.embeddable_align_buffer: return [] buffer = self.embeddable_align_buffer[func_hash] return self._get_examples_from_alignment_buffer(buffer, max) def _get_examples_from_alignment_buffer(self, buffer, max=20): """ Get examples from a buffer """ split_buffer = bytes(buffer).split(b"\n") # byte array of stringed python dicts into dict objects example_set = set() for example in split_buffer: if example == b"": continue example_set.add(example) # easy and straightforward way to get nr of words (not perfect but doesnt need to be) # Can do the proper way of tokenizing later, it might be slower and we dont need 100% accuracy example_element_limit = EXAMPLE_ELEMENT_LIMIT examples = [] for example_bytes in split_buffer: if example_bytes in example_set: nr_of_elements = approximate_token_count(example_bytes) example_element_limit -= nr_of_elements if example_element_limit < 0: break example = example_bytes.decode('utf-8') # json load the example try: example = json.loads(example) except: example = ast.literal_eval(example) examples.append(example) example_set.remove(example_bytes) return list(examples)[:max] def load_symbolic_align_statements(self, function_hash): """ Load all align statements First check the data storage blacklist, if the func hash is in the blacklist, then set the dataset size to 0 and the align buffer to empty bytearray """ if function_hash in self.store_data_blacklist: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = 0 self.symbolic_align_buffer[function_hash] = bytearray() elif function_hash not in self.symbolic_align_buffer: dataset_size, align_dataset = self._get_dataset_info(SYMBOLIC_ALIGNMENTS, function_hash, type="both") if align_dataset: self.symbolic_align_buffer[function_hash] = bytearray(align_dataset) self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = dataset_size def postprocess_symbolic_datapoint(self, func_hash, function_description, example, repaired=True): """ Postprocess the datapoint First check if the datapoint should be added to the training data Add the datapoint if it should be added Then check if the function should be finetuned and execute finetuning if it should """ try: if func_hash not in self.store_data_blacklist: added = self.save_symbolic_datapoint(func_hash, example) if added: self._update_datapoint_config(repaired, func_hash) except Exception as e: print(e) print("Could not add datapoint to training data") if func_hash not in self.execute_finetune_blacklist: self.check_for_finetuning(function_description, func_hash) def load_function_config(self, func_hash, function_description): <fim_suffix> config, default = self.data_worker.load_function_config(func_hash) if func_hash in self.student_model_override and config.distilled_model.model_name == "": config.distilled_model = self.student_model_override[func_hash] if default and func_hash not in self.check_finetune_blacklist: finetuned, finetune_config = self._check_for_finetunes(function_description, config.distilled_model) if finetuned: config = finetune_config # update teachers if not default if func_hash in self.teacher_models_override: config.teacher_models = self.teacher_models_override[func_hash] self.function_configs[func_hash] = config return config def _check_for_finetunes(self, function_description: FunctionDescription, model_config : BaseModelConfig) -> Tuple[bool, Dict]: # hash the function_hash into 16 characters (to embed it into the name of OpenAI finetunes, for later retrieval) logging.info(f"Checking for finetunes for {function_description.name} using {model_config.provider}") finetune_hash = function_description.__hash__(purpose="finetune") + encode_int(self.environment_id) # List 10 fine-tuning jobs finetunes: List[FinetuneJob] = self.api_provider[model_config.provider].list_finetuned(model_config, limit=1000) # Check if the function_hash is in the fine-tuning jobs # the finetunes are in chronological order starting from newest # So this gets the latest finetune for finetune in finetunes: # check if the finetune hash is in the fine-tuned model name if finetune.status == "succeeded" and finetune_hash in finetune.fine_tuned_model.model_name: try: config = self._construct_config_from_finetune(finetune_hash, finetune) # save the config self.data_worker.update_function_config(function_description.__hash__(), config) logging.info(f"Found finetuned model for {function_description.name} [{config.distilled_model.model_name}]") return True, config except: logging.info(f"Found finetuned model for {function_description.name} [{finetune.fine_tuned_model.model_name}] but could not load it") return False, {} logging.info(f"No finetuned model found for {function_description.name}") return False, {} def _construct_config_from_finetune(self, finetune_hash: str, finetune: FinetuneJob): """ Construct a valid function config from a finetune job Args: finetune_hash: The hash of the function finetune: The finetune job Returns: config: The function config """ model = finetune.fine_tuned_model # get the ending location of finetune hash in the model name finetune_hash_end = model.model_name.find(finetune_hash) + len(finetune_hash) # get the next character after the finetune hash next_char = model.model_name[finetune_hash_end] # get the number of training runs nr_of_training_runs = decode_int(next_char) + 1 nr_of_training_points = (2 ** (nr_of_training_runs - 1)) * 200 config = { "distilled_model": model, "current_model_stats": { "trained_on_datapoints": nr_of_training_points, "running_faults": []}, "last_training_run": {"trained_on_datapoints": nr_of_training_points}, "current_training_run": {}, "teacher_models": [], # default teacher models, will be overwritten if needed "nr_of_training_runs": nr_of_training_runs} config = FunctionConfig().load_from_dict(config) return config def get_models(self, function_description): """ Return the current model from the config file """ func_hash = function_description.__hash__() if func_hash in self.function_configs: func_config = self.function_configs[func_hash] else: func_config = self.load_function_config(func_hash, function_description) return func_config.distilled_model, func_config.teacher_models def _update_datapoint_config(self, repaired, func_hash): """ Update the config to reflect the new datapoint in the training data First adds 1 to the current datapoints Then updates running faults depending if priority is True or not and takes last 100 Then checks the revert condition, i.e if last 10 datapoints are 50% faulty Finally updates the config file Args: priority (bool): whether the datapoint was fixed by the teacher model/should be added to the training data """ try: if repaired: self.function_configs[func_hash].current_model_stats["running_faults"].append(1) else: self.function_configs[func_hash].current_model_stats["running_faults"].append(0) # take the last 100 datapoints self.function_configs[func_hash].current_model_stats["running_faults"] = \ self.function_configs[func_hash].current_model_stats["running_faults"][-100:] # check if the last 10 datapoints are 50% faulty, this is the switch condition if sum(self.function_configs[func_hash].current_model_stats["running_faults"][-10:]) / 10 > 0.5: self.function_configs[func_hash].distilled_model.model_name = "" self.function_configs[func_hash].current_model_stats["trained_on_datapoints"] = 0 self.function_configs[func_hash].current_model_stats["running_faults"] = [] self._update_config_file(func_hash) except Exception as e: print(e) print("Could not update config file") pass def _update_config_file(self, func_hash): self.data_worker.update_function_config(func_hash, self.function_configs[func_hash]) def check_for_finetuning(self, function_description, func_hash): """ Check for finetuning status If already finetuning, check for finetuning status If not finetuning, check for finetuning condition and execute finetuning if condition is met """ try: # check if already finetuning if "job_id" in self.function_configs[func_hash].current_training_run: # check for job status self._check_finetuning_status(func_hash, function_description) else: # check for finetuning condition if self._check_finetuning_condition(func_hash, function_description): self._execute_finetuning(function_description, func_hash) except Exception as e: print(e) print("Error checking for finetuning") def _check_finetuning_condition(self, func_hash, function_description): """ Check if the finetuning condition is met Currently finetuning condition is dependent on the number of symbolic datapoints since last finetuning """ if func_hash not in self.function_configs: return False training_threshold = (2 ** self.function_configs[func_hash].nr_of_training_runs) * 200 align_dataset_size = self.dataset_sizes[SYMBOLIC_ALIGNMENTS][func_hash] if func_hash in self.dataset_sizes[ SYMBOLIC_ALIGNMENTS] else 0 patch_dataset_size = self.dataset_sizes[PATCHES][func_hash] if func_hash in self.dataset_sizes[PATCHES] else 0 if patch_dataset_size == -1: # if havent read in the patch dataset size, read it in patch_dataset_size = self._get_dataset_info(PATCHES, func_hash, type="length") self.dataset_sizes[PATCHES][func_hash] = patch_dataset_size if func_hash not in self.startup_logging_checker: logging.info(f"Function {function_description.name} [{align_dataset_size} aligns | {patch_dataset_size} runs] will be finetuned from"\ f" {self.function_configs[func_hash].teacher_models[0].model_name} using {self.function_configs[func_hash].distilled_model.provider} in "\ f"{training_threshold-(patch_dataset_size + align_dataset_size)} runs") self.startup_logging_checker[func_hash] = True return (patch_dataset_size + align_dataset_size) > training_threshold def _execute_finetuning(self, function_description, func_hash): """ Execute the finetuning First create the OpenAI compatible dataset with jsonL file and upload it Then submit the OpenAI finetuning job Finally update the config file to reflect the new finetuning job as current """ # get function description function_string = str(function_description.__dict__.__repr__() + "\n") # get the align dataset align_dataset = self._get_dataset_info(SYMBOLIC_ALIGNMENTS, func_hash, type="dataset") if not align_dataset: align_dataset = "" else: align_dataset = align_dataset.decode('utf-8') # get the patch dataset patch_dataset = self._get_dataset_info(PATCHES, func_hash, type="dataset") if not patch_dataset: patch_dataset = "" else: patch_dataset = patch_dataset.decode('utf-8') if align_dataset == "" and patch_dataset == "": return dataset = align_dataset + patch_dataset dataset.replace("\\n", "[SEP_TOKEN]") dataset = dataset.split("\n") dataset = [x.replace("[SEP_TOKEN]", "\\n") for x in dataset if x != ""] # read in the dataset file dataset = [ast.literal_eval(x) for x in dataset] # # create the openai dataset instruction = "You are given below a function description and input data. The function description of what the function must carry out can be found in the Function section, with input and output type hints. The input data can be found in Input section. Using the function description, apply the function to the Input and return a valid output type, that is acceptable by the output_class_definition and output_class_hint. Return None if you can't apply the function to the input or if the output is optional and the correct output is None.\nINCREDIBLY IMPORTANT: Only output a JSON-compatible string in the correct response format." finetuning_dataset = [{"messages": [ { "role": "system", "content": f"You are a skillful and accurate language model, who applies a described function on input data. Make sure the function is applied accurately and correctly and the outputs follow the output type hints and are valid outputs given the output types." }, {"role": "user", "content": f"{instruction}\nFunction: {function_string}---\nInputs:\nArgs: {x['args']}\nKwargs: {x['kwargs']}\nOutput:"}, {"role": "assistant", "content": str(x['output']) if x['output'] is not None else "None"}]} for x in dataset] # Create an in-memory text stream temp_file = io.BytesIO() # Write data to the stream for idx, item in enumerate(finetuning_dataset): temp_file.write(json.dumps(item).encode('utf-8')) if idx != len(finetuning_dataset) - 1: temp_file.write("\n".encode('utf-8')) # Reset the stream position to the beginning temp_file.seek(0) # create the finetune hash finetune_hash = function_description.__hash__(purpose="finetune") nr_of_training_runs = self.function_configs[func_hash].nr_of_training_runs finetune_hash += encode_int(self.environment_id) finetune_hash += encode_int(nr_of_training_runs) # here can be sure that datasets were read in as that is checked in the finetune_check align_dataset_size = self.dataset_sizes[SYMBOLIC_ALIGNMENTS][func_hash] if func_hash in self.dataset_sizes[ SYMBOLIC_ALIGNMENTS] else 0 patch_dataset_size = self.dataset_sizes[PATCHES][func_hash] if func_hash in self.dataset_sizes[PATCHES] else 0 total_dataset_size = align_dataset_size + patch_dataset_size # Use the stream as a file try: finetune_provider = self.function_configs[func_hash].distilled_model.provider logging.info(f"Starting finetuning for {function_description.name} using {finetune_provider} for {self.function_configs[func_hash].distilled_model.base_model_for_sft}") finetuning_response: FinetuneJob = self.api_provider[finetune_provider].finetune(file=temp_file, suffix=finetune_hash, model_config = self.function_configs[func_hash].distilled_model,) except Exception as e: logging.info(f"Could not start finetuning for {function_description.name} using {finetune_provider}. Error: {e}") return self.function_configs[func_hash].current_training_run = {"job_id": finetuning_response.id, "trained_on_datapoints": total_dataset_size, "last_checked": datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S")} # update the config json file try: self._update_config_file(func_hash) except Exception as e: print(e) print("Could not update config file to register a finetuning run") def _check_finetuning_status(self, func_hash, function_description): """ Check the status of the current finetuning job If the job is finished, update the config file to reflect the new model """ job_id = self.function_configs[func_hash].current_training_run["job_id"] last_checked = self.function_configs[func_hash].current_training_run["last_checked"] # check if last checked was more than 30 mins ago if (datetime.datetime.now() - datetime.datetime.strptime(last_checked, "%Y-%m-%d %H:%M:%S")).total_seconds() > 1800: finetune_provider = self.function_configs[func_hash].distilled_model.provider response = self.api_provider[finetune_provider].get_finetuned(job_id, model_config = self.function_configs[func_hash].distilled_model) self.function_configs[func_hash].current_training_run["last_checked"] = datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S") if response.status == "succeeded" or response.status == "failed": self._update_finetune_config(response, func_hash, function_description) else: self._update_config_file(func_hash) def _update_finetune_config(self, response: FinetuneJob, func_hash, function_description): """ Update the config file to reflect the new model and switch the current model to the finetuned model """ self.function_configs[func_hash].update_with_finetuned_response(response) logging.info(f"Finetuning for {function_description.name} using {self.function_configs[func_hash].distilled_model.provider} finished with status: {response.status}."\ f" The id of the finetuned model is {response.fine_tuned_model.model_name}") try: self._update_config_file(func_hash) except Exception as e: logging.info(f"Could not update the function configuration file with the finetuned model for {function_description.name}. Error: {e}") pass <fim_middle>""" Load the config file for a function hash """
""" Load the config file for a function hash """
BLOCK_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type <fim_suffix> return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple)
if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple)
IF
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/register.py def get_class_definition(class_type): """Helper function to get class definition source if not a built-in type""" if hasattr(class_type, "__origin__"): # Check if it's a generic type origin_type = class_type.__origin__ if origin_type is Literal: # Handle Literal case return [literal for literal in class_type.__args__] elif hasattr(class_type, "__args__"): # Access inner types return [get_class_definition(arg) for arg in class_type.__args__ if arg is not None] elif inspect.isclass(class_type) and class_type.__module__ != "builtins": return get_source(class_type) return class_type.__name__ # tanuki_py/src/tanuki/__init__.py def extract_attributes(result): attributes = {} # If the result is a list, get its length if isinstance(result, list): attributes['length'] = len(result) # If the result is a dictionary, get its keys (or any other attributes) elif isinstance(result, dict): attributes['keys'] = list(result.keys()) return attributes # tanuki_py/src/tanuki/function_modeler.py def load_symbolic_align_statements(self, function_hash): """ Load all align statements First check the data storage blacklist, if the func hash is in the blacklist, then set the dataset size to 0 and the align buffer to empty bytearray """ if function_hash in self.store_data_blacklist: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = 0 self.symbolic_align_buffer[function_hash] = bytearray() elif function_hash not in self.symbolic_align_buffer: dataset_size, align_dataset = self._get_dataset_info(SYMBOLIC_ALIGNMENTS, function_hash, type="both") if align_dataset: self.symbolic_align_buffer[function_hash] = bytearray(align_dataset) self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = dataset_size """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): <fim_suffix> for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base)
if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base)
IF
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/function_modeler.py def _construct_config_from_finetune(self, finetune_hash: str, finetune: FinetuneJob): """ Construct a valid function config from a finetune job Args: finetune_hash: The hash of the function finetune: The finetune job Returns: config: The function config """ model = finetune.fine_tuned_model # get the ending location of finetune hash in the model name finetune_hash_end = model.model_name.find(finetune_hash) + len(finetune_hash) # get the next character after the finetune hash next_char = model.model_name[finetune_hash_end] # get the number of training runs nr_of_training_runs = decode_int(next_char) + 1 nr_of_training_points = (2 ** (nr_of_training_runs - 1)) * 200 config = { "distilled_model": model, "current_model_stats": { "trained_on_datapoints": nr_of_training_points, "running_faults": []}, "last_training_run": {"trained_on_datapoints": nr_of_training_points}, "current_training_run": {}, "teacher_models": [], # default teacher models, will be overwritten if needed "nr_of_training_runs": nr_of_training_runs} config = FunctionConfig().load_from_dict(config) return config # tanuki_py/src/tanuki/utils.py def _deep_tuple(obj): """ Convert a list or dict to a tuple recursively to allow for hashing and becoming a key for mock_behaviors :param obj: :return: """ # transform pydantic objects into dicts if hasattr(obj, "__dict__"): obj = obj.__dict__ if isinstance(obj, list) or isinstance(obj, tuple): return tuple(_deep_tuple(e) for e in obj) elif isinstance(obj, dict): return tuple((k, _deep_tuple(v)) for k, v in sorted(obj.items())) else: return obj # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: <fim_suffix> item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>if not isinstance(value, tuple): return False
if not isinstance(value, tuple): return False
IF
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type <fim_suffix> return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items)
if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items)
IF
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/trackers/abc_buffered_logger.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/function_modeler.py def _save_contrastive_alignment_pair(self, function_hash: str, args, kwargs, pair, positive=True): """ Save a contrastive pair """ example = FunctionExample(args, kwargs, pair) if function_hash not in self.store_data_blacklist: successfully_saved, new_datapoint = self.data_worker.log_embeddable_align(function_hash, example, positive) else: successfully_saved = False new_datapoint = True if successfully_saved: if positive: if function_hash in self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS]: self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS][function_hash] = 1 if not positive: if function_hash in self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS]: self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS][function_hash] = 1 if new_datapoint: # update align buffer if function_hash not in self.embeddable_align_buffer: self.embeddable_align_buffer[function_hash] = bytearray() self.embeddable_align_buffer[function_hash].extend(str(example.__dict__).encode('utf-8') + b'\r\n') # tanuki_py/src/tanuki/function_modeler.py def save_symbolic_align_statements(self, function_hash, args, kwargs, output): """ Save the align statements and add to the align buffer Do not save if the function hash is in the store data blacklist Then just add the datapoints to the align buffer """ # prepare output for saving and later parsing # make a deepcopy of the output to avoid changing the original object copy_output = copy.deepcopy(output) parsed_output = prepare_object_for_saving(copy_output) # prepare args and kwargs for saving copy_args = copy.deepcopy(args) copy_kwargs = copy.deepcopy(kwargs) parsed_args = prepare_object_for_saving(copy_args) parsed_kwargs = prepare_object_for_saving(copy_kwargs) example = FunctionExample(parsed_args, parsed_kwargs, parsed_output) if function_hash not in self.store_data_blacklist: successfully_saved, new_datapoint = self.data_worker.log_symbolic_align(function_hash, example) else: successfully_saved = False new_datapoint = True if successfully_saved: if function_hash in self.dataset_sizes[SYMBOLIC_ALIGNMENTS]: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = 1 if new_datapoint: # update align buffer if function_hash not in self.symbolic_align_buffer: self.symbolic_align_buffer[function_hash] = bytearray() self.symbolic_align_buffer[function_hash].extend(str(example.__dict__).encode('utf-8') + b'\r\n') # tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py def get_patch_location_for_function(self, func_hash, extension: Union[ ALIGN_FILE_EXTENSION_TYPE, PATCH_FILE_EXTENSION_TYPE] = "") -> str: """ Get the local location of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ return os.path.join(self.log_directory, func_hash + extension) """ import json from abc import abstractmethod from typing import Dict, Any, Literal from tanuki.bloom_filter import BloomFilter from tanuki.constants import EXPECTED_ITEMS, FALSE_POSITIVE_RATE, ALIGN_FILE_EXTENSION, \ POSITIVE_FILE_EXTENSION, NEGATIVE_FILE_EXTENSION, PATCH_FILE_EXTENSION from tanuki.persistence.filter.bloom_interface import IBloomFilterPersistence from tanuki.trackers.dataset_worker import DatasetWorker from tanuki.models.function_config import FunctionConfig # PATCH_FILE_EXTENSION_TYPE = Literal[".patches"] # ALIGN_FILE_EXTENSION_TYPE = Literal[".alignments"] # POSITIVE_EMBEDDING_FILE_EXTENSION_TYPE = Literal[".positive_embedding"] # NEGATIVE_EMBEDDING_FILE_EXTENSION_TYPE = Literal[".negative_embedding"] # # PATCH_FILE_EXTENSION: PATCH_FILE_EXTENSION_TYPE = ".patches" # ALIGN_FILE_EXTENSION: ALIGN_FILE_EXTENSION_TYPE = ".alignments" # POSITIVE_EMBEDDING_FILE_EXTENSION: POSITIVE_EMBEDDING_FILE_EXTENSION_TYPE = ".contrastive_positives" # NEGATIVE_EMBEDDING_FILE_EXTENSION: NEGATIVE_EMBEDDING_FILE_EXTENSION_TYPE = ".contrastive_negatives" # # EXPECTED_ITEMS = 10000 # FALSE_POSITIVE_RATE = 0.01 # LIB_NAME = "tanuki" # ENVVAR = "TANUKI_LOG_DIR" class ABCBufferedLogger(DatasetWorker): def __init__(self, name, level=15): self.buffers = {} self.mapped_files = {} self.miss_count = 0 self.hit_count = 0 self.flush_limit = {} self.buffer_rolling_size = {} self.write_count = 0 self.write_limit = 1000 # Save the Bloom filter every 1000 writes super().__init__(name, level) self.bloom_filter = self.create_bloom_filter() self.load_bloom_filter() self.default_function_config = FunctionConfig() @abstractmethod def get_bloom_filter_persistence(self) -> IBloomFilterPersistence: """ Get an instance of the bloom filter persistence provider. This exposes some persistent file storage, that must support reading and writing raw byte streams. :return: """ pass @abstractmethod def load_existing_datasets(self) -> Dict[str, Dict[str, Any]]: """ Get the lengths of all datasets backing the registered functions, including aligns. :return: """ pass @abstractmethod def ensure_persistence_location_exists(self): """ Ensure that the place we will be writing to actually exists. If not, create it. """ pass @abstractmethod def get_patch_location_for_function(self, func_hash, extension="") -> str: """ Get the address of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ pass @abstractmethod def write(self, path, data, mode="a") -> None: pass @abstractmethod def read(self, path) -> str: pass @abstractmethod def get_hash_from_path(self, path) -> str: pass @abstractmethod def does_object_exist(self, path) -> bool: pass def create_bloom_filter(self): bloom_filter_persistence = self.get_bloom_filter_persistence() bloom_filter = BloomFilter( bloom_filter_persistence, expected_number_of_elements=EXPECTED_ITEMS, false_positive_probability=FALSE_POSITIVE_RATE) return bloom_filter def load_bloom_filter(self): try: self.bloom_filter.load() except FileNotFoundError: self.debug("No Bloom filter found. Creating a new one.") def write_symbolic_align_call(self, func_hash, example) -> bool: log_file_path = self.get_patch_location_for_function(func_hash, extension=ALIGN_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False def write_embeddable_align_call(self, func_hash, example, positive=True) -> bool: if positive: log_file_path = self.get_patch_location_for_function(func_hash, extension=POSITIVE_FILE_EXTENSION) else: log_file_path = self.get_patch_location_for_function(func_hash, extension=NEGATIVE_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False def log_embeddable_align(self, func_hash, example, positive=True, **kws): """ Log a contrastive function invocation Args: func_hash: A string representation of the function signature and input parameters example: The example object positive: Whether the example is positive or negative **kws: """ successfully_saved, new_datapoint = False, False try: self.ensure_persistence_location_exists() except Exception as e: return successfully_saved, new_datapoint # prepend the function hash to the example bloom_filter_representation = func_hash + '_' + str(example.__dict__) + '\n' # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): return successfully_saved, new_datapoint new_datapoint = True # add to bloom filter self.bloom_filter.add(bloom_filter_representation) self.save_bloom_filter() successfully_saved = self.write_embeddable_align_call(func_hash, example, positive) return successfully_saved, new_datapoint def log_symbolic_align(self, func_hash, *args, **kws): """ Log an align function invocation to the file system :param func_hash: A string representation of the function signature and input parameters :param args: Example objects :param kws: :return: """ successfully_saved, new_datapoint = False, False try: self.ensure_persistence_location_exists() except Exception as e: return successfully_saved, new_datapoint example = args[0] # prepend the function hash to the example bloom_filter_representation = func_hash + '_' + str(example.__dict__) + '\n' # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): return successfully_saved, new_datapoint new_datapoint = True # add to bloom filter self.bloom_filter.add(bloom_filter_representation) self.save_bloom_filter() successfully_saved = self.write_symbolic_align_call(func_hash, example) return successfully_saved, new_datapoint def log_symbolic_patch(self, func_hash, example): """ Log a patched function invocation to the file system :param func_hash: A string representation of the function signature and input parameters :param example: :return: """ if not isinstance(func_hash, str): func_hash = str(func_hash) example_data = str(example.__dict__).encode('utf-8') + b'\n' bloom_filter_representation = func_hash + '_' + example_data.decode('utf-8') # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): self.hit_count += 1 return {} self.miss_count += 1 # Add to Bloom Filter self.bloom_filter.add(bloom_filter_representation) try: self.ensure_persistence_location_exists() except Exception as e: return {} log_file_path = self.get_patch_location_for_function(func_hash, extension=PATCH_FILE_EXTENSION) <fim_suffix> if log_file_path not in self.flush_limit: self.flush_limit[log_file_path] = 1 self.buffers[log_file_path].extend(example_data) self.write_count += 1 if log_file_path not in self.buffer_rolling_size: self.buffer_rolling_size[log_file_path] = 1 else: self.buffer_rolling_size[log_file_path] += 1 if self.write_count >= self.write_limit: written_datapoints = self.flush() self.save_bloom_filter() self.write_count = 0 # Reset counter return written_datapoints if len(self.buffers[log_file_path]) >= min(self.flush_limit[log_file_path], 4096): # Flush after reaching 4KB written_datapoints = {} try: self.write(log_file_path, self.buffers[log_file_path], mode="a+b") # update buffers written_datapoints[func_hash] = self.buffer_rolling_size[log_file_path] self.buffers[log_file_path].clear() self.buffer_rolling_size[log_file_path] = 0 self.flush_limit[log_file_path] = 2 * self.flush_limit[log_file_path] self.save_bloom_filter() except Exception as e: pass return written_datapoints return {} def save_bloom_filter(self): try: self.bloom_filter.save() except Exception as e: self.warning("Could not save Bloom filter: {}".format(e)) def flush(self): # get log directory written_datapoints = {} for log_file_path, buffer in self.buffers.items(): if len(buffer) > 0: try: self.write(log_file_path, buffer, mode="a+b") written_datapoints[self.get_hash_from_path(log_file_path)] = self.buffer_rolling_size[log_file_path] self.buffer_rolling_size[log_file_path] = 0 buffer.clear() except Exception as e: pass return written_datapoints def load_function_config(self, func_hash): """ Get the config file for the function. Uses the message and log directory Config file has to be in .json """ default = False try: # try to get the config from the disk. If inaccessible, create a new default one self.ensure_persistence_location_exists() log_file_path = self.get_patch_location_for_function(func_hash) config_path = f"{log_file_path}.json" if not self.does_object_exist(config_path): function_config = self.default_function_config default = True func_config_dict = function_config.to_dict() # remove teacher_models from the config func_config_dict.pop("teacher_models") self.write_json(config_path, func_config_dict) else: function_config = FunctionConfig().load_from_dict(self.read_json(config_path)) except Exception as e: function_config = self.default_function_config default = True return function_config, default def update_function_config(self, func_hash, config_to_be_saved): """ Save the config file """ log_file_path = self.get_patch_location_for_function(func_hash) config_path = f"{log_file_path}.json" try: func_config_dict = config_to_be_saved.to_dict() # remove teacher_models from the config func_config_dict.pop("teacher_models") self.write_json(config_path, func_config_dict) except Exception as e: pass def write_json(self, path, data): self.write(path, json.dumps(data)) def read_json(self, path): return json.loads(self.read(path)) <fim_middle>if log_file_path not in self.buffers: self.buffers[log_file_path] = bytearray()
if log_file_path not in self.buffers: self.buffers[log_file_path] = bytearray()
IF
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/language_models/language_model_manager.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/utils.py def get_model(content, logger, func_hash): """ Get the model from the content and the logger. Decide on model depending on the length of the content. if is finetunable, return model, true, otherwise return model, false Args: content (str): the content to be aligned logger (buffered logger): the logger func_hash (str): the function hash Returns: model (str): the model to be used finetunable (bool): whether the model is finetunable """ num_tokens = approximate_token_count(content) finetune_limit = logger.finetune_token_limit finetune_model, teacher_models = logger.get_models(func_hash) if num_tokens < finetune_limit: return finetune_model, True else: # this is just for backwards compatibility currently if len(teacher_models) == 0 or isinstance(teacher_models[0], str): teacher_models = [("gpt-4", 7000),("gpt-4-32k", 31000)] for model, token_limit in teacher_models: if num_tokens < token_limit: return model, False raise ValueError("The input content and align statements combined are too long, please shorten it. The maximum currently allowed token limit is 32000") # tanuki_py/src/tanuki/language_models/embedding_model_manager.py def get_embedding_case(self, args, function_description: FunctionDescription, kwargs, examples=None): # example_input = f"Examples:{examples}\n" if examples else "" content = f"Name: {function_description.name}\nArgs: {args}\nKwargs: {kwargs}" function_hash = function_description.__hash__() if function_hash in self.function_modeler.teacher_models_override: # check for overrides model = self.function_modeler.teacher_models_override[function_hash][0] # take currently the first model else: model = DEFAULT_EMBEDDING_MODELS[DEFAULT_EMBEDDING_MODEL_NAME] # loggings if function_hash not in self.initialized_functions: logging.info(f"Generating function embeddings for {function_description.name} with {model.model_name}") self.initialized_functions[function_hash] = model.model_name elif self.initialized_functions[function_hash] != model.model_name: logging.info(f"Switching embeddings generation for {function_description.name} from {self.initialized_functions[function_hash]} to {model.model_name}") self.initialized_functions[function_hash] = model.model_name return content, model # tanuki_py/src/tanuki/function_modeler.py def _update_datapoint_config(self, repaired, func_hash): """ Update the config to reflect the new datapoint in the training data First adds 1 to the current datapoints Then updates running faults depending if priority is True or not and takes last 100 Then checks the revert condition, i.e if last 10 datapoints are 50% faulty Finally updates the config file Args: priority (bool): whether the datapoint was fixed by the teacher model/should be added to the training data """ try: if repaired: self.function_configs[func_hash].current_model_stats["running_faults"].append(1) else: self.function_configs[func_hash].current_model_stats["running_faults"].append(0) # take the last 100 datapoints self.function_configs[func_hash].current_model_stats["running_faults"] = \ self.function_configs[func_hash].current_model_stats["running_faults"][-100:] # check if the last 10 datapoints are 50% faulty, this is the switch condition if sum(self.function_configs[func_hash].current_model_stats["running_faults"][-10:]) / 10 > 0.5: self.function_configs[func_hash].distilled_model.model_name = "" self.function_configs[func_hash].current_model_stats["trained_on_datapoints"] = 0 self.function_configs[func_hash].current_model_stats["running_faults"] = [] self._update_config_file(func_hash) except Exception as e: print(e) print("Could not update config file") pass """ import json from typing import Any, Dict from tanuki.function_modeler import FunctionModeler from tanuki.language_models.llm_api_abc import LLM_API from tanuki.models.function_description import FunctionDescription from tanuki.models.function_example import FunctionExample from tanuki.models.language_model_output import LanguageModelOutput from tanuki.utils import approximate_token_count from tanuki.validator import Validator from tanuki.models.api_manager import APIManager from tanuki.language_models.llm_configs.abc_base_config import BaseModelConfig import logging class LanguageModelManager(object): """ The LanguageModelManager is responsible for managing the language models and their outputs operationally, this includes: - Generating outputs from the language models - Repairing outputs from the language models - Saving outputs from the language models - Finetuning the language models from the saved outputs """ def __init__(self, function_modeler: FunctionModeler, api_provider: APIManager, generation_token_limit=512,) -> None: self.api_provider = api_provider self.function_modeler = function_modeler self.default_generation_length = generation_token_limit self.initialized_functions = {} self.token_counts = {} def __call__(self, args, function_description: FunctionDescription, kwargs, validator: Validator, generation_parameters: dict) -> Any: # add the generation length if not there if "max_new_tokens" not in generation_parameters: generation_parameters["max_new_tokens"] = self.default_generation_length output = self.generate(args, kwargs, function_description, generation_parameters) # start parsing the object, very hacky way for the time being choice_parsed = self._parse_choice(output) valid = validator.check_type(choice_parsed, function_description.output_type_hint) if not valid: choice, choice_parsed, successful_repair = self.repair_output(args, kwargs, function_description, output.generated_response, validator, generation_parameters) if not successful_repair: raise TypeError( f"Output type was not valid. Expected an object of type {function_description.output_type_hint}, got '{output.generated_response}'") output.generated_response = choice output.distilled_model = False datapoint = FunctionExample(args, kwargs, output.generated_response) if output.suitable_for_finetuning and not output.distilled_model: self.function_modeler.postprocess_symbolic_datapoint(function_description.__hash__(), function_description, datapoint, repaired=not valid) instantiated = validator.instantiate(choice_parsed, function_description.output_type_hint) return instantiated def _parse_choice(self, output): try: # json load choice_parsed = json.loads(output.generated_response) except: # if it fails, it's not a json object, try eval try: choice_parsed = eval(output.generated_response) except: choice_parsed = output.generated_response return choice_parsed def generate(self, args, kwargs, function_description, llm_parameters={}): """ The main generation function, given the args, kwargs, function description and model type, generate a response and check if the datapoint can be saved to the finetune dataset """ func_hash = function_description.__hash__() prompt, model, save_to_finetune, is_distilled_model = self.get_generation_case(args, kwargs, function_description, llm_parameters, func_hash) # loggings current_function_setup = self.initialized_functions.get(func_hash, None) # getting the current function setup - model and align statements if current_function_setup: generator_model = current_function_setup["model"] if is_distilled_model: logging.info(f"Generating function outputs for {function_description.name} with a finetuned model: {model.model_name}.") self.initialized_functions[func_hash]["model"] = model.model_name elif generator_model == "": logging.info(f"Found {len(current_function_setup['examples'])} align statements for {function_description.name}. Generating function outputs with {model.model_name}.") self.initialized_functions[func_hash]["model"] = model.model_name elif generator_model != model.model_name: logging.info(f"Switching output generation from {generator_model} to {model.model_name} for function {function_description.name}.") self.initialized_functions[func_hash]["model"] = model.model_name choice = self._synthesise_answer(prompt, model, llm_parameters) output = LanguageModelOutput(choice, save_to_finetune, is_distilled_model) return output def _synthesise_answer(self, prompt, model, llm_parameters): """ Synthesise an answer given the prompt, model, model_type and llm_parameters Args: prompt (str): The prompt to send to the model model (BaseModelConfig): The model to use for generation llm_parameters (dict): The parameters to use for generation return: choice (str): The generated response """ system_message = model.system_message return self.api_provider[model.provider].generate(model, system_message, prompt, **llm_parameters) def get_generation_case(self, args, kwargs, function_description, llm_parameters, func_hash): """ Get the generation case with the correct prompt and model First get the current model, then if distilled model, do zero-shot prompt and return False as suitable_for_finetune If not distilled model, check if suitable for finetuning, create the prompt and return the correct model given the token count """ f = str(function_description.__dict__.__repr__()) distilled_model, teacher_models = self.function_modeler.get_models(function_description) is_distilled_model = distilled_model.model_name != "" suitable_for_distillation, input_prompt_token_count = self.suitable_for_finetuning_token_check(args, kwargs, f, distilled_model) <fim_suffix> # no examples needed, using a finetuned model. Dont save to finetune dataset if is_distilled_model and suitable_for_distillation: prompt = self.construct_prompt(f, args, kwargs, [], distilled_model) return prompt, distilled_model, suitable_for_distillation, True else: aligns = self.function_modeler.get_symbolic_alignments(function_description.__hash__(), max=16) examples = [f"Inputs:\nArgs: {align['args']}\nKwargs: {align['kwargs']}\nOutput: {align['output']}" for align in aligns] # update the examples in the initialized_functions dict self.initialized_functions[func_hash]["examples"] = examples examples_token_count = sum([approximate_token_count(example) for example in examples]) generation_tokens = llm_parameters.get("max_new_tokens", self.default_generation_length) model = self.choose_model_from_tokens(teacher_models, examples_token_count + input_prompt_token_count + generation_tokens, len(examples)) if model: examples_with_parsing_tokens = [f"Inputs:\nArgs: {align['args']}\nKwargs: {align['kwargs']}\nOutput:{model.parsing_helper_tokens['start_token']}{align['output']}{model.parsing_helper_tokens['end_token']}" for align in aligns] prompt = self.construct_prompt(f, args, kwargs, examples_with_parsing_tokens, model) return prompt, model, suitable_for_distillation, False else: raise ValueError( "The input content and align statements combined are too long, please shorten it. The maximum currently allowed token limit is 32000") def suitable_for_finetuning_token_check(self, args, kwargs, f, distilled_model: BaseModelConfig): """ Check if the inputs are suitable for finetuning, i.e are below the finetuning token count """ # check if finetunable finetuning_prompt = f"Function: {f}\n---\nInputs:\nArgs: {args}\nKwargs: {kwargs}\nOutput:" input_prompt_token_count = approximate_token_count(finetuning_prompt) if distilled_model.system_message_token_count < 0: distilled_model.system_message_token_count = approximate_token_count(distilled_model.system_message) if distilled_model.instruction_token_count < 0: distilled_model.instruction_token_count = approximate_token_count(distilled_model.instructions) suitable_for_finetune = input_prompt_token_count + distilled_model.instruction_token_count + distilled_model.system_message_token_count < distilled_model.context_length return suitable_for_finetune, input_prompt_token_count def construct_prompt(self, f, args, kwargs, examples, model): """ Construct a prompt given the model, function description, args, kwargs and examples Args: model (BaseModelConfig): The model to use for generation f (str): The function description args (tuple): The args of the function kwargs (tuple): The kwargs of the function examples (list): The examples of the function Returns: content (str): The prompt to send to the model """ if examples: final_examples = "\n".join( [f"{align}" for align in examples]) example_input = f"Examples:{final_examples}\n" else: example_input = "" instruction_prompt = model.instructions content = f"{instruction_prompt}\nFunction: {f}\n{example_input}---\nInputs:\nArgs: {args}\nKwargs: {kwargs}\nOutput:" return content def repair_generate(self, args, kwargs, f, failed_outputs_list, aligns, models, llm_parameters): """ Repair the output given the input, function description, failed outputs list, examples and models """ # get the token counts examples = [f"Inputs:\nArgs: {align['args']}\nKwargs: {align['kwargs']}\nOutput: {align['output']}" for align in aligns] examples_token_count = sum([approximate_token_count(example) for example in examples]) failed_examples_token_count = sum([approximate_token_count(failed_output[0]) + approximate_token_count(failed_output[1]) for failed_output in failed_outputs_list]) input_prompt_token_count = approximate_token_count(f"Function: {f}\n---\nInputs:\nArgs: {args}\nKwargs: {kwargs}\nOutput:") generation_tokens = llm_parameters.get("max_new_tokens", self.default_generation_length) model = self.choose_model_from_tokens(models, examples_token_count+input_prompt_token_count+generation_tokens+failed_examples_token_count, len(examples)) if model: prompt = self.generate_repair_prompt(args, kwargs, f, failed_outputs_list, examples, model) logging.info(f"Previous output failed type validation, attempting to repair with {model.model_name}") choice = self._synthesise_answer(prompt, model, llm_parameters) return choice else: return None def generate_repair_prompt(self, args, kwargs, f, failed_outputs_list, examples, model): """ Generate a repair prompt given the args, kwargs, function description, failed outputs list and examples """ if examples: final_examples = "\n".join( [f"{model.parsing_helper_tokens['start_token']}{align}{model.parsing_helper_tokens['end_token']}" for align in examples]) successful_examples = f"Examples:{final_examples}\n" else: successful_examples = "" failed_examples = "" for failed_output in failed_outputs_list: failed_examples += f"Output: {failed_output[0]}\nError: {failed_output[1]}\n\n" end_token_addition = "" if model.parsing_helper_tokens["end_token"]: end_token_addition = f"Make sure to add the {model.parsing_helper_tokens['end_token']} token at the end of the output." prompt = f"{model.repair_instruction}{end_token_addition}\nFUNCTION DESCRIPTION: {f}\n{successful_examples}---{model.parsing_helper_tokens['start_token']}Inputs:\nArgs: {args}\nKwargs: {kwargs}\nFAILED EXAMPLES: {failed_examples}Correct output:" return prompt def choose_model_from_tokens(self, models, input_token_count, nr_of_examples=0): """ Choose a model from the models given the token count and number of examples Args: models (list): The models to choose from input_token_count (int): The token count of the input nr_of_examples (int): The number of examples Returns: model (BaseModelConfig): The chosen model """ for model in models: # check if input token count is less than the context length # If the model config has custom messages, then use those, otherwise use the default ones if model.system_message_token_count < 0: model.system_message_token_count = approximate_token_count(model.system_message) if model.instruction_token_count < 0: model.instruction_token_count = approximate_token_count(model.instructions) if model.parsing_helper_tokens["start_token"]: input_token_count += 2*nr_of_examples if model.parsing_helper_tokens["end_token"]: input_token_count += 2*nr_of_examples total_token_count = input_token_count + model.instruction_token_count + model.system_message_token_count if total_token_count < model.context_length: return model return None def repair_output(self, args: tuple, kwargs: dict, function_description: FunctionDescription, choice, validator: Validator, generation_parameters: dict) -> tuple: """ Repair an output, that failed type validation by generating a new output using the teacher model and the error Args: args (tuple): The args of the function kwargs (dict): The kwargs of the function function_description (FunctionDescription): The function description choice: The output that failed type validation, type is arbitrary validator (Validator): The validator object Returns: choice (str): The choice that was generated by the language model choice_parsed: The parsed choice, type is arbitrary valid (bool): Whether the output was correctly repaired was valid """ # get the teacher models teacher_models = self.function_modeler.get_models(function_description)[1] valid = False retry_index = 5 f = str(function_description.__dict__.__repr__() + "\n") error = f"Output type was not valid. Expected an valid object of type {function_description.output_type_hint}, got '{choice}'" # instantiate the failed outputs list failed_outputs_list = [(choice, error)] while retry_index > 0 and not valid: # get the alignments aligns = self.function_modeler.get_symbolic_alignments(function_description.__hash__(), max=5) # Generate the reparied LLM output choice = self.repair_generate(args, kwargs, f, failed_outputs_list, aligns, teacher_models, generation_parameters) if not choice: # if no choice then the input was too long for the model # no specific error but the retry index goes down retry_index -= 1 continue # start parsing the object try: # json load choice_parsed = json.loads(choice) except: # if it fails, it's not a json object, try eval try: choice_parsed = eval(choice) except: choice_parsed = choice valid = validator.check_type(choice_parsed, function_description.output_type_hint) if not valid: # if it's not valid, add it to the failed outputs list error = f"Output type was not valid. Expected an object of type {function_description.output_type_hint}, got '{choice}'" failed_outputs_list.append((choice, error)) retry_index -= 1 if valid: logging.info(f"Successfully repaired output.") return choice, choice_parsed, valid <fim_middle>if func_hash not in self.initialized_functions: # initialise the initialized_functions dict self.initialized_functions[func_hash] = {"model": "", "examples": []}
if func_hash not in self.initialized_functions: # initialise the initialized_functions dict self.initialized_functions[func_hash] = {"model": "", "examples": []}
IF
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return <fim_suffix> # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.")
if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.")
IF
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict <fim_suffix> # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict)
if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict)
IF
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/function_modeler.py def _construct_config_from_finetune(self, finetune_hash: str, finetune: FinetuneJob): """ Construct a valid function config from a finetune job Args: finetune_hash: The hash of the function finetune: The finetune job Returns: config: The function config """ model = finetune.fine_tuned_model # get the ending location of finetune hash in the model name finetune_hash_end = model.model_name.find(finetune_hash) + len(finetune_hash) # get the next character after the finetune hash next_char = model.model_name[finetune_hash_end] # get the number of training runs nr_of_training_runs = decode_int(next_char) + 1 nr_of_training_points = (2 ** (nr_of_training_runs - 1)) * 200 config = { "distilled_model": model, "current_model_stats": { "trained_on_datapoints": nr_of_training_points, "running_faults": []}, "last_training_run": {"trained_on_datapoints": nr_of_training_points}, "current_training_run": {}, "teacher_models": [], # default teacher models, will be overwritten if needed "nr_of_training_runs": nr_of_training_runs} config = FunctionConfig().load_from_dict(config) return config # tanuki_py/src/tanuki/utils.py def _deep_tuple(obj): """ Convert a list or dict to a tuple recursively to allow for hashing and becoming a key for mock_behaviors :param obj: :return: """ # transform pydantic objects into dicts if hasattr(obj, "__dict__"): obj = obj.__dict__ if isinstance(obj, list) or isinstance(obj, tuple): return tuple(_deep_tuple(e) for e in obj) elif isinstance(obj, dict): return tuple((k, _deep_tuple(v)) for k, v in sorted(obj.items())) else: return obj # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists <fim_suffix> # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value)
if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value)
IF
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/function_modeler.py def _construct_config_from_finetune(self, finetune_hash: str, finetune: FinetuneJob): """ Construct a valid function config from a finetune job Args: finetune_hash: The hash of the function finetune: The finetune job Returns: config: The function config """ model = finetune.fine_tuned_model # get the ending location of finetune hash in the model name finetune_hash_end = model.model_name.find(finetune_hash) + len(finetune_hash) # get the next character after the finetune hash next_char = model.model_name[finetune_hash_end] # get the number of training runs nr_of_training_runs = decode_int(next_char) + 1 nr_of_training_points = (2 ** (nr_of_training_runs - 1)) * 200 config = { "distilled_model": model, "current_model_stats": { "trained_on_datapoints": nr_of_training_points, "running_faults": []}, "last_training_run": {"trained_on_datapoints": nr_of_training_points}, "current_training_run": {}, "teacher_models": [], # default teacher models, will be overwritten if needed "nr_of_training_runs": nr_of_training_runs} config = FunctionConfig().load_from_dict(config) return config # tanuki_py/src/tanuki/utils.py def _deep_tuple(obj): """ Convert a list or dict to a tuple recursively to allow for hashing and becoming a key for mock_behaviors :param obj: :return: """ # transform pydantic objects into dicts if hasattr(obj, "__dict__"): obj = obj.__dict__ if isinstance(obj, list) or isinstance(obj, tuple): return tuple(_deep_tuple(e) for e in obj) elif isinstance(obj, dict): return tuple((k, _deep_tuple(v)) for k, v in sorted(obj.items())) else: return obj # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples <fim_suffix> # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value)
if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value)
IF
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: <fim_suffix> except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>return target_type(data)
return target_type(data)
STATEMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/persistence/filter/filesystem_bloom.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py def get_patch_location_for_function(self, func_hash, extension: Union[ ALIGN_FILE_EXTENSION_TYPE, PATCH_FILE_EXTENSION_TYPE] = "") -> str: """ Get the local location of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ return os.path.join(self.log_directory, func_hash + extension) # tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py def load_dataset(self, dataset_type, func_hash, return_type="both") -> Optional[int]: """ Get the size of the dataset for a function hash """ log_directory = self._get_log_directory() dataset_type_map = {"alignments": ALIGN_FILE_EXTENSION, "positive": POSITIVE_FILE_EXTENSION, "negative": NEGATIVE_FILE_EXTENSION, "patches": PATCH_FILE_EXTENSION} log_file_path = os.path.join(log_directory, func_hash + dataset_type_map[dataset_type]) if not os.path.exists(log_file_path): if return_type == "both": return 0, None elif return_type == "dataset": return None elif return_type == "length": return 0 try: with open(log_file_path, "rb") as f: dataset = f.read() dataset_string = repr(dataset) dataset_length = dataset_string.count("\\n") - dataset_string.count("\\\\n") if return_type == "both": return dataset_length, dataset elif return_type == "dataset": return dataset elif return_type == "length": return dataset_length except Exception as e: if return_type == "both": return 0, None elif return_type == "dataset": return None elif return_type == "length": return 0 # tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py def read(self, path: str) -> str: """ Read data from a file """ with open(path, "r") as f: return f.read() """ import os from bitarray._bitarray import bitarray from tanuki.persistence.filter.bloom_interface import IBloomFilterPersistence class BloomFilterFileSystemDriver(IBloomFilterPersistence): """ This is a Filesystem implementation of a Bloom Filter persistence layer. """ def __init__(self, log_directory: str): self.log_directory = log_directory def save(self, bit_array: bitarray) -> None: """ Write a bloom filter array of bits to the local filesystem. :param bloom_filter: A bloom filter which tracks unique function invocations """ bloom_filter_path = os.path.join(self.log_directory, 'bloom_filter_state.bin') # Append 0 bits to make the length a multiple of 8 while len(bit_array) % 8 != 0: bit_array.append(0) with open(bloom_filter_path, 'wb') as f: f.write(bit_array.tobytes()) def load(self) -> bitarray: """ Load a bloom filter from the local filesystem. :return: A bloom filter object containing the state of unique function invocations """ <fim_suffix> with open(bloom_filter_path, 'rb') as f: bit_array = bitarray() bit_array.frombytes(f.read()) while len(bit_array) % 8 != 0: bit_array.append(0) return bit_array<fim_middle>bloom_filter_path = os.path.join(self.log_directory, 'bloom_filter_state.bin')
bloom_filter_path = os.path.join(self.log_directory, 'bloom_filter_state.bin')
STATEMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/register.py def get_class_definition(class_type): """Helper function to get class definition source if not a built-in type""" if hasattr(class_type, "__origin__"): # Check if it's a generic type origin_type = class_type.__origin__ if origin_type is Literal: # Handle Literal case return [literal for literal in class_type.__args__] elif hasattr(class_type, "__args__"): # Access inner types return [get_class_definition(arg) for arg in class_type.__args__ if arg is not None] elif inspect.isclass(class_type) and class_type.__module__ != "builtins": return get_source(class_type) return class_type.__name__ # tanuki_py/src/tanuki/__init__.py def extract_attributes(result): attributes = {} # If the result is a list, get its length if isinstance(result, list): attributes['length'] = len(result) # If the result is a dictionary, get its keys (or any other attributes) elif isinstance(result, dict): attributes['keys'] = list(result.keys()) return attributes # tanuki_py/src/tanuki/function_modeler.py def load_symbolic_align_statements(self, function_hash): """ Load all align statements First check the data storage blacklist, if the func hash is in the blacklist, then set the dataset size to 0 and the align buffer to empty bytearray """ if function_hash in self.store_data_blacklist: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = 0 self.symbolic_align_buffer[function_hash] = bytearray() elif function_hash not in self.symbolic_align_buffer: dataset_size, align_dataset = self._get_dataset_info(SYMBOLIC_ALIGNMENTS, function_hash, type="both") if align_dataset: self.symbolic_align_buffer[function_hash] = bytearray(align_dataset) self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = dataset_size """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. <fim_suffix> args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>origin = get_origin(target_type)
origin = get_origin(target_type)
STATEMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/models/function_description.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/bloom_filter.py def hash_functions(self, string): # h1(x) hash1 = int(hashlib.sha256(string.encode('utf-8')).hexdigest(), 16) # h2(x) hash2 = int(hashlib.md5(string.encode('utf-8')).hexdigest(), 16) return hash1, hash2 # tanuki_py/src/tanuki/language_models/aws_bedrock_api.py def check_runtime(self): # check if the runtime is configured if self.bedrock_runtime is None: self.bedrock_runtime = boto3.client( service_name='bedrock-runtime', region_name=os.environ.get("AWS_DEFAULT_REGION") ) # tanuki_py/src/tanuki/register.py def get(func_name) -> Tuple[FunctionType, Callable]: if func_name not in alignable_symbolic_functions and func_name not in alignable_embedding_functions: pass if func_name in alignable_symbolic_functions: return FunctionType.SYMBOLIC, alignable_symbolic_functions[func_name] elif func_name in alignable_embedding_functions: return FunctionType.EMBEDDABLE, alignable_embedding_functions[func_name] """ import hashlib from dataclasses import dataclass from typing import Dict, Optional, Literal from tanuki.models.function_type import FunctionType from tanuki.utils import json_dumps @dataclass(frozen=True) class FunctionDescription: name: str docstring: str input_type_hints: Dict[str, type] input_class_definitions: Dict[str, str] output_type_hint: type output_class_definition: Optional[str] type: FunctionType = FunctionType.SYMBOLIC def __hash__(self, purpose: str = "general"): if purpose == "general": json_encoded = json_dumps(self).encode('utf-8') h = hashlib.md5(json_encoded).hexdigest() <fim_suffix> if purpose == "finetune": json_encoded = json_dumps(self).encode('utf-8') h = hashlib.shake_256(json_encoded).hexdigest(8) return str(h)<fim_middle>return str(h)
return str(h)
STATEMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/function_modeler.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/language_models/language_model_manager.py def __init__(self, function_modeler: FunctionModeler, api_provider: APIManager, generation_token_limit=512,) -> None: self.api_provider = api_provider self.function_modeler = function_modeler self.default_generation_length = generation_token_limit self.initialized_functions = {} self.token_counts = {} # tanuki_py/src/tanuki/language_models/embedding_model_manager.py def __init__(self, function_modeler, api_provider: APIManager): self.function_modeler = function_modeler self.api_provider = api_provider self.initialized_functions = {} # tanuki_py/src/tanuki/language_models/embedding_api_abc.py def __init__(self) -> None: pass """ import ast import datetime import io import json from typing import List, Tuple, Dict, Union import logging from tanuki.constants import EXAMPLE_ELEMENT_LIMIT, PATCHES, SYMBOLIC_ALIGNMENTS, POSITIVE_EMBEDDABLE_ALIGNMENTS, \ NEGATIVE_EMBEDDABLE_ALIGNMENTS, OPENAI_PROVIDER from tanuki.models.function_type import FunctionType from tanuki.language_models.llm_configs import DEFAULT_TEACHER_MODELS, DEFAULT_EMBEDDING_MODELS, DEFAULT_STUDENT_MODELS from tanuki.language_models.llm_configs.abc_base_config import BaseModelConfig from tanuki.language_models.llm_finetune_api_abc import LLM_Finetune_API from tanuki.models.finetune_job import FinetuneJob from tanuki.models.function_description import FunctionDescription from tanuki.models.function_example import FunctionExample from tanuki.trackers.dataset_worker import DatasetWorker from tanuki.utils import approximate_token_count, prepare_object_for_saving, encode_int, decode_int import copy from tanuki.models.function_config import FunctionConfig from tanuki.models.api_manager import APIManager class FunctionModeler(object): """ This class manages the registered function models and their datasets comprised of symbolic and embeddable alignments, and symbolic and embeddable patches """ def __init__(self, data_worker: DatasetWorker, api_provider: APIManager, environment_id=0, ) -> None: <fim_suffix> self.data_worker = data_worker self.distillation_token_limit = 3000 # the token limit for finetuning self.symbolic_align_buffer = {} self.embeddable_align_buffer = {} self._get_datasets() self.environment_id = environment_id self.check_finetune_blacklist = [] self.execute_finetune_blacklist = [] self.store_data_blacklist = [] self.api_provider = api_provider self.teacher_models_override = {} self.student_model_override = {} self.startup_logging_checker = {} def _get_dataset_info(self, dataset_type, func_hash, type="length"): """ Get the dataset size for a function hash """ return self.data_worker.load_dataset(dataset_type, func_hash, return_type=type) def _configure_function_models(self, teacher_models: List[Union[str, BaseModelConfig]], student_model: str, func_hash: str, task_type: str): """ Configure the function models """ if teacher_models: self._configure_teacher_models(teacher_models, func_hash, task_type) if student_model: self._configure_student_model(student_model, func_hash, task_type) if teacher_models and not student_model: for model_config in self.teacher_models_override[func_hash]: # ban all non-openai models from finetuning if teacher is not openai and student is not specified because it doesnt make sense if model_config.provider != OPENAI_PROVIDER and func_hash not in self.check_finetune_blacklist: self.check_finetune_blacklist.append(func_hash) if model_config.provider != OPENAI_PROVIDER and func_hash not in self.execute_finetune_blacklist: self.execute_finetune_blacklist.append(func_hash) def _configure_teacher_models(self, teacher_models: List[Union[str, BaseModelConfig]], func_hash: str, task_type: str): """ Add custom teacher models to the function config First this is added to the teacher_models_override dict, which is used to override the teacher models Args: teacher_models: A list of teacher models to use for the function hash func_hash: The function hash to add the teacher models to """ if func_hash not in self.teacher_models_override: self.teacher_models_override[func_hash] = [] if task_type == FunctionType.EMBEDDABLE: preconfigured_models = DEFAULT_EMBEDDING_MODELS elif task_type == FunctionType.SYMBOLIC: preconfigured_models = DEFAULT_TEACHER_MODELS for model in teacher_models: if isinstance(model, str): if model not in preconfigured_models: raise Exception(f"Teacher model {model} not supported by default. Please include it in the list in extended config format") model_config = preconfigured_models[model] elif isinstance(model, BaseModelConfig): model_config = model self.teacher_models_override[func_hash].append(model_config) def _configure_student_model(self, student_model: str, func_hash: str, task_type: str): """ Add custom student models to the function config First this is added to the teacher_models_override dict, which is used to override the teacher models Args: teacher_models: A list of teacher models to use for the function hash func_hash: The function hash to add the teacher models to """ if task_type == FunctionType.EMBEDDABLE: logging.info("Embeddable function type does not support student models") preconfigured_models = DEFAULT_STUDENT_MODELS if student_model not in preconfigured_models: raise Exception(f"Student model {student_model} is currently not supported.") model_config = preconfigured_models[student_model] self.student_model_override[func_hash] = model_config def _get_datasets(self): """ Get the existing datasets from the data worker """ self.dataset_sizes = self.data_worker.load_existing_datasets() def save_embeddable_align_statements(self, function_hash: str, args, kwargs, positive_pairs: List[Tuple[List, Dict]], negative_pairs: List[Tuple[List, Dict]]): """ Save the contrastive align statements for the embeddable function. Do not save if the function hash is in the store data blacklist Args: function_hash: A unique hash for the function args: The arguments of the function kwargs: The keyword arguments of the function positive_pairs: A list of the other function invocations that are should have equivalent embeddings negative_pairs: A list of the other function invocations that are should have different embeddings """ # prepare args and kwargs for saving copy_args = copy.deepcopy(args) copy_kwargs = copy.deepcopy(kwargs) parsed_args = prepare_object_for_saving(copy_args) parsed_kwargs = prepare_object_for_saving(copy_kwargs) # prepare positive pairs for saving parsed_positive_pairs = [] for pair in positive_pairs: copy_pair = copy.deepcopy(pair) parsed_pair = prepare_object_for_saving(copy_pair) parsed_positive_pairs.append(parsed_pair) # prepare negative pairs for saving parsed_negative_pairs = [] for pair in negative_pairs: copy_pair = copy.deepcopy(pair) parsed_pair = prepare_object_for_saving(copy_pair) parsed_negative_pairs.append(parsed_pair) # save the contrastive pairs for pair in parsed_positive_pairs: self._save_contrastive_alignment_pair(function_hash, parsed_args, parsed_kwargs, pair, positive=True) for pair in parsed_negative_pairs: self._save_contrastive_alignment_pair(function_hash, parsed_args, parsed_kwargs, pair, positive=False) def _save_contrastive_alignment_pair(self, function_hash: str, args, kwargs, pair, positive=True): """ Save a contrastive pair """ example = FunctionExample(args, kwargs, pair) if function_hash not in self.store_data_blacklist: successfully_saved, new_datapoint = self.data_worker.log_embeddable_align(function_hash, example, positive) else: successfully_saved = False new_datapoint = True if successfully_saved: if positive: if function_hash in self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS]: self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS][function_hash] = 1 if not positive: if function_hash in self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS]: self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS][function_hash] = 1 if new_datapoint: # update align buffer if function_hash not in self.embeddable_align_buffer: self.embeddable_align_buffer[function_hash] = bytearray() self.embeddable_align_buffer[function_hash].extend(str(example.__dict__).encode('utf-8') + b'\r\n') def save_symbolic_align_statements(self, function_hash, args, kwargs, output): """ Save the align statements and add to the align buffer Do not save if the function hash is in the store data blacklist Then just add the datapoints to the align buffer """ # prepare output for saving and later parsing # make a deepcopy of the output to avoid changing the original object copy_output = copy.deepcopy(output) parsed_output = prepare_object_for_saving(copy_output) # prepare args and kwargs for saving copy_args = copy.deepcopy(args) copy_kwargs = copy.deepcopy(kwargs) parsed_args = prepare_object_for_saving(copy_args) parsed_kwargs = prepare_object_for_saving(copy_kwargs) example = FunctionExample(parsed_args, parsed_kwargs, parsed_output) if function_hash not in self.store_data_blacklist: successfully_saved, new_datapoint = self.data_worker.log_symbolic_align(function_hash, example) else: successfully_saved = False new_datapoint = True if successfully_saved: if function_hash in self.dataset_sizes[SYMBOLIC_ALIGNMENTS]: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = 1 if new_datapoint: # update align buffer if function_hash not in self.symbolic_align_buffer: self.symbolic_align_buffer[function_hash] = bytearray() self.symbolic_align_buffer[function_hash].extend(str(example.__dict__).encode('utf-8') + b'\r\n') def save_symbolic_datapoint(self, func_hash, example): """ Save datapoint to the training data """ written_datapoints = self.data_worker.log_symbolic_patch(func_hash, example) for func_hash, datapoints in written_datapoints.items(): if func_hash in self.dataset_sizes[PATCHES]: # if the dataset size is -1, it means we havent read in the dataset size yet if self.dataset_sizes[PATCHES][func_hash] == -1: self.dataset_sizes[PATCHES][func_hash] = self._get_dataset_info(PATCHES, func_hash, type="length") else: self.dataset_sizes[PATCHES][func_hash] += datapoints else: self.dataset_sizes[PATCHES][func_hash] = datapoints return len(written_datapoints) > 0 def get_symbolic_alignments(self, func_hash, max=20): """ Get all symbolic aligns for a function hash """ if func_hash not in self.symbolic_align_buffer: return [] buffer = self.symbolic_align_buffer[func_hash] return self._get_examples_from_alignment_buffer(buffer, max) def get_embeddable_alignments(self, func_hash, max=20): """ Get all embeddable aligns for a function hash """ if func_hash not in self.embeddable_align_buffer: return [] buffer = self.embeddable_align_buffer[func_hash] return self._get_examples_from_alignment_buffer(buffer, max) def _get_examples_from_alignment_buffer(self, buffer, max=20): """ Get examples from a buffer """ split_buffer = bytes(buffer).split(b"\n") # byte array of stringed python dicts into dict objects example_set = set() for example in split_buffer: if example == b"": continue example_set.add(example) # easy and straightforward way to get nr of words (not perfect but doesnt need to be) # Can do the proper way of tokenizing later, it might be slower and we dont need 100% accuracy example_element_limit = EXAMPLE_ELEMENT_LIMIT examples = [] for example_bytes in split_buffer: if example_bytes in example_set: nr_of_elements = approximate_token_count(example_bytes) example_element_limit -= nr_of_elements if example_element_limit < 0: break example = example_bytes.decode('utf-8') # json load the example try: example = json.loads(example) except: example = ast.literal_eval(example) examples.append(example) example_set.remove(example_bytes) return list(examples)[:max] def load_symbolic_align_statements(self, function_hash): """ Load all align statements First check the data storage blacklist, if the func hash is in the blacklist, then set the dataset size to 0 and the align buffer to empty bytearray """ if function_hash in self.store_data_blacklist: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = 0 self.symbolic_align_buffer[function_hash] = bytearray() elif function_hash not in self.symbolic_align_buffer: dataset_size, align_dataset = self._get_dataset_info(SYMBOLIC_ALIGNMENTS, function_hash, type="both") if align_dataset: self.symbolic_align_buffer[function_hash] = bytearray(align_dataset) self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = dataset_size def postprocess_symbolic_datapoint(self, func_hash, function_description, example, repaired=True): """ Postprocess the datapoint First check if the datapoint should be added to the training data Add the datapoint if it should be added Then check if the function should be finetuned and execute finetuning if it should """ try: if func_hash not in self.store_data_blacklist: added = self.save_symbolic_datapoint(func_hash, example) if added: self._update_datapoint_config(repaired, func_hash) except Exception as e: print(e) print("Could not add datapoint to training data") if func_hash not in self.execute_finetune_blacklist: self.check_for_finetuning(function_description, func_hash) def load_function_config(self, func_hash, function_description): """ Load the config file for a function hash """ config, default = self.data_worker.load_function_config(func_hash) if func_hash in self.student_model_override and config.distilled_model.model_name == "": config.distilled_model = self.student_model_override[func_hash] if default and func_hash not in self.check_finetune_blacklist: finetuned, finetune_config = self._check_for_finetunes(function_description, config.distilled_model) if finetuned: config = finetune_config # update teachers if not default if func_hash in self.teacher_models_override: config.teacher_models = self.teacher_models_override[func_hash] self.function_configs[func_hash] = config return config def _check_for_finetunes(self, function_description: FunctionDescription, model_config : BaseModelConfig) -> Tuple[bool, Dict]: # hash the function_hash into 16 characters (to embed it into the name of OpenAI finetunes, for later retrieval) logging.info(f"Checking for finetunes for {function_description.name} using {model_config.provider}") finetune_hash = function_description.__hash__(purpose="finetune") + encode_int(self.environment_id) # List 10 fine-tuning jobs finetunes: List[FinetuneJob] = self.api_provider[model_config.provider].list_finetuned(model_config, limit=1000) # Check if the function_hash is in the fine-tuning jobs # the finetunes are in chronological order starting from newest # So this gets the latest finetune for finetune in finetunes: # check if the finetune hash is in the fine-tuned model name if finetune.status == "succeeded" and finetune_hash in finetune.fine_tuned_model.model_name: try: config = self._construct_config_from_finetune(finetune_hash, finetune) # save the config self.data_worker.update_function_config(function_description.__hash__(), config) logging.info(f"Found finetuned model for {function_description.name} [{config.distilled_model.model_name}]") return True, config except: logging.info(f"Found finetuned model for {function_description.name} [{finetune.fine_tuned_model.model_name}] but could not load it") return False, {} logging.info(f"No finetuned model found for {function_description.name}") return False, {} def _construct_config_from_finetune(self, finetune_hash: str, finetune: FinetuneJob): """ Construct a valid function config from a finetune job Args: finetune_hash: The hash of the function finetune: The finetune job Returns: config: The function config """ model = finetune.fine_tuned_model # get the ending location of finetune hash in the model name finetune_hash_end = model.model_name.find(finetune_hash) + len(finetune_hash) # get the next character after the finetune hash next_char = model.model_name[finetune_hash_end] # get the number of training runs nr_of_training_runs = decode_int(next_char) + 1 nr_of_training_points = (2 ** (nr_of_training_runs - 1)) * 200 config = { "distilled_model": model, "current_model_stats": { "trained_on_datapoints": nr_of_training_points, "running_faults": []}, "last_training_run": {"trained_on_datapoints": nr_of_training_points}, "current_training_run": {}, "teacher_models": [], # default teacher models, will be overwritten if needed "nr_of_training_runs": nr_of_training_runs} config = FunctionConfig().load_from_dict(config) return config def get_models(self, function_description): """ Return the current model from the config file """ func_hash = function_description.__hash__() if func_hash in self.function_configs: func_config = self.function_configs[func_hash] else: func_config = self.load_function_config(func_hash, function_description) return func_config.distilled_model, func_config.teacher_models def _update_datapoint_config(self, repaired, func_hash): """ Update the config to reflect the new datapoint in the training data First adds 1 to the current datapoints Then updates running faults depending if priority is True or not and takes last 100 Then checks the revert condition, i.e if last 10 datapoints are 50% faulty Finally updates the config file Args: priority (bool): whether the datapoint was fixed by the teacher model/should be added to the training data """ try: if repaired: self.function_configs[func_hash].current_model_stats["running_faults"].append(1) else: self.function_configs[func_hash].current_model_stats["running_faults"].append(0) # take the last 100 datapoints self.function_configs[func_hash].current_model_stats["running_faults"] = \ self.function_configs[func_hash].current_model_stats["running_faults"][-100:] # check if the last 10 datapoints are 50% faulty, this is the switch condition if sum(self.function_configs[func_hash].current_model_stats["running_faults"][-10:]) / 10 > 0.5: self.function_configs[func_hash].distilled_model.model_name = "" self.function_configs[func_hash].current_model_stats["trained_on_datapoints"] = 0 self.function_configs[func_hash].current_model_stats["running_faults"] = [] self._update_config_file(func_hash) except Exception as e: print(e) print("Could not update config file") pass def _update_config_file(self, func_hash): self.data_worker.update_function_config(func_hash, self.function_configs[func_hash]) def check_for_finetuning(self, function_description, func_hash): """ Check for finetuning status If already finetuning, check for finetuning status If not finetuning, check for finetuning condition and execute finetuning if condition is met """ try: # check if already finetuning if "job_id" in self.function_configs[func_hash].current_training_run: # check for job status self._check_finetuning_status(func_hash, function_description) else: # check for finetuning condition if self._check_finetuning_condition(func_hash, function_description): self._execute_finetuning(function_description, func_hash) except Exception as e: print(e) print("Error checking for finetuning") def _check_finetuning_condition(self, func_hash, function_description): """ Check if the finetuning condition is met Currently finetuning condition is dependent on the number of symbolic datapoints since last finetuning """ if func_hash not in self.function_configs: return False training_threshold = (2 ** self.function_configs[func_hash].nr_of_training_runs) * 200 align_dataset_size = self.dataset_sizes[SYMBOLIC_ALIGNMENTS][func_hash] if func_hash in self.dataset_sizes[ SYMBOLIC_ALIGNMENTS] else 0 patch_dataset_size = self.dataset_sizes[PATCHES][func_hash] if func_hash in self.dataset_sizes[PATCHES] else 0 if patch_dataset_size == -1: # if havent read in the patch dataset size, read it in patch_dataset_size = self._get_dataset_info(PATCHES, func_hash, type="length") self.dataset_sizes[PATCHES][func_hash] = patch_dataset_size if func_hash not in self.startup_logging_checker: logging.info(f"Function {function_description.name} [{align_dataset_size} aligns | {patch_dataset_size} runs] will be finetuned from"\ f" {self.function_configs[func_hash].teacher_models[0].model_name} using {self.function_configs[func_hash].distilled_model.provider} in "\ f"{training_threshold-(patch_dataset_size + align_dataset_size)} runs") self.startup_logging_checker[func_hash] = True return (patch_dataset_size + align_dataset_size) > training_threshold def _execute_finetuning(self, function_description, func_hash): """ Execute the finetuning First create the OpenAI compatible dataset with jsonL file and upload it Then submit the OpenAI finetuning job Finally update the config file to reflect the new finetuning job as current """ # get function description function_string = str(function_description.__dict__.__repr__() + "\n") # get the align dataset align_dataset = self._get_dataset_info(SYMBOLIC_ALIGNMENTS, func_hash, type="dataset") if not align_dataset: align_dataset = "" else: align_dataset = align_dataset.decode('utf-8') # get the patch dataset patch_dataset = self._get_dataset_info(PATCHES, func_hash, type="dataset") if not patch_dataset: patch_dataset = "" else: patch_dataset = patch_dataset.decode('utf-8') if align_dataset == "" and patch_dataset == "": return dataset = align_dataset + patch_dataset dataset.replace("\\n", "[SEP_TOKEN]") dataset = dataset.split("\n") dataset = [x.replace("[SEP_TOKEN]", "\\n") for x in dataset if x != ""] # read in the dataset file dataset = [ast.literal_eval(x) for x in dataset] # # create the openai dataset instruction = "You are given below a function description and input data. The function description of what the function must carry out can be found in the Function section, with input and output type hints. The input data can be found in Input section. Using the function description, apply the function to the Input and return a valid output type, that is acceptable by the output_class_definition and output_class_hint. Return None if you can't apply the function to the input or if the output is optional and the correct output is None.\nINCREDIBLY IMPORTANT: Only output a JSON-compatible string in the correct response format." finetuning_dataset = [{"messages": [ { "role": "system", "content": f"You are a skillful and accurate language model, who applies a described function on input data. Make sure the function is applied accurately and correctly and the outputs follow the output type hints and are valid outputs given the output types." }, {"role": "user", "content": f"{instruction}\nFunction: {function_string}---\nInputs:\nArgs: {x['args']}\nKwargs: {x['kwargs']}\nOutput:"}, {"role": "assistant", "content": str(x['output']) if x['output'] is not None else "None"}]} for x in dataset] # Create an in-memory text stream temp_file = io.BytesIO() # Write data to the stream for idx, item in enumerate(finetuning_dataset): temp_file.write(json.dumps(item).encode('utf-8')) if idx != len(finetuning_dataset) - 1: temp_file.write("\n".encode('utf-8')) # Reset the stream position to the beginning temp_file.seek(0) # create the finetune hash finetune_hash = function_description.__hash__(purpose="finetune") nr_of_training_runs = self.function_configs[func_hash].nr_of_training_runs finetune_hash += encode_int(self.environment_id) finetune_hash += encode_int(nr_of_training_runs) # here can be sure that datasets were read in as that is checked in the finetune_check align_dataset_size = self.dataset_sizes[SYMBOLIC_ALIGNMENTS][func_hash] if func_hash in self.dataset_sizes[ SYMBOLIC_ALIGNMENTS] else 0 patch_dataset_size = self.dataset_sizes[PATCHES][func_hash] if func_hash in self.dataset_sizes[PATCHES] else 0 total_dataset_size = align_dataset_size + patch_dataset_size # Use the stream as a file try: finetune_provider = self.function_configs[func_hash].distilled_model.provider logging.info(f"Starting finetuning for {function_description.name} using {finetune_provider} for {self.function_configs[func_hash].distilled_model.base_model_for_sft}") finetuning_response: FinetuneJob = self.api_provider[finetune_provider].finetune(file=temp_file, suffix=finetune_hash, model_config = self.function_configs[func_hash].distilled_model,) except Exception as e: logging.info(f"Could not start finetuning for {function_description.name} using {finetune_provider}. Error: {e}") return self.function_configs[func_hash].current_training_run = {"job_id": finetuning_response.id, "trained_on_datapoints": total_dataset_size, "last_checked": datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S")} # update the config json file try: self._update_config_file(func_hash) except Exception as e: print(e) print("Could not update config file to register a finetuning run") def _check_finetuning_status(self, func_hash, function_description): """ Check the status of the current finetuning job If the job is finished, update the config file to reflect the new model """ job_id = self.function_configs[func_hash].current_training_run["job_id"] last_checked = self.function_configs[func_hash].current_training_run["last_checked"] # check if last checked was more than 30 mins ago if (datetime.datetime.now() - datetime.datetime.strptime(last_checked, "%Y-%m-%d %H:%M:%S")).total_seconds() > 1800: finetune_provider = self.function_configs[func_hash].distilled_model.provider response = self.api_provider[finetune_provider].get_finetuned(job_id, model_config = self.function_configs[func_hash].distilled_model) self.function_configs[func_hash].current_training_run["last_checked"] = datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S") if response.status == "succeeded" or response.status == "failed": self._update_finetune_config(response, func_hash, function_description) else: self._update_config_file(func_hash) def _update_finetune_config(self, response: FinetuneJob, func_hash, function_description): """ Update the config file to reflect the new model and switch the current model to the finetuned model """ self.function_configs[func_hash].update_with_finetuned_response(response) logging.info(f"Finetuning for {function_description.name} using {self.function_configs[func_hash].distilled_model.provider} finished with status: {response.status}."\ f" The id of the finetuned model is {response.fine_tuned_model.model_name}") try: self._update_config_file(func_hash) except Exception as e: logging.info(f"Could not update the function configuration file with the finetuned model for {function_description.name}. Error: {e}") pass <fim_middle>self.function_configs = {}
self.function_configs = {}
STATEMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: <fim_suffix> # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>return dict(instantiated_dict)
return dict(instantiated_dict)
STATEMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/trackers/abc_buffered_logger.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py def load_existing_datasets(self) -> Dict[str, Dict[str, str]]: log_directory = self.log_directory dataset_lengths = { SYMBOLIC_ALIGNMENTS: {}, POSITIVE_EMBEDDABLE_ALIGNMENTS: {}, NEGATIVE_EMBEDDABLE_ALIGNMENTS: {}, PATCHES: {}, } try: if not os.path.exists(log_directory): os.makedirs(log_directory) # get all the files in the log directory files = os.listdir(log_directory) # discard all .json files files = [x for x in files if ".json" not in x] except Exception as e: return dataset_lengths for file in files: if ALIGN_FILE_EXTENSION not in file \ and PATCH_FILE_EXTENSION not in file \ and POSITIVE_FILE_EXTENSION not in file \ and NEGATIVE_FILE_EXTENSION not in file: continue elif ALIGN_FILE_EXTENSION in file: dataset_type = SYMBOLIC_ALIGNMENTS elif POSITIVE_FILE_EXTENSION in file: dataset_type = POSITIVE_EMBEDDABLE_ALIGNMENTS elif NEGATIVE_FILE_EXTENSION in file: dataset_type = NEGATIVE_EMBEDDABLE_ALIGNMENTS else: dataset_type = PATCHES func_hash = file.replace(ALIGN_FILE_EXTENSION, "").replace(PATCH_FILE_EXTENSION, "") dataset_lengths[dataset_type][func_hash] = -1 return dataset_lengths # tanuki_py/src/tanuki/models/function_config.py def load_from_dict(self, json_dict): """ Load the function config from a dict Args: json_dict: The dict to load the function config from Returns: The function config """ self.distilled_model = config_factory.create_config(json_dict["distilled_model"], DISTILLED_MODEL) self.current_model_stats = json_dict["current_model_stats"] self.last_training_run = json_dict["last_training_run"] self.current_training_run = json_dict["current_training_run"] self.nr_of_training_runs = json_dict["nr_of_training_runs"] if "teacher_models" in json_dict and len(json_dict["teacher_models"]) > 0: self.teacher_models = [config_factory.create_config(teacher_model, TEACHER_MODEL) for teacher_model in json_dict["teacher_models"]] return self # tanuki_py/src/tanuki/models/function_config.py def to_dict(self): """ Convert the function config to a dict Returns: The dict """ try: config_dictionary = self.model_dump() except AttributeError as e: config_dictionary = self.dict() return config_dictionary """ import json from abc import abstractmethod from typing import Dict, Any, Literal from tanuki.bloom_filter import BloomFilter from tanuki.constants import EXPECTED_ITEMS, FALSE_POSITIVE_RATE, ALIGN_FILE_EXTENSION, \ POSITIVE_FILE_EXTENSION, NEGATIVE_FILE_EXTENSION, PATCH_FILE_EXTENSION from tanuki.persistence.filter.bloom_interface import IBloomFilterPersistence from tanuki.trackers.dataset_worker import DatasetWorker from tanuki.models.function_config import FunctionConfig # PATCH_FILE_EXTENSION_TYPE = Literal[".patches"] # ALIGN_FILE_EXTENSION_TYPE = Literal[".alignments"] # POSITIVE_EMBEDDING_FILE_EXTENSION_TYPE = Literal[".positive_embedding"] # NEGATIVE_EMBEDDING_FILE_EXTENSION_TYPE = Literal[".negative_embedding"] # # PATCH_FILE_EXTENSION: PATCH_FILE_EXTENSION_TYPE = ".patches" # ALIGN_FILE_EXTENSION: ALIGN_FILE_EXTENSION_TYPE = ".alignments" # POSITIVE_EMBEDDING_FILE_EXTENSION: POSITIVE_EMBEDDING_FILE_EXTENSION_TYPE = ".contrastive_positives" # NEGATIVE_EMBEDDING_FILE_EXTENSION: NEGATIVE_EMBEDDING_FILE_EXTENSION_TYPE = ".contrastive_negatives" # # EXPECTED_ITEMS = 10000 # FALSE_POSITIVE_RATE = 0.01 # LIB_NAME = "tanuki" # ENVVAR = "TANUKI_LOG_DIR" class ABCBufferedLogger(DatasetWorker): def __init__(self, name, level=15): self.buffers = {} self.mapped_files = {} self.miss_count = 0 self.hit_count = 0 self.flush_limit = {} self.buffer_rolling_size = {} self.write_count = 0 self.write_limit = 1000 # Save the Bloom filter every 1000 writes super().__init__(name, level) self.bloom_filter = self.create_bloom_filter() self.load_bloom_filter() self.default_function_config = FunctionConfig() @abstractmethod def get_bloom_filter_persistence(self) -> IBloomFilterPersistence: """ Get an instance of the bloom filter persistence provider. This exposes some persistent file storage, that must support reading and writing raw byte streams. :return: """ pass @abstractmethod def load_existing_datasets(self) -> Dict[str, Dict[str, Any]]: """ Get the lengths of all datasets backing the registered functions, including aligns. :return: """ pass @abstractmethod def ensure_persistence_location_exists(self): """ Ensure that the place we will be writing to actually exists. If not, create it. """ pass @abstractmethod def get_patch_location_for_function(self, func_hash, extension="") -> str: """ Get the address of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ pass @abstractmethod def write(self, path, data, mode="a") -> None: pass @abstractmethod def read(self, path) -> str: pass @abstractmethod def get_hash_from_path(self, path) -> str: pass @abstractmethod def does_object_exist(self, path) -> bool: pass def create_bloom_filter(self): bloom_filter_persistence = self.get_bloom_filter_persistence() bloom_filter = BloomFilter( bloom_filter_persistence, expected_number_of_elements=EXPECTED_ITEMS, false_positive_probability=FALSE_POSITIVE_RATE) return bloom_filter def load_bloom_filter(self): try: self.bloom_filter.load() except FileNotFoundError: self.debug("No Bloom filter found. Creating a new one.") def write_symbolic_align_call(self, func_hash, example) -> bool: log_file_path = self.get_patch_location_for_function(func_hash, extension=ALIGN_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False def write_embeddable_align_call(self, func_hash, example, positive=True) -> bool: if positive: log_file_path = self.get_patch_location_for_function(func_hash, extension=POSITIVE_FILE_EXTENSION) else: log_file_path = self.get_patch_location_for_function(func_hash, extension=NEGATIVE_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False def log_embeddable_align(self, func_hash, example, positive=True, **kws): """ Log a contrastive function invocation Args: func_hash: A string representation of the function signature and input parameters example: The example object positive: Whether the example is positive or negative **kws: """ successfully_saved, new_datapoint = False, False try: self.ensure_persistence_location_exists() except Exception as e: return successfully_saved, new_datapoint # prepend the function hash to the example bloom_filter_representation = func_hash + '_' + str(example.__dict__) + '\n' # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): return successfully_saved, new_datapoint new_datapoint = True # add to bloom filter self.bloom_filter.add(bloom_filter_representation) self.save_bloom_filter() successfully_saved = self.write_embeddable_align_call(func_hash, example, positive) return successfully_saved, new_datapoint def log_symbolic_align(self, func_hash, *args, **kws): """ Log an align function invocation to the file system :param func_hash: A string representation of the function signature and input parameters :param args: Example objects :param kws: :return: """ successfully_saved, new_datapoint = False, False try: self.ensure_persistence_location_exists() except Exception as e: return successfully_saved, new_datapoint example = args[0] # prepend the function hash to the example bloom_filter_representation = func_hash + '_' + str(example.__dict__) + '\n' # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): return successfully_saved, new_datapoint new_datapoint = True # add to bloom filter self.bloom_filter.add(bloom_filter_representation) self.save_bloom_filter() successfully_saved = self.write_symbolic_align_call(func_hash, example) return successfully_saved, new_datapoint def log_symbolic_patch(self, func_hash, example): """ Log a patched function invocation to the file system :param func_hash: A string representation of the function signature and input parameters :param example: :return: """ if not isinstance(func_hash, str): func_hash = str(func_hash) example_data = str(example.__dict__).encode('utf-8') + b'\n' bloom_filter_representation = func_hash + '_' + example_data.decode('utf-8') # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): self.hit_count += 1 return {} self.miss_count += 1 # Add to Bloom Filter self.bloom_filter.add(bloom_filter_representation) try: self.ensure_persistence_location_exists() except Exception as e: return {} log_file_path = self.get_patch_location_for_function(func_hash, extension=PATCH_FILE_EXTENSION) if log_file_path not in self.buffers: self.buffers[log_file_path] = bytearray() if log_file_path not in self.flush_limit: self.flush_limit[log_file_path] = 1 self.buffers[log_file_path].extend(example_data) self.write_count += 1 if log_file_path not in self.buffer_rolling_size: self.buffer_rolling_size[log_file_path] = 1 else: self.buffer_rolling_size[log_file_path] += 1 if self.write_count >= self.write_limit: written_datapoints = self.flush() self.save_bloom_filter() self.write_count = 0 # Reset counter return written_datapoints if len(self.buffers[log_file_path]) >= min(self.flush_limit[log_file_path], 4096): # Flush after reaching 4KB written_datapoints = {} try: self.write(log_file_path, self.buffers[log_file_path], mode="a+b") # update buffers written_datapoints[func_hash] = self.buffer_rolling_size[log_file_path] self.buffers[log_file_path].clear() self.buffer_rolling_size[log_file_path] = 0 self.flush_limit[log_file_path] = 2 * self.flush_limit[log_file_path] self.save_bloom_filter() except Exception as e: pass return written_datapoints return {} def save_bloom_filter(self): try: self.bloom_filter.save() except Exception as e: self.warning("Could not save Bloom filter: {}".format(e)) def flush(self): # get log directory written_datapoints = {} for log_file_path, buffer in self.buffers.items(): if len(buffer) > 0: try: self.write(log_file_path, buffer, mode="a+b") written_datapoints[self.get_hash_from_path(log_file_path)] = self.buffer_rolling_size[log_file_path] self.buffer_rolling_size[log_file_path] = 0 buffer.clear() except Exception as e: pass return written_datapoints def load_function_config(self, func_hash): """ Get the config file for the function. Uses the message and log directory Config file has to be in .json """ default = False try: # try to get the config from the disk. If inaccessible, create a new default one self.ensure_persistence_location_exists() log_file_path = self.get_patch_location_for_function(func_hash) <fim_suffix> if not self.does_object_exist(config_path): function_config = self.default_function_config default = True func_config_dict = function_config.to_dict() # remove teacher_models from the config func_config_dict.pop("teacher_models") self.write_json(config_path, func_config_dict) else: function_config = FunctionConfig().load_from_dict(self.read_json(config_path)) except Exception as e: function_config = self.default_function_config default = True return function_config, default def update_function_config(self, func_hash, config_to_be_saved): """ Save the config file """ log_file_path = self.get_patch_location_for_function(func_hash) config_path = f"{log_file_path}.json" try: func_config_dict = config_to_be_saved.to_dict() # remove teacher_models from the config func_config_dict.pop("teacher_models") self.write_json(config_path, func_config_dict) except Exception as e: pass def write_json(self, path, data): self.write(path, json.dumps(data)) def read_json(self, path): return json.loads(self.read(path)) <fim_middle>config_path = f"{log_file_path}.json"
config_path = f"{log_file_path}.json"
STATEMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/function_modeler.py def _construct_config_from_finetune(self, finetune_hash: str, finetune: FinetuneJob): """ Construct a valid function config from a finetune job Args: finetune_hash: The hash of the function finetune: The finetune job Returns: config: The function config """ model = finetune.fine_tuned_model # get the ending location of finetune hash in the model name finetune_hash_end = model.model_name.find(finetune_hash) + len(finetune_hash) # get the next character after the finetune hash next_char = model.model_name[finetune_hash_end] # get the number of training runs nr_of_training_runs = decode_int(next_char) + 1 nr_of_training_points = (2 ** (nr_of_training_runs - 1)) * 200 config = { "distilled_model": model, "current_model_stats": { "trained_on_datapoints": nr_of_training_points, "running_faults": []}, "last_training_run": {"trained_on_datapoints": nr_of_training_points}, "current_training_run": {}, "teacher_models": [], # default teacher models, will be overwritten if needed "nr_of_training_runs": nr_of_training_runs} config = FunctionConfig().load_from_dict(config) return config # tanuki_py/src/tanuki/utils.py def _deep_tuple(obj): """ Convert a list or dict to a tuple recursively to allow for hashing and becoming a key for mock_behaviors :param obj: :return: """ # transform pydantic objects into dicts if hasattr(obj, "__dict__"): obj = obj.__dict__ if isinstance(obj, list) or isinstance(obj, tuple): return tuple(_deep_tuple(e) for e in obj) elif isinstance(obj, dict): return tuple((k, _deep_tuple(v)) for k, v in sorted(obj.items())) else: return obj # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: <fim_suffix> else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>key_type, value_type = args
key_type, value_type = args
STATEMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): <fim_suffix> return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>item_type = get_args(target_type)[0] if get_args(target_type) else Any
item_type = get_args(target_type)[0] if get_args(target_type) else Any
STATEMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) <fim_suffix> instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>item_type = item_types[0] if item_types else Any
item_type = item_types[0] if item_types else Any
STATEMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/abc_buffered_logger.py def ensure_persistence_location_exists(self): """ Ensure that the place we will be writing to actually exists. If not, create it. """ pass # tanuki_py/src/tanuki/__init__.py def mock_func(*args, **kwargs): hashed_description = description.__hash__() function_type, func = Register.get(func_name) # If we are aligning a function that returns an embedding, # we need to ensure both sides of the equality are future embeddings, # as it is nonsensical to declare that an embedding should 'be' an object or a string, etc. if function_type == FunctionType.EMBEDDABLE: key = get_key(args, kwargs) mocked_embedding = mock_behaviors.get(key, None) # Find positive examples by matching the mocked embedding with identical embeddings in the values # of the mock_behaviors dictionary mock_positives_list = [] for k, v in mock_behaviors.items(): if v == mocked_embedding and k != key: mock_positives_list.append(k) equivalent_mocks = mock_positives_list negative_mocks = list(mock_negatives.values()) function_modeler.save_embeddable_align_statements(hashed_description, args, kwargs, equivalent_mocks, negative_mocks) return mocked_embedding else: # If we are aligning a function that returns an object if not instance: result = func(*args, **kwargs) else: result = func(instance, *args, **kwargs) # Extract attributes from the result attributes = extract_attributes(result) for attr_name, attr_value in attributes.items(): # If the attribute is a list, get its length if isinstance(attr_value, list): attributes[attr_name] = len(attr_value) key = get_key(args, kwargs) mocked_behaviour = mock_behaviors.get(key, None) function_modeler.save_symbolic_align_statements(hashed_description, args, kwargs, mocked_behaviour) return mocked_behaviour # tanuki_py/src/tanuki/__init__.py def create_mock_func(instance: Optional, func_name: str, description: FunctionDescription): def mock_func(*args, **kwargs): hashed_description = description.__hash__() function_type, func = Register.get(func_name) # If we are aligning a function that returns an embedding, # we need to ensure both sides of the equality are future embeddings, # as it is nonsensical to declare that an embedding should 'be' an object or a string, etc. if function_type == FunctionType.EMBEDDABLE: key = get_key(args, kwargs) mocked_embedding = mock_behaviors.get(key, None) # Find positive examples by matching the mocked embedding with identical embeddings in the values # of the mock_behaviors dictionary mock_positives_list = [] for k, v in mock_behaviors.items(): if v == mocked_embedding and k != key: mock_positives_list.append(k) equivalent_mocks = mock_positives_list negative_mocks = list(mock_negatives.values()) function_modeler.save_embeddable_align_statements(hashed_description, args, kwargs, equivalent_mocks, negative_mocks) return mocked_embedding else: # If we are aligning a function that returns an object if not instance: result = func(*args, **kwargs) else: result = func(instance, *args, **kwargs) # Extract attributes from the result attributes = extract_attributes(result) for attr_name, attr_value in attributes.items(): # If the attribute is a list, get its length if isinstance(attr_value, list): attributes[attr_name] = len(attr_value) key = get_key(args, kwargs) mocked_behaviour = mock_behaviors.get(key, None) function_modeler.save_symbolic_align_statements(hashed_description, args, kwargs, mocked_behaviour) return mocked_behaviour return mock_func """ import os from enum import Enum from typing import Literal, Union, Optional, Dict from appdirs import user_data_dir from tanuki.constants import * from tanuki.persistence.filter.bloom_interface import IBloomFilterPersistence from tanuki.persistence.filter.filesystem_bloom import BloomFilterFileSystemDriver from tanuki.trackers.abc_buffered_logger import ABCBufferedLogger class FilesystemBufferedLogger(ABCBufferedLogger): """ A class that handles the reading and writing of patch invocations and align statements. It includes the logic for a bloom filter, to ensure that we only store unique invocations. """ def __init__(self, name, level=15): self.log_directory = self._get_log_directory() super().__init__(name, level) def get_bloom_filter_persistence(self) -> IBloomFilterPersistence: """ Get an instance of the bloom filter persistence provider. Typically this will be a file system provider. :return: A persistence provider """ return BloomFilterFileSystemDriver(log_directory=self.log_directory) def get_patch_location_for_function(self, func_hash, extension: Union[ ALIGN_FILE_EXTENSION_TYPE, PATCH_FILE_EXTENSION_TYPE] = "") -> str: """ Get the local location of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ return os.path.join(self.log_directory, func_hash + extension) def ensure_persistence_location_exists(self) -> None: """ Ensure that the location on the filesystem we will be writing to actually exists. If not, create it. """ log_directory = self.log_directory # Create the folder if it doesn't exist if not os.path.exists(log_directory): os.makedirs(log_directory) def does_object_exist(self, path: str) -> bool: """ Check to see if a path exists on the filesystem. :param path: :return: """ return os.path.exists(path) def _get_log_directory(self) -> str: """ Find a location on the filesystem to write our logs to. :return: """ filename = "functions" # If explicitly defined env_dir = os.getenv(ENVVAR) if env_dir and os.path.isdir(env_dir): return os.path.join(env_dir, filename) # If installed as a library library_dir = os.path.join(user_data_dir(LIB_NAME), filename) if os.path.isdir(library_dir) or not os.path.exists(library_dir): return library_dir <fim_suffix> current_dir = os.getcwd() while current_dir != os.path.root: if ".git" in os.listdir(current_dir): return os.path.join(current_dir, filename) current_dir = os.path.dirname(current_dir) return os.path.join(os.getcwd(), filename) def load_dataset(self, dataset_type, func_hash, return_type="both") -> Optional[int]: """ Get the size of the dataset for a function hash """ log_directory = self._get_log_directory() dataset_type_map = {"alignments": ALIGN_FILE_EXTENSION, "positive": POSITIVE_FILE_EXTENSION, "negative": NEGATIVE_FILE_EXTENSION, "patches": PATCH_FILE_EXTENSION} log_file_path = os.path.join(log_directory, func_hash + dataset_type_map[dataset_type]) if not os.path.exists(log_file_path): if return_type == "both": return 0, None elif return_type == "dataset": return None elif return_type == "length": return 0 try: with open(log_file_path, "rb") as f: dataset = f.read() dataset_string = repr(dataset) dataset_length = dataset_string.count("\\n") - dataset_string.count("\\\\n") if return_type == "both": return dataset_length, dataset elif return_type == "dataset": return dataset elif return_type == "length": return dataset_length except Exception as e: if return_type == "both": return 0, None elif return_type == "dataset": return None elif return_type == "length": return 0 def load_existing_datasets(self) -> Dict[str, Dict[str, str]]: log_directory = self.log_directory dataset_lengths = { SYMBOLIC_ALIGNMENTS: {}, POSITIVE_EMBEDDABLE_ALIGNMENTS: {}, NEGATIVE_EMBEDDABLE_ALIGNMENTS: {}, PATCHES: {}, } try: if not os.path.exists(log_directory): os.makedirs(log_directory) # get all the files in the log directory files = os.listdir(log_directory) # discard all .json files files = [x for x in files if ".json" not in x] except Exception as e: return dataset_lengths for file in files: if ALIGN_FILE_EXTENSION not in file \ and PATCH_FILE_EXTENSION not in file \ and POSITIVE_FILE_EXTENSION not in file \ and NEGATIVE_FILE_EXTENSION not in file: continue elif ALIGN_FILE_EXTENSION in file: dataset_type = SYMBOLIC_ALIGNMENTS elif POSITIVE_FILE_EXTENSION in file: dataset_type = POSITIVE_EMBEDDABLE_ALIGNMENTS elif NEGATIVE_FILE_EXTENSION in file: dataset_type = NEGATIVE_EMBEDDABLE_ALIGNMENTS else: dataset_type = PATCHES func_hash = file.replace(ALIGN_FILE_EXTENSION, "").replace(PATCH_FILE_EXTENSION, "") dataset_lengths[dataset_type][func_hash] = -1 return dataset_lengths def write(self, path: str, data: str, mode: Literal["w", "a", "a+b"] = "w") -> None: """ Write data to a file """ with open(path, mode) as f: f.write(data) def read(self, path: str) -> str: """ Read data from a file """ with open(path, "r") as f: return f.read() def get_hash_from_path(self, path) -> str: """ Given a path with a hash, return only the hash :param path: The path to the file :return: The hash """ return path.replace(PATCH_FILE_EXTENSION, ""). \ replace(self.log_directory, ""). \ lstrip("/"). \ lstrip("\\") <fim_middle># If installed in a project that contains a git repo - place it in the same folder as the git repo
# If installed in a project that contains a git repo - place it in the same folder as the git repo
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: <fim_suffix> try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle># try to instantiate datetime
# try to instantiate datetime
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/trackers/abc_buffered_logger.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py def load_existing_datasets(self) -> Dict[str, Dict[str, str]]: log_directory = self.log_directory dataset_lengths = { SYMBOLIC_ALIGNMENTS: {}, POSITIVE_EMBEDDABLE_ALIGNMENTS: {}, NEGATIVE_EMBEDDABLE_ALIGNMENTS: {}, PATCHES: {}, } try: if not os.path.exists(log_directory): os.makedirs(log_directory) # get all the files in the log directory files = os.listdir(log_directory) # discard all .json files files = [x for x in files if ".json" not in x] except Exception as e: return dataset_lengths for file in files: if ALIGN_FILE_EXTENSION not in file \ and PATCH_FILE_EXTENSION not in file \ and POSITIVE_FILE_EXTENSION not in file \ and NEGATIVE_FILE_EXTENSION not in file: continue elif ALIGN_FILE_EXTENSION in file: dataset_type = SYMBOLIC_ALIGNMENTS elif POSITIVE_FILE_EXTENSION in file: dataset_type = POSITIVE_EMBEDDABLE_ALIGNMENTS elif NEGATIVE_FILE_EXTENSION in file: dataset_type = NEGATIVE_EMBEDDABLE_ALIGNMENTS else: dataset_type = PATCHES func_hash = file.replace(ALIGN_FILE_EXTENSION, "").replace(PATCH_FILE_EXTENSION, "") dataset_lengths[dataset_type][func_hash] = -1 return dataset_lengths # tanuki_py/src/tanuki/models/function_config.py def load_from_dict(self, json_dict): """ Load the function config from a dict Args: json_dict: The dict to load the function config from Returns: The function config """ self.distilled_model = config_factory.create_config(json_dict["distilled_model"], DISTILLED_MODEL) self.current_model_stats = json_dict["current_model_stats"] self.last_training_run = json_dict["last_training_run"] self.current_training_run = json_dict["current_training_run"] self.nr_of_training_runs = json_dict["nr_of_training_runs"] if "teacher_models" in json_dict and len(json_dict["teacher_models"]) > 0: self.teacher_models = [config_factory.create_config(teacher_model, TEACHER_MODEL) for teacher_model in json_dict["teacher_models"]] return self # tanuki_py/src/tanuki/models/function_config.py def to_dict(self): """ Convert the function config to a dict Returns: The dict """ try: config_dictionary = self.model_dump() except AttributeError as e: config_dictionary = self.dict() return config_dictionary """ import json from abc import abstractmethod from typing import Dict, Any, Literal from tanuki.bloom_filter import BloomFilter from tanuki.constants import EXPECTED_ITEMS, FALSE_POSITIVE_RATE, ALIGN_FILE_EXTENSION, \ POSITIVE_FILE_EXTENSION, NEGATIVE_FILE_EXTENSION, PATCH_FILE_EXTENSION from tanuki.persistence.filter.bloom_interface import IBloomFilterPersistence from tanuki.trackers.dataset_worker import DatasetWorker from tanuki.models.function_config import FunctionConfig # PATCH_FILE_EXTENSION_TYPE = Literal[".patches"] # ALIGN_FILE_EXTENSION_TYPE = Literal[".alignments"] # POSITIVE_EMBEDDING_FILE_EXTENSION_TYPE = Literal[".positive_embedding"] # NEGATIVE_EMBEDDING_FILE_EXTENSION_TYPE = Literal[".negative_embedding"] # # PATCH_FILE_EXTENSION: PATCH_FILE_EXTENSION_TYPE = ".patches" # ALIGN_FILE_EXTENSION: ALIGN_FILE_EXTENSION_TYPE = ".alignments" # POSITIVE_EMBEDDING_FILE_EXTENSION: POSITIVE_EMBEDDING_FILE_EXTENSION_TYPE = ".contrastive_positives" # NEGATIVE_EMBEDDING_FILE_EXTENSION: NEGATIVE_EMBEDDING_FILE_EXTENSION_TYPE = ".contrastive_negatives" # # EXPECTED_ITEMS = 10000 # FALSE_POSITIVE_RATE = 0.01 # LIB_NAME = "tanuki" # ENVVAR = "TANUKI_LOG_DIR" class ABCBufferedLogger(DatasetWorker): def __init__(self, name, level=15): self.buffers = {} self.mapped_files = {} self.miss_count = 0 self.hit_count = 0 self.flush_limit = {} self.buffer_rolling_size = {} self.write_count = 0 self.write_limit = 1000 # Save the Bloom filter every 1000 writes super().__init__(name, level) self.bloom_filter = self.create_bloom_filter() self.load_bloom_filter() self.default_function_config = FunctionConfig() @abstractmethod def get_bloom_filter_persistence(self) -> IBloomFilterPersistence: """ Get an instance of the bloom filter persistence provider. This exposes some persistent file storage, that must support reading and writing raw byte streams. :return: """ pass @abstractmethod def load_existing_datasets(self) -> Dict[str, Dict[str, Any]]: """ Get the lengths of all datasets backing the registered functions, including aligns. :return: """ pass @abstractmethod def ensure_persistence_location_exists(self): """ Ensure that the place we will be writing to actually exists. If not, create it. """ pass @abstractmethod def get_patch_location_for_function(self, func_hash, extension="") -> str: """ Get the address of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ pass @abstractmethod def write(self, path, data, mode="a") -> None: pass @abstractmethod def read(self, path) -> str: pass @abstractmethod def get_hash_from_path(self, path) -> str: pass @abstractmethod def does_object_exist(self, path) -> bool: pass def create_bloom_filter(self): bloom_filter_persistence = self.get_bloom_filter_persistence() bloom_filter = BloomFilter( bloom_filter_persistence, expected_number_of_elements=EXPECTED_ITEMS, false_positive_probability=FALSE_POSITIVE_RATE) return bloom_filter def load_bloom_filter(self): try: self.bloom_filter.load() except FileNotFoundError: self.debug("No Bloom filter found. Creating a new one.") def write_symbolic_align_call(self, func_hash, example) -> bool: log_file_path = self.get_patch_location_for_function(func_hash, extension=ALIGN_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False def write_embeddable_align_call(self, func_hash, example, positive=True) -> bool: if positive: log_file_path = self.get_patch_location_for_function(func_hash, extension=POSITIVE_FILE_EXTENSION) else: log_file_path = self.get_patch_location_for_function(func_hash, extension=NEGATIVE_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False def log_embeddable_align(self, func_hash, example, positive=True, **kws): """ Log a contrastive function invocation Args: func_hash: A string representation of the function signature and input parameters example: The example object positive: Whether the example is positive or negative **kws: """ successfully_saved, new_datapoint = False, False try: self.ensure_persistence_location_exists() except Exception as e: return successfully_saved, new_datapoint # prepend the function hash to the example bloom_filter_representation = func_hash + '_' + str(example.__dict__) + '\n' # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): return successfully_saved, new_datapoint new_datapoint = True # add to bloom filter self.bloom_filter.add(bloom_filter_representation) self.save_bloom_filter() successfully_saved = self.write_embeddable_align_call(func_hash, example, positive) return successfully_saved, new_datapoint def log_symbolic_align(self, func_hash, *args, **kws): """ Log an align function invocation to the file system :param func_hash: A string representation of the function signature and input parameters :param args: Example objects :param kws: :return: """ successfully_saved, new_datapoint = False, False try: self.ensure_persistence_location_exists() except Exception as e: return successfully_saved, new_datapoint example = args[0] # prepend the function hash to the example bloom_filter_representation = func_hash + '_' + str(example.__dict__) + '\n' # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): return successfully_saved, new_datapoint new_datapoint = True # add to bloom filter self.bloom_filter.add(bloom_filter_representation) self.save_bloom_filter() successfully_saved = self.write_symbolic_align_call(func_hash, example) return successfully_saved, new_datapoint def log_symbolic_patch(self, func_hash, example): """ Log a patched function invocation to the file system :param func_hash: A string representation of the function signature and input parameters :param example: :return: """ if not isinstance(func_hash, str): func_hash = str(func_hash) example_data = str(example.__dict__).encode('utf-8') + b'\n' bloom_filter_representation = func_hash + '_' + example_data.decode('utf-8') # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): self.hit_count += 1 return {} self.miss_count += 1 # Add to Bloom Filter self.bloom_filter.add(bloom_filter_representation) try: self.ensure_persistence_location_exists() except Exception as e: return {} log_file_path = self.get_patch_location_for_function(func_hash, extension=PATCH_FILE_EXTENSION) if log_file_path not in self.buffers: self.buffers[log_file_path] = bytearray() if log_file_path not in self.flush_limit: self.flush_limit[log_file_path] = 1 self.buffers[log_file_path].extend(example_data) self.write_count += 1 if log_file_path not in self.buffer_rolling_size: self.buffer_rolling_size[log_file_path] = 1 else: self.buffer_rolling_size[log_file_path] += 1 if self.write_count >= self.write_limit: written_datapoints = self.flush() self.save_bloom_filter() self.write_count = 0 # Reset counter return written_datapoints if len(self.buffers[log_file_path]) >= min(self.flush_limit[log_file_path], 4096): # Flush after reaching 4KB written_datapoints = {} try: self.write(log_file_path, self.buffers[log_file_path], mode="a+b") # update buffers written_datapoints[func_hash] = self.buffer_rolling_size[log_file_path] self.buffers[log_file_path].clear() self.buffer_rolling_size[log_file_path] = 0 self.flush_limit[log_file_path] = 2 * self.flush_limit[log_file_path] self.save_bloom_filter() except Exception as e: pass return written_datapoints return {} def save_bloom_filter(self): try: self.bloom_filter.save() except Exception as e: self.warning("Could not save Bloom filter: {}".format(e)) def flush(self): # get log directory written_datapoints = {} for log_file_path, buffer in self.buffers.items(): if len(buffer) > 0: try: self.write(log_file_path, buffer, mode="a+b") written_datapoints[self.get_hash_from_path(log_file_path)] = self.buffer_rolling_size[log_file_path] self.buffer_rolling_size[log_file_path] = 0 buffer.clear() except Exception as e: pass return written_datapoints def load_function_config(self, func_hash): """ Get the config file for the function. Uses the message and log directory Config file has to be in .json """ default = False try: # try to get the config from the disk. If inaccessible, create a new default one self.ensure_persistence_location_exists() log_file_path = self.get_patch_location_for_function(func_hash) config_path = f"{log_file_path}.json" if not self.does_object_exist(config_path): function_config = self.default_function_config default = True func_config_dict = function_config.to_dict() <fim_suffix> func_config_dict.pop("teacher_models") self.write_json(config_path, func_config_dict) else: function_config = FunctionConfig().load_from_dict(self.read_json(config_path)) except Exception as e: function_config = self.default_function_config default = True return function_config, default def update_function_config(self, func_hash, config_to_be_saved): """ Save the config file """ log_file_path = self.get_patch_location_for_function(func_hash) config_path = f"{log_file_path}.json" try: func_config_dict = config_to_be_saved.to_dict() # remove teacher_models from the config func_config_dict.pop("teacher_models") self.write_json(config_path, func_config_dict) except Exception as e: pass def write_json(self, path, data): self.write(path, json.dumps(data)) def read_json(self, path): return json.loads(self.read(path)) <fim_middle># remove teacher_models from the config
# remove teacher_models from the config
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/language_models/language_model_manager.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/utils.py def get_model(content, logger, func_hash): """ Get the model from the content and the logger. Decide on model depending on the length of the content. if is finetunable, return model, true, otherwise return model, false Args: content (str): the content to be aligned logger (buffered logger): the logger func_hash (str): the function hash Returns: model (str): the model to be used finetunable (bool): whether the model is finetunable """ num_tokens = approximate_token_count(content) finetune_limit = logger.finetune_token_limit finetune_model, teacher_models = logger.get_models(func_hash) if num_tokens < finetune_limit: return finetune_model, True else: # this is just for backwards compatibility currently if len(teacher_models) == 0 or isinstance(teacher_models[0], str): teacher_models = [("gpt-4", 7000),("gpt-4-32k", 31000)] for model, token_limit in teacher_models: if num_tokens < token_limit: return model, False raise ValueError("The input content and align statements combined are too long, please shorten it. The maximum currently allowed token limit is 32000") # tanuki_py/src/tanuki/language_models/embedding_model_manager.py def get_embedding_case(self, args, function_description: FunctionDescription, kwargs, examples=None): # example_input = f"Examples:{examples}\n" if examples else "" content = f"Name: {function_description.name}\nArgs: {args}\nKwargs: {kwargs}" function_hash = function_description.__hash__() if function_hash in self.function_modeler.teacher_models_override: # check for overrides model = self.function_modeler.teacher_models_override[function_hash][0] # take currently the first model else: model = DEFAULT_EMBEDDING_MODELS[DEFAULT_EMBEDDING_MODEL_NAME] # loggings if function_hash not in self.initialized_functions: logging.info(f"Generating function embeddings for {function_description.name} with {model.model_name}") self.initialized_functions[function_hash] = model.model_name elif self.initialized_functions[function_hash] != model.model_name: logging.info(f"Switching embeddings generation for {function_description.name} from {self.initialized_functions[function_hash]} to {model.model_name}") self.initialized_functions[function_hash] = model.model_name return content, model # tanuki_py/src/tanuki/function_modeler.py def _update_datapoint_config(self, repaired, func_hash): """ Update the config to reflect the new datapoint in the training data First adds 1 to the current datapoints Then updates running faults depending if priority is True or not and takes last 100 Then checks the revert condition, i.e if last 10 datapoints are 50% faulty Finally updates the config file Args: priority (bool): whether the datapoint was fixed by the teacher model/should be added to the training data """ try: if repaired: self.function_configs[func_hash].current_model_stats["running_faults"].append(1) else: self.function_configs[func_hash].current_model_stats["running_faults"].append(0) # take the last 100 datapoints self.function_configs[func_hash].current_model_stats["running_faults"] = \ self.function_configs[func_hash].current_model_stats["running_faults"][-100:] # check if the last 10 datapoints are 50% faulty, this is the switch condition if sum(self.function_configs[func_hash].current_model_stats["running_faults"][-10:]) / 10 > 0.5: self.function_configs[func_hash].distilled_model.model_name = "" self.function_configs[func_hash].current_model_stats["trained_on_datapoints"] = 0 self.function_configs[func_hash].current_model_stats["running_faults"] = [] self._update_config_file(func_hash) except Exception as e: print(e) print("Could not update config file") pass """ import json from typing import Any, Dict from tanuki.function_modeler import FunctionModeler from tanuki.language_models.llm_api_abc import LLM_API from tanuki.models.function_description import FunctionDescription from tanuki.models.function_example import FunctionExample from tanuki.models.language_model_output import LanguageModelOutput from tanuki.utils import approximate_token_count from tanuki.validator import Validator from tanuki.models.api_manager import APIManager from tanuki.language_models.llm_configs.abc_base_config import BaseModelConfig import logging class LanguageModelManager(object): """ The LanguageModelManager is responsible for managing the language models and their outputs operationally, this includes: - Generating outputs from the language models - Repairing outputs from the language models - Saving outputs from the language models - Finetuning the language models from the saved outputs """ def __init__(self, function_modeler: FunctionModeler, api_provider: APIManager, generation_token_limit=512,) -> None: self.api_provider = api_provider self.function_modeler = function_modeler self.default_generation_length = generation_token_limit self.initialized_functions = {} self.token_counts = {} def __call__(self, args, function_description: FunctionDescription, kwargs, validator: Validator, generation_parameters: dict) -> Any: # add the generation length if not there if "max_new_tokens" not in generation_parameters: generation_parameters["max_new_tokens"] = self.default_generation_length output = self.generate(args, kwargs, function_description, generation_parameters) # start parsing the object, very hacky way for the time being choice_parsed = self._parse_choice(output) valid = validator.check_type(choice_parsed, function_description.output_type_hint) if not valid: choice, choice_parsed, successful_repair = self.repair_output(args, kwargs, function_description, output.generated_response, validator, generation_parameters) if not successful_repair: raise TypeError( f"Output type was not valid. Expected an object of type {function_description.output_type_hint}, got '{output.generated_response}'") output.generated_response = choice output.distilled_model = False datapoint = FunctionExample(args, kwargs, output.generated_response) if output.suitable_for_finetuning and not output.distilled_model: self.function_modeler.postprocess_symbolic_datapoint(function_description.__hash__(), function_description, datapoint, repaired=not valid) instantiated = validator.instantiate(choice_parsed, function_description.output_type_hint) return instantiated def _parse_choice(self, output): try: # json load choice_parsed = json.loads(output.generated_response) except: # if it fails, it's not a json object, try eval try: choice_parsed = eval(output.generated_response) except: choice_parsed = output.generated_response return choice_parsed def generate(self, args, kwargs, function_description, llm_parameters={}): """ The main generation function, given the args, kwargs, function description and model type, generate a response and check if the datapoint can be saved to the finetune dataset """ func_hash = function_description.__hash__() prompt, model, save_to_finetune, is_distilled_model = self.get_generation_case(args, kwargs, function_description, llm_parameters, func_hash) # loggings current_function_setup = self.initialized_functions.get(func_hash, None) # getting the current function setup - model and align statements if current_function_setup: generator_model = current_function_setup["model"] if is_distilled_model: logging.info(f"Generating function outputs for {function_description.name} with a finetuned model: {model.model_name}.") self.initialized_functions[func_hash]["model"] = model.model_name elif generator_model == "": logging.info(f"Found {len(current_function_setup['examples'])} align statements for {function_description.name}. Generating function outputs with {model.model_name}.") self.initialized_functions[func_hash]["model"] = model.model_name elif generator_model != model.model_name: logging.info(f"Switching output generation from {generator_model} to {model.model_name} for function {function_description.name}.") self.initialized_functions[func_hash]["model"] = model.model_name choice = self._synthesise_answer(prompt, model, llm_parameters) output = LanguageModelOutput(choice, save_to_finetune, is_distilled_model) return output def _synthesise_answer(self, prompt, model, llm_parameters): """ Synthesise an answer given the prompt, model, model_type and llm_parameters Args: prompt (str): The prompt to send to the model model (BaseModelConfig): The model to use for generation llm_parameters (dict): The parameters to use for generation return: choice (str): The generated response """ system_message = model.system_message return self.api_provider[model.provider].generate(model, system_message, prompt, **llm_parameters) def get_generation_case(self, args, kwargs, function_description, llm_parameters, func_hash): """ Get the generation case with the correct prompt and model First get the current model, then if distilled model, do zero-shot prompt and return False as suitable_for_finetune If not distilled model, check if suitable for finetuning, create the prompt and return the correct model given the token count """ f = str(function_description.__dict__.__repr__()) distilled_model, teacher_models = self.function_modeler.get_models(function_description) is_distilled_model = distilled_model.model_name != "" suitable_for_distillation, input_prompt_token_count = self.suitable_for_finetuning_token_check(args, kwargs, f, distilled_model) if func_hash not in self.initialized_functions: <fim_suffix> self.initialized_functions[func_hash] = {"model": "", "examples": []} # no examples needed, using a finetuned model. Dont save to finetune dataset if is_distilled_model and suitable_for_distillation: prompt = self.construct_prompt(f, args, kwargs, [], distilled_model) return prompt, distilled_model, suitable_for_distillation, True else: aligns = self.function_modeler.get_symbolic_alignments(function_description.__hash__(), max=16) examples = [f"Inputs:\nArgs: {align['args']}\nKwargs: {align['kwargs']}\nOutput: {align['output']}" for align in aligns] # update the examples in the initialized_functions dict self.initialized_functions[func_hash]["examples"] = examples examples_token_count = sum([approximate_token_count(example) for example in examples]) generation_tokens = llm_parameters.get("max_new_tokens", self.default_generation_length) model = self.choose_model_from_tokens(teacher_models, examples_token_count + input_prompt_token_count + generation_tokens, len(examples)) if model: examples_with_parsing_tokens = [f"Inputs:\nArgs: {align['args']}\nKwargs: {align['kwargs']}\nOutput:{model.parsing_helper_tokens['start_token']}{align['output']}{model.parsing_helper_tokens['end_token']}" for align in aligns] prompt = self.construct_prompt(f, args, kwargs, examples_with_parsing_tokens, model) return prompt, model, suitable_for_distillation, False else: raise ValueError( "The input content and align statements combined are too long, please shorten it. The maximum currently allowed token limit is 32000") def suitable_for_finetuning_token_check(self, args, kwargs, f, distilled_model: BaseModelConfig): """ Check if the inputs are suitable for finetuning, i.e are below the finetuning token count """ # check if finetunable finetuning_prompt = f"Function: {f}\n---\nInputs:\nArgs: {args}\nKwargs: {kwargs}\nOutput:" input_prompt_token_count = approximate_token_count(finetuning_prompt) if distilled_model.system_message_token_count < 0: distilled_model.system_message_token_count = approximate_token_count(distilled_model.system_message) if distilled_model.instruction_token_count < 0: distilled_model.instruction_token_count = approximate_token_count(distilled_model.instructions) suitable_for_finetune = input_prompt_token_count + distilled_model.instruction_token_count + distilled_model.system_message_token_count < distilled_model.context_length return suitable_for_finetune, input_prompt_token_count def construct_prompt(self, f, args, kwargs, examples, model): """ Construct a prompt given the model, function description, args, kwargs and examples Args: model (BaseModelConfig): The model to use for generation f (str): The function description args (tuple): The args of the function kwargs (tuple): The kwargs of the function examples (list): The examples of the function Returns: content (str): The prompt to send to the model """ if examples: final_examples = "\n".join( [f"{align}" for align in examples]) example_input = f"Examples:{final_examples}\n" else: example_input = "" instruction_prompt = model.instructions content = f"{instruction_prompt}\nFunction: {f}\n{example_input}---\nInputs:\nArgs: {args}\nKwargs: {kwargs}\nOutput:" return content def repair_generate(self, args, kwargs, f, failed_outputs_list, aligns, models, llm_parameters): """ Repair the output given the input, function description, failed outputs list, examples and models """ # get the token counts examples = [f"Inputs:\nArgs: {align['args']}\nKwargs: {align['kwargs']}\nOutput: {align['output']}" for align in aligns] examples_token_count = sum([approximate_token_count(example) for example in examples]) failed_examples_token_count = sum([approximate_token_count(failed_output[0]) + approximate_token_count(failed_output[1]) for failed_output in failed_outputs_list]) input_prompt_token_count = approximate_token_count(f"Function: {f}\n---\nInputs:\nArgs: {args}\nKwargs: {kwargs}\nOutput:") generation_tokens = llm_parameters.get("max_new_tokens", self.default_generation_length) model = self.choose_model_from_tokens(models, examples_token_count+input_prompt_token_count+generation_tokens+failed_examples_token_count, len(examples)) if model: prompt = self.generate_repair_prompt(args, kwargs, f, failed_outputs_list, examples, model) logging.info(f"Previous output failed type validation, attempting to repair with {model.model_name}") choice = self._synthesise_answer(prompt, model, llm_parameters) return choice else: return None def generate_repair_prompt(self, args, kwargs, f, failed_outputs_list, examples, model): """ Generate a repair prompt given the args, kwargs, function description, failed outputs list and examples """ if examples: final_examples = "\n".join( [f"{model.parsing_helper_tokens['start_token']}{align}{model.parsing_helper_tokens['end_token']}" for align in examples]) successful_examples = f"Examples:{final_examples}\n" else: successful_examples = "" failed_examples = "" for failed_output in failed_outputs_list: failed_examples += f"Output: {failed_output[0]}\nError: {failed_output[1]}\n\n" end_token_addition = "" if model.parsing_helper_tokens["end_token"]: end_token_addition = f"Make sure to add the {model.parsing_helper_tokens['end_token']} token at the end of the output." prompt = f"{model.repair_instruction}{end_token_addition}\nFUNCTION DESCRIPTION: {f}\n{successful_examples}---{model.parsing_helper_tokens['start_token']}Inputs:\nArgs: {args}\nKwargs: {kwargs}\nFAILED EXAMPLES: {failed_examples}Correct output:" return prompt def choose_model_from_tokens(self, models, input_token_count, nr_of_examples=0): """ Choose a model from the models given the token count and number of examples Args: models (list): The models to choose from input_token_count (int): The token count of the input nr_of_examples (int): The number of examples Returns: model (BaseModelConfig): The chosen model """ for model in models: # check if input token count is less than the context length # If the model config has custom messages, then use those, otherwise use the default ones if model.system_message_token_count < 0: model.system_message_token_count = approximate_token_count(model.system_message) if model.instruction_token_count < 0: model.instruction_token_count = approximate_token_count(model.instructions) if model.parsing_helper_tokens["start_token"]: input_token_count += 2*nr_of_examples if model.parsing_helper_tokens["end_token"]: input_token_count += 2*nr_of_examples total_token_count = input_token_count + model.instruction_token_count + model.system_message_token_count if total_token_count < model.context_length: return model return None def repair_output(self, args: tuple, kwargs: dict, function_description: FunctionDescription, choice, validator: Validator, generation_parameters: dict) -> tuple: """ Repair an output, that failed type validation by generating a new output using the teacher model and the error Args: args (tuple): The args of the function kwargs (dict): The kwargs of the function function_description (FunctionDescription): The function description choice: The output that failed type validation, type is arbitrary validator (Validator): The validator object Returns: choice (str): The choice that was generated by the language model choice_parsed: The parsed choice, type is arbitrary valid (bool): Whether the output was correctly repaired was valid """ # get the teacher models teacher_models = self.function_modeler.get_models(function_description)[1] valid = False retry_index = 5 f = str(function_description.__dict__.__repr__() + "\n") error = f"Output type was not valid. Expected an valid object of type {function_description.output_type_hint}, got '{choice}'" # instantiate the failed outputs list failed_outputs_list = [(choice, error)] while retry_index > 0 and not valid: # get the alignments aligns = self.function_modeler.get_symbolic_alignments(function_description.__hash__(), max=5) # Generate the reparied LLM output choice = self.repair_generate(args, kwargs, f, failed_outputs_list, aligns, teacher_models, generation_parameters) if not choice: # if no choice then the input was too long for the model # no specific error but the retry index goes down retry_index -= 1 continue # start parsing the object try: # json load choice_parsed = json.loads(choice) except: # if it fails, it's not a json object, try eval try: choice_parsed = eval(choice) except: choice_parsed = choice valid = validator.check_type(choice_parsed, function_description.output_type_hint) if not valid: # if it's not valid, add it to the failed outputs list error = f"Output type was not valid. Expected an object of type {function_description.output_type_hint}, got '{choice}'" failed_outputs_list.append((choice, error)) retry_index -= 1 if valid: logging.info(f"Successfully repaired output.") return choice, choice_parsed, valid <fim_middle># initialise the initialized_functions dict
# initialise the initialized_functions dict
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/language_models/language_model_manager.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/utils.py def get_model(content, logger, func_hash): """ Get the model from the content and the logger. Decide on model depending on the length of the content. if is finetunable, return model, true, otherwise return model, false Args: content (str): the content to be aligned logger (buffered logger): the logger func_hash (str): the function hash Returns: model (str): the model to be used finetunable (bool): whether the model is finetunable """ num_tokens = approximate_token_count(content) finetune_limit = logger.finetune_token_limit finetune_model, teacher_models = logger.get_models(func_hash) if num_tokens < finetune_limit: return finetune_model, True else: # this is just for backwards compatibility currently if len(teacher_models) == 0 or isinstance(teacher_models[0], str): teacher_models = [("gpt-4", 7000),("gpt-4-32k", 31000)] for model, token_limit in teacher_models: if num_tokens < token_limit: return model, False raise ValueError("The input content and align statements combined are too long, please shorten it. The maximum currently allowed token limit is 32000") # tanuki_py/src/tanuki/language_models/embedding_model_manager.py def get_embedding_case(self, args, function_description: FunctionDescription, kwargs, examples=None): # example_input = f"Examples:{examples}\n" if examples else "" content = f"Name: {function_description.name}\nArgs: {args}\nKwargs: {kwargs}" function_hash = function_description.__hash__() if function_hash in self.function_modeler.teacher_models_override: # check for overrides model = self.function_modeler.teacher_models_override[function_hash][0] # take currently the first model else: model = DEFAULT_EMBEDDING_MODELS[DEFAULT_EMBEDDING_MODEL_NAME] # loggings if function_hash not in self.initialized_functions: logging.info(f"Generating function embeddings for {function_description.name} with {model.model_name}") self.initialized_functions[function_hash] = model.model_name elif self.initialized_functions[function_hash] != model.model_name: logging.info(f"Switching embeddings generation for {function_description.name} from {self.initialized_functions[function_hash]} to {model.model_name}") self.initialized_functions[function_hash] = model.model_name return content, model # tanuki_py/src/tanuki/function_modeler.py def _update_datapoint_config(self, repaired, func_hash): """ Update the config to reflect the new datapoint in the training data First adds 1 to the current datapoints Then updates running faults depending if priority is True or not and takes last 100 Then checks the revert condition, i.e if last 10 datapoints are 50% faulty Finally updates the config file Args: priority (bool): whether the datapoint was fixed by the teacher model/should be added to the training data """ try: if repaired: self.function_configs[func_hash].current_model_stats["running_faults"].append(1) else: self.function_configs[func_hash].current_model_stats["running_faults"].append(0) # take the last 100 datapoints self.function_configs[func_hash].current_model_stats["running_faults"] = \ self.function_configs[func_hash].current_model_stats["running_faults"][-100:] # check if the last 10 datapoints are 50% faulty, this is the switch condition if sum(self.function_configs[func_hash].current_model_stats["running_faults"][-10:]) / 10 > 0.5: self.function_configs[func_hash].distilled_model.model_name = "" self.function_configs[func_hash].current_model_stats["trained_on_datapoints"] = 0 self.function_configs[func_hash].current_model_stats["running_faults"] = [] self._update_config_file(func_hash) except Exception as e: print(e) print("Could not update config file") pass """ import json from typing import Any, Dict from tanuki.function_modeler import FunctionModeler from tanuki.language_models.llm_api_abc import LLM_API from tanuki.models.function_description import FunctionDescription from tanuki.models.function_example import FunctionExample from tanuki.models.language_model_output import LanguageModelOutput from tanuki.utils import approximate_token_count from tanuki.validator import Validator from tanuki.models.api_manager import APIManager from tanuki.language_models.llm_configs.abc_base_config import BaseModelConfig import logging class LanguageModelManager(object): """ The LanguageModelManager is responsible for managing the language models and their outputs operationally, this includes: - Generating outputs from the language models - Repairing outputs from the language models - Saving outputs from the language models - Finetuning the language models from the saved outputs """ def __init__(self, function_modeler: FunctionModeler, api_provider: APIManager, generation_token_limit=512,) -> None: self.api_provider = api_provider self.function_modeler = function_modeler self.default_generation_length = generation_token_limit self.initialized_functions = {} self.token_counts = {} def __call__(self, args, function_description: FunctionDescription, kwargs, validator: Validator, generation_parameters: dict) -> Any: # add the generation length if not there if "max_new_tokens" not in generation_parameters: generation_parameters["max_new_tokens"] = self.default_generation_length output = self.generate(args, kwargs, function_description, generation_parameters) # start parsing the object, very hacky way for the time being choice_parsed = self._parse_choice(output) valid = validator.check_type(choice_parsed, function_description.output_type_hint) if not valid: choice, choice_parsed, successful_repair = self.repair_output(args, kwargs, function_description, output.generated_response, validator, generation_parameters) if not successful_repair: raise TypeError( f"Output type was not valid. Expected an object of type {function_description.output_type_hint}, got '{output.generated_response}'") output.generated_response = choice output.distilled_model = False datapoint = FunctionExample(args, kwargs, output.generated_response) if output.suitable_for_finetuning and not output.distilled_model: self.function_modeler.postprocess_symbolic_datapoint(function_description.__hash__(), function_description, datapoint, repaired=not valid) instantiated = validator.instantiate(choice_parsed, function_description.output_type_hint) return instantiated def _parse_choice(self, output): try: # json load choice_parsed = json.loads(output.generated_response) except: # if it fails, it's not a json object, try eval try: choice_parsed = eval(output.generated_response) except: choice_parsed = output.generated_response return choice_parsed def generate(self, args, kwargs, function_description, llm_parameters={}): """ The main generation function, given the args, kwargs, function description and model type, generate a response and check if the datapoint can be saved to the finetune dataset """ func_hash = function_description.__hash__() prompt, model, save_to_finetune, is_distilled_model = self.get_generation_case(args, kwargs, function_description, llm_parameters, func_hash) # loggings current_function_setup = self.initialized_functions.get(func_hash, None) # getting the current function setup - model and align statements if current_function_setup: generator_model = current_function_setup["model"] if is_distilled_model: logging.info(f"Generating function outputs for {function_description.name} with a finetuned model: {model.model_name}.") self.initialized_functions[func_hash]["model"] = model.model_name elif generator_model == "": logging.info(f"Found {len(current_function_setup['examples'])} align statements for {function_description.name}. Generating function outputs with {model.model_name}.") self.initialized_functions[func_hash]["model"] = model.model_name elif generator_model != model.model_name: logging.info(f"Switching output generation from {generator_model} to {model.model_name} for function {function_description.name}.") self.initialized_functions[func_hash]["model"] = model.model_name choice = self._synthesise_answer(prompt, model, llm_parameters) output = LanguageModelOutput(choice, save_to_finetune, is_distilled_model) return output def _synthesise_answer(self, prompt, model, llm_parameters): """ Synthesise an answer given the prompt, model, model_type and llm_parameters Args: prompt (str): The prompt to send to the model model (BaseModelConfig): The model to use for generation llm_parameters (dict): The parameters to use for generation return: choice (str): The generated response """ system_message = model.system_message return self.api_provider[model.provider].generate(model, system_message, prompt, **llm_parameters) def get_generation_case(self, args, kwargs, function_description, llm_parameters, func_hash): """ Get the generation case with the correct prompt and model First get the current model, then if distilled model, do zero-shot prompt and return False as suitable_for_finetune If not distilled model, check if suitable for finetuning, create the prompt and return the correct model given the token count """ f = str(function_description.__dict__.__repr__()) distilled_model, teacher_models = self.function_modeler.get_models(function_description) is_distilled_model = distilled_model.model_name != "" suitable_for_distillation, input_prompt_token_count = self.suitable_for_finetuning_token_check(args, kwargs, f, distilled_model) if func_hash not in self.initialized_functions: # initialise the initialized_functions dict self.initialized_functions[func_hash] = {"model": "", "examples": []} # no examples needed, using a finetuned model. Dont save to finetune dataset if is_distilled_model and suitable_for_distillation: prompt = self.construct_prompt(f, args, kwargs, [], distilled_model) return prompt, distilled_model, suitable_for_distillation, True else: aligns = self.function_modeler.get_symbolic_alignments(function_description.__hash__(), max=16) examples = [f"Inputs:\nArgs: {align['args']}\nKwargs: {align['kwargs']}\nOutput: {align['output']}" for align in aligns] <fim_suffix> self.initialized_functions[func_hash]["examples"] = examples examples_token_count = sum([approximate_token_count(example) for example in examples]) generation_tokens = llm_parameters.get("max_new_tokens", self.default_generation_length) model = self.choose_model_from_tokens(teacher_models, examples_token_count + input_prompt_token_count + generation_tokens, len(examples)) if model: examples_with_parsing_tokens = [f"Inputs:\nArgs: {align['args']}\nKwargs: {align['kwargs']}\nOutput:{model.parsing_helper_tokens['start_token']}{align['output']}{model.parsing_helper_tokens['end_token']}" for align in aligns] prompt = self.construct_prompt(f, args, kwargs, examples_with_parsing_tokens, model) return prompt, model, suitable_for_distillation, False else: raise ValueError( "The input content and align statements combined are too long, please shorten it. The maximum currently allowed token limit is 32000") def suitable_for_finetuning_token_check(self, args, kwargs, f, distilled_model: BaseModelConfig): """ Check if the inputs are suitable for finetuning, i.e are below the finetuning token count """ # check if finetunable finetuning_prompt = f"Function: {f}\n---\nInputs:\nArgs: {args}\nKwargs: {kwargs}\nOutput:" input_prompt_token_count = approximate_token_count(finetuning_prompt) if distilled_model.system_message_token_count < 0: distilled_model.system_message_token_count = approximate_token_count(distilled_model.system_message) if distilled_model.instruction_token_count < 0: distilled_model.instruction_token_count = approximate_token_count(distilled_model.instructions) suitable_for_finetune = input_prompt_token_count + distilled_model.instruction_token_count + distilled_model.system_message_token_count < distilled_model.context_length return suitable_for_finetune, input_prompt_token_count def construct_prompt(self, f, args, kwargs, examples, model): """ Construct a prompt given the model, function description, args, kwargs and examples Args: model (BaseModelConfig): The model to use for generation f (str): The function description args (tuple): The args of the function kwargs (tuple): The kwargs of the function examples (list): The examples of the function Returns: content (str): The prompt to send to the model """ if examples: final_examples = "\n".join( [f"{align}" for align in examples]) example_input = f"Examples:{final_examples}\n" else: example_input = "" instruction_prompt = model.instructions content = f"{instruction_prompt}\nFunction: {f}\n{example_input}---\nInputs:\nArgs: {args}\nKwargs: {kwargs}\nOutput:" return content def repair_generate(self, args, kwargs, f, failed_outputs_list, aligns, models, llm_parameters): """ Repair the output given the input, function description, failed outputs list, examples and models """ # get the token counts examples = [f"Inputs:\nArgs: {align['args']}\nKwargs: {align['kwargs']}\nOutput: {align['output']}" for align in aligns] examples_token_count = sum([approximate_token_count(example) for example in examples]) failed_examples_token_count = sum([approximate_token_count(failed_output[0]) + approximate_token_count(failed_output[1]) for failed_output in failed_outputs_list]) input_prompt_token_count = approximate_token_count(f"Function: {f}\n---\nInputs:\nArgs: {args}\nKwargs: {kwargs}\nOutput:") generation_tokens = llm_parameters.get("max_new_tokens", self.default_generation_length) model = self.choose_model_from_tokens(models, examples_token_count+input_prompt_token_count+generation_tokens+failed_examples_token_count, len(examples)) if model: prompt = self.generate_repair_prompt(args, kwargs, f, failed_outputs_list, examples, model) logging.info(f"Previous output failed type validation, attempting to repair with {model.model_name}") choice = self._synthesise_answer(prompt, model, llm_parameters) return choice else: return None def generate_repair_prompt(self, args, kwargs, f, failed_outputs_list, examples, model): """ Generate a repair prompt given the args, kwargs, function description, failed outputs list and examples """ if examples: final_examples = "\n".join( [f"{model.parsing_helper_tokens['start_token']}{align}{model.parsing_helper_tokens['end_token']}" for align in examples]) successful_examples = f"Examples:{final_examples}\n" else: successful_examples = "" failed_examples = "" for failed_output in failed_outputs_list: failed_examples += f"Output: {failed_output[0]}\nError: {failed_output[1]}\n\n" end_token_addition = "" if model.parsing_helper_tokens["end_token"]: end_token_addition = f"Make sure to add the {model.parsing_helper_tokens['end_token']} token at the end of the output." prompt = f"{model.repair_instruction}{end_token_addition}\nFUNCTION DESCRIPTION: {f}\n{successful_examples}---{model.parsing_helper_tokens['start_token']}Inputs:\nArgs: {args}\nKwargs: {kwargs}\nFAILED EXAMPLES: {failed_examples}Correct output:" return prompt def choose_model_from_tokens(self, models, input_token_count, nr_of_examples=0): """ Choose a model from the models given the token count and number of examples Args: models (list): The models to choose from input_token_count (int): The token count of the input nr_of_examples (int): The number of examples Returns: model (BaseModelConfig): The chosen model """ for model in models: # check if input token count is less than the context length # If the model config has custom messages, then use those, otherwise use the default ones if model.system_message_token_count < 0: model.system_message_token_count = approximate_token_count(model.system_message) if model.instruction_token_count < 0: model.instruction_token_count = approximate_token_count(model.instructions) if model.parsing_helper_tokens["start_token"]: input_token_count += 2*nr_of_examples if model.parsing_helper_tokens["end_token"]: input_token_count += 2*nr_of_examples total_token_count = input_token_count + model.instruction_token_count + model.system_message_token_count if total_token_count < model.context_length: return model return None def repair_output(self, args: tuple, kwargs: dict, function_description: FunctionDescription, choice, validator: Validator, generation_parameters: dict) -> tuple: """ Repair an output, that failed type validation by generating a new output using the teacher model and the error Args: args (tuple): The args of the function kwargs (dict): The kwargs of the function function_description (FunctionDescription): The function description choice: The output that failed type validation, type is arbitrary validator (Validator): The validator object Returns: choice (str): The choice that was generated by the language model choice_parsed: The parsed choice, type is arbitrary valid (bool): Whether the output was correctly repaired was valid """ # get the teacher models teacher_models = self.function_modeler.get_models(function_description)[1] valid = False retry_index = 5 f = str(function_description.__dict__.__repr__() + "\n") error = f"Output type was not valid. Expected an valid object of type {function_description.output_type_hint}, got '{choice}'" # instantiate the failed outputs list failed_outputs_list = [(choice, error)] while retry_index > 0 and not valid: # get the alignments aligns = self.function_modeler.get_symbolic_alignments(function_description.__hash__(), max=5) # Generate the reparied LLM output choice = self.repair_generate(args, kwargs, f, failed_outputs_list, aligns, teacher_models, generation_parameters) if not choice: # if no choice then the input was too long for the model # no specific error but the retry index goes down retry_index -= 1 continue # start parsing the object try: # json load choice_parsed = json.loads(choice) except: # if it fails, it's not a json object, try eval try: choice_parsed = eval(choice) except: choice_parsed = choice valid = validator.check_type(choice_parsed, function_description.output_type_hint) if not valid: # if it's not valid, add it to the failed outputs list error = f"Output type was not valid. Expected an object of type {function_description.output_type_hint}, got '{choice}'" failed_outputs_list.append((choice, error)) retry_index -= 1 if valid: logging.info(f"Successfully repaired output.") return choice, choice_parsed, valid <fim_middle># update the examples in the initialized_functions dict
# update the examples in the initialized_functions dict
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type <fim_suffix> if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle># If the target type is a built-in, attempt to instantiate and return
# If the target type is a built-in, attempt to instantiate and return
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: <fim_suffix> return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle># backwards compatibility with pydantic < 2
# backwards compatibility with pydantic < 2
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") <fim_suffix> return data <fim_middle># If none of the above, return the data as-is
# If none of the above, return the data as-is
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/function_modeler.py def _construct_config_from_finetune(self, finetune_hash: str, finetune: FinetuneJob): """ Construct a valid function config from a finetune job Args: finetune_hash: The hash of the function finetune: The finetune job Returns: config: The function config """ model = finetune.fine_tuned_model # get the ending location of finetune hash in the model name finetune_hash_end = model.model_name.find(finetune_hash) + len(finetune_hash) # get the next character after the finetune hash next_char = model.model_name[finetune_hash_end] # get the number of training runs nr_of_training_runs = decode_int(next_char) + 1 nr_of_training_points = (2 ** (nr_of_training_runs - 1)) * 200 config = { "distilled_model": model, "current_model_stats": { "trained_on_datapoints": nr_of_training_points, "running_faults": []}, "last_training_run": {"trained_on_datapoints": nr_of_training_points}, "current_training_run": {}, "teacher_models": [], # default teacher models, will be overwritten if needed "nr_of_training_runs": nr_of_training_runs} config = FunctionConfig().load_from_dict(config) return config # tanuki_py/src/tanuki/utils.py def _deep_tuple(obj): """ Convert a list or dict to a tuple recursively to allow for hashing and becoming a key for mock_behaviors :param obj: :return: """ # transform pydantic objects into dicts if hasattr(obj, "__dict__"): obj = obj.__dict__ if isinstance(obj, list) or isinstance(obj, tuple): return tuple(_deep_tuple(e) for e in obj) elif isinstance(obj, dict): return tuple((k, _deep_tuple(v)) for k, v in sorted(obj.items())) else: return obj # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] <fim_suffix> for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle># check that all required arguments are in value and do type checking
# check that all required arguments are in value and do type checking
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/abc_buffered_logger.py def ensure_persistence_location_exists(self): """ Ensure that the place we will be writing to actually exists. If not, create it. """ pass # tanuki_py/src/tanuki/__init__.py def mock_func(*args, **kwargs): hashed_description = description.__hash__() function_type, func = Register.get(func_name) # If we are aligning a function that returns an embedding, # we need to ensure both sides of the equality are future embeddings, # as it is nonsensical to declare that an embedding should 'be' an object or a string, etc. if function_type == FunctionType.EMBEDDABLE: key = get_key(args, kwargs) mocked_embedding = mock_behaviors.get(key, None) # Find positive examples by matching the mocked embedding with identical embeddings in the values # of the mock_behaviors dictionary mock_positives_list = [] for k, v in mock_behaviors.items(): if v == mocked_embedding and k != key: mock_positives_list.append(k) equivalent_mocks = mock_positives_list negative_mocks = list(mock_negatives.values()) function_modeler.save_embeddable_align_statements(hashed_description, args, kwargs, equivalent_mocks, negative_mocks) return mocked_embedding else: # If we are aligning a function that returns an object if not instance: result = func(*args, **kwargs) else: result = func(instance, *args, **kwargs) # Extract attributes from the result attributes = extract_attributes(result) for attr_name, attr_value in attributes.items(): # If the attribute is a list, get its length if isinstance(attr_value, list): attributes[attr_name] = len(attr_value) key = get_key(args, kwargs) mocked_behaviour = mock_behaviors.get(key, None) function_modeler.save_symbolic_align_statements(hashed_description, args, kwargs, mocked_behaviour) return mocked_behaviour # tanuki_py/src/tanuki/__init__.py def create_mock_func(instance: Optional, func_name: str, description: FunctionDescription): def mock_func(*args, **kwargs): hashed_description = description.__hash__() function_type, func = Register.get(func_name) # If we are aligning a function that returns an embedding, # we need to ensure both sides of the equality are future embeddings, # as it is nonsensical to declare that an embedding should 'be' an object or a string, etc. if function_type == FunctionType.EMBEDDABLE: key = get_key(args, kwargs) mocked_embedding = mock_behaviors.get(key, None) # Find positive examples by matching the mocked embedding with identical embeddings in the values # of the mock_behaviors dictionary mock_positives_list = [] for k, v in mock_behaviors.items(): if v == mocked_embedding and k != key: mock_positives_list.append(k) equivalent_mocks = mock_positives_list negative_mocks = list(mock_negatives.values()) function_modeler.save_embeddable_align_statements(hashed_description, args, kwargs, equivalent_mocks, negative_mocks) return mocked_embedding else: # If we are aligning a function that returns an object if not instance: result = func(*args, **kwargs) else: result = func(instance, *args, **kwargs) # Extract attributes from the result attributes = extract_attributes(result) for attr_name, attr_value in attributes.items(): # If the attribute is a list, get its length if isinstance(attr_value, list): attributes[attr_name] = len(attr_value) key = get_key(args, kwargs) mocked_behaviour = mock_behaviors.get(key, None) function_modeler.save_symbolic_align_statements(hashed_description, args, kwargs, mocked_behaviour) return mocked_behaviour return mock_func """ import os from enum import Enum from typing import Literal, Union, Optional, Dict from appdirs import user_data_dir from tanuki.constants import * from tanuki.persistence.filter.bloom_interface import IBloomFilterPersistence from tanuki.persistence.filter.filesystem_bloom import BloomFilterFileSystemDriver from tanuki.trackers.abc_buffered_logger import ABCBufferedLogger class FilesystemBufferedLogger(ABCBufferedLogger): """ A class that handles the reading and writing of patch invocations and align statements. It includes the logic for a bloom filter, to ensure that we only store unique invocations. """ def __init__(self, name, level=15): self.log_directory = self._get_log_directory() super().__init__(name, level) def get_bloom_filter_persistence(self) -> IBloomFilterPersistence: """ Get an instance of the bloom filter persistence provider. Typically this will be a file system provider. :return: A persistence provider """ return BloomFilterFileSystemDriver(log_directory=self.log_directory) def get_patch_location_for_function(self, func_hash, extension: Union[ ALIGN_FILE_EXTENSION_TYPE, PATCH_FILE_EXTENSION_TYPE] = "") -> str: """ Get the local location of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ return os.path.join(self.log_directory, func_hash + extension) def ensure_persistence_location_exists(self) -> None: """ Ensure that the location on the filesystem we will be writing to actually exists. If not, create it. """ log_directory = self.log_directory # Create the folder if it doesn't exist if not os.path.exists(log_directory): os.makedirs(log_directory) def does_object_exist(self, path: str) -> bool: """ Check to see if a path exists on the filesystem. :param path: :return: """ return os.path.exists(path) def _get_log_directory(self) -> str: """ Find a location on the filesystem to write our logs to. :return: """ filename = "functions" # If explicitly defined env_dir = os.getenv(ENVVAR) if env_dir and os.path.isdir(env_dir): return os.path.join(env_dir, filename) <fim_suffix> library_dir = os.path.join(user_data_dir(LIB_NAME), filename) if os.path.isdir(library_dir) or not os.path.exists(library_dir): return library_dir # If installed in a project that contains a git repo - place it in the same folder as the git repo current_dir = os.getcwd() while current_dir != os.path.root: if ".git" in os.listdir(current_dir): return os.path.join(current_dir, filename) current_dir = os.path.dirname(current_dir) return os.path.join(os.getcwd(), filename) def load_dataset(self, dataset_type, func_hash, return_type="both") -> Optional[int]: """ Get the size of the dataset for a function hash """ log_directory = self._get_log_directory() dataset_type_map = {"alignments": ALIGN_FILE_EXTENSION, "positive": POSITIVE_FILE_EXTENSION, "negative": NEGATIVE_FILE_EXTENSION, "patches": PATCH_FILE_EXTENSION} log_file_path = os.path.join(log_directory, func_hash + dataset_type_map[dataset_type]) if not os.path.exists(log_file_path): if return_type == "both": return 0, None elif return_type == "dataset": return None elif return_type == "length": return 0 try: with open(log_file_path, "rb") as f: dataset = f.read() dataset_string = repr(dataset) dataset_length = dataset_string.count("\\n") - dataset_string.count("\\\\n") if return_type == "both": return dataset_length, dataset elif return_type == "dataset": return dataset elif return_type == "length": return dataset_length except Exception as e: if return_type == "both": return 0, None elif return_type == "dataset": return None elif return_type == "length": return 0 def load_existing_datasets(self) -> Dict[str, Dict[str, str]]: log_directory = self.log_directory dataset_lengths = { SYMBOLIC_ALIGNMENTS: {}, POSITIVE_EMBEDDABLE_ALIGNMENTS: {}, NEGATIVE_EMBEDDABLE_ALIGNMENTS: {}, PATCHES: {}, } try: if not os.path.exists(log_directory): os.makedirs(log_directory) # get all the files in the log directory files = os.listdir(log_directory) # discard all .json files files = [x for x in files if ".json" not in x] except Exception as e: return dataset_lengths for file in files: if ALIGN_FILE_EXTENSION not in file \ and PATCH_FILE_EXTENSION not in file \ and POSITIVE_FILE_EXTENSION not in file \ and NEGATIVE_FILE_EXTENSION not in file: continue elif ALIGN_FILE_EXTENSION in file: dataset_type = SYMBOLIC_ALIGNMENTS elif POSITIVE_FILE_EXTENSION in file: dataset_type = POSITIVE_EMBEDDABLE_ALIGNMENTS elif NEGATIVE_FILE_EXTENSION in file: dataset_type = NEGATIVE_EMBEDDABLE_ALIGNMENTS else: dataset_type = PATCHES func_hash = file.replace(ALIGN_FILE_EXTENSION, "").replace(PATCH_FILE_EXTENSION, "") dataset_lengths[dataset_type][func_hash] = -1 return dataset_lengths def write(self, path: str, data: str, mode: Literal["w", "a", "a+b"] = "w") -> None: """ Write data to a file """ with open(path, mode) as f: f.write(data) def read(self, path: str) -> str: """ Read data from a file """ with open(path, "r") as f: return f.read() def get_hash_from_path(self, path) -> str: """ Given a path with a hash, return only the hash :param path: The path to the file :return: The hash """ return path.replace(PATCH_FILE_EXTENSION, ""). \ replace(self.log_directory, ""). \ lstrip("/"). \ lstrip("\\") <fim_middle># If installed as a library
# If installed as a library
LINE_COMMENT
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: <fim_suffix> except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>try: return int(float(data))
try: return int(float(data))
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/trackers/abc_buffered_logger.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/function_modeler.py def _save_contrastive_alignment_pair(self, function_hash: str, args, kwargs, pair, positive=True): """ Save a contrastive pair """ example = FunctionExample(args, kwargs, pair) if function_hash not in self.store_data_blacklist: successfully_saved, new_datapoint = self.data_worker.log_embeddable_align(function_hash, example, positive) else: successfully_saved = False new_datapoint = True if successfully_saved: if positive: if function_hash in self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS]: self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS][function_hash] = 1 if not positive: if function_hash in self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS]: self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS][function_hash] = 1 if new_datapoint: # update align buffer if function_hash not in self.embeddable_align_buffer: self.embeddable_align_buffer[function_hash] = bytearray() self.embeddable_align_buffer[function_hash].extend(str(example.__dict__).encode('utf-8') + b'\r\n') # tanuki_py/src/tanuki/function_modeler.py def save_symbolic_align_statements(self, function_hash, args, kwargs, output): """ Save the align statements and add to the align buffer Do not save if the function hash is in the store data blacklist Then just add the datapoints to the align buffer """ # prepare output for saving and later parsing # make a deepcopy of the output to avoid changing the original object copy_output = copy.deepcopy(output) parsed_output = prepare_object_for_saving(copy_output) # prepare args and kwargs for saving copy_args = copy.deepcopy(args) copy_kwargs = copy.deepcopy(kwargs) parsed_args = prepare_object_for_saving(copy_args) parsed_kwargs = prepare_object_for_saving(copy_kwargs) example = FunctionExample(parsed_args, parsed_kwargs, parsed_output) if function_hash not in self.store_data_blacklist: successfully_saved, new_datapoint = self.data_worker.log_symbolic_align(function_hash, example) else: successfully_saved = False new_datapoint = True if successfully_saved: if function_hash in self.dataset_sizes[SYMBOLIC_ALIGNMENTS]: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = 1 if new_datapoint: # update align buffer if function_hash not in self.symbolic_align_buffer: self.symbolic_align_buffer[function_hash] = bytearray() self.symbolic_align_buffer[function_hash].extend(str(example.__dict__).encode('utf-8') + b'\r\n') # tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py def get_patch_location_for_function(self, func_hash, extension: Union[ ALIGN_FILE_EXTENSION_TYPE, PATCH_FILE_EXTENSION_TYPE] = "") -> str: """ Get the local location of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ return os.path.join(self.log_directory, func_hash + extension) """ import json from abc import abstractmethod from typing import Dict, Any, Literal from tanuki.bloom_filter import BloomFilter from tanuki.constants import EXPECTED_ITEMS, FALSE_POSITIVE_RATE, ALIGN_FILE_EXTENSION, \ POSITIVE_FILE_EXTENSION, NEGATIVE_FILE_EXTENSION, PATCH_FILE_EXTENSION from tanuki.persistence.filter.bloom_interface import IBloomFilterPersistence from tanuki.trackers.dataset_worker import DatasetWorker from tanuki.models.function_config import FunctionConfig # PATCH_FILE_EXTENSION_TYPE = Literal[".patches"] # ALIGN_FILE_EXTENSION_TYPE = Literal[".alignments"] # POSITIVE_EMBEDDING_FILE_EXTENSION_TYPE = Literal[".positive_embedding"] # NEGATIVE_EMBEDDING_FILE_EXTENSION_TYPE = Literal[".negative_embedding"] # # PATCH_FILE_EXTENSION: PATCH_FILE_EXTENSION_TYPE = ".patches" # ALIGN_FILE_EXTENSION: ALIGN_FILE_EXTENSION_TYPE = ".alignments" # POSITIVE_EMBEDDING_FILE_EXTENSION: POSITIVE_EMBEDDING_FILE_EXTENSION_TYPE = ".contrastive_positives" # NEGATIVE_EMBEDDING_FILE_EXTENSION: NEGATIVE_EMBEDDING_FILE_EXTENSION_TYPE = ".contrastive_negatives" # # EXPECTED_ITEMS = 10000 # FALSE_POSITIVE_RATE = 0.01 # LIB_NAME = "tanuki" # ENVVAR = "TANUKI_LOG_DIR" class ABCBufferedLogger(DatasetWorker): def __init__(self, name, level=15): self.buffers = {} self.mapped_files = {} self.miss_count = 0 self.hit_count = 0 self.flush_limit = {} self.buffer_rolling_size = {} self.write_count = 0 self.write_limit = 1000 # Save the Bloom filter every 1000 writes super().__init__(name, level) self.bloom_filter = self.create_bloom_filter() self.load_bloom_filter() self.default_function_config = FunctionConfig() @abstractmethod def get_bloom_filter_persistence(self) -> IBloomFilterPersistence: """ Get an instance of the bloom filter persistence provider. This exposes some persistent file storage, that must support reading and writing raw byte streams. :return: """ pass @abstractmethod def load_existing_datasets(self) -> Dict[str, Dict[str, Any]]: """ Get the lengths of all datasets backing the registered functions, including aligns. :return: """ pass @abstractmethod def ensure_persistence_location_exists(self): """ Ensure that the place we will be writing to actually exists. If not, create it. """ pass @abstractmethod def get_patch_location_for_function(self, func_hash, extension="") -> str: """ Get the address of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ pass @abstractmethod def write(self, path, data, mode="a") -> None: pass @abstractmethod def read(self, path) -> str: pass @abstractmethod def get_hash_from_path(self, path) -> str: pass @abstractmethod def does_object_exist(self, path) -> bool: pass def create_bloom_filter(self): bloom_filter_persistence = self.get_bloom_filter_persistence() bloom_filter = BloomFilter( bloom_filter_persistence, expected_number_of_elements=EXPECTED_ITEMS, false_positive_probability=FALSE_POSITIVE_RATE) return bloom_filter def load_bloom_filter(self): try: self.bloom_filter.load() except FileNotFoundError: self.debug("No Bloom filter found. Creating a new one.") def write_symbolic_align_call(self, func_hash, example) -> bool: log_file_path = self.get_patch_location_for_function(func_hash, extension=ALIGN_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False def write_embeddable_align_call(self, func_hash, example, positive=True) -> bool: if positive: log_file_path = self.get_patch_location_for_function(func_hash, extension=POSITIVE_FILE_EXTENSION) else: log_file_path = self.get_patch_location_for_function(func_hash, extension=NEGATIVE_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False def log_embeddable_align(self, func_hash, example, positive=True, **kws): """ Log a contrastive function invocation Args: func_hash: A string representation of the function signature and input parameters example: The example object positive: Whether the example is positive or negative **kws: """ successfully_saved, new_datapoint = False, False try: self.ensure_persistence_location_exists() except Exception as e: return successfully_saved, new_datapoint # prepend the function hash to the example bloom_filter_representation = func_hash + '_' + str(example.__dict__) + '\n' # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): return successfully_saved, new_datapoint new_datapoint = True # add to bloom filter self.bloom_filter.add(bloom_filter_representation) self.save_bloom_filter() successfully_saved = self.write_embeddable_align_call(func_hash, example, positive) return successfully_saved, new_datapoint def log_symbolic_align(self, func_hash, *args, **kws): """ Log an align function invocation to the file system :param func_hash: A string representation of the function signature and input parameters :param args: Example objects :param kws: :return: """ successfully_saved, new_datapoint = False, False try: self.ensure_persistence_location_exists() except Exception as e: return successfully_saved, new_datapoint example = args[0] # prepend the function hash to the example bloom_filter_representation = func_hash + '_' + str(example.__dict__) + '\n' # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): return successfully_saved, new_datapoint new_datapoint = True # add to bloom filter self.bloom_filter.add(bloom_filter_representation) self.save_bloom_filter() successfully_saved = self.write_symbolic_align_call(func_hash, example) return successfully_saved, new_datapoint def log_symbolic_patch(self, func_hash, example): """ Log a patched function invocation to the file system :param func_hash: A string representation of the function signature and input parameters :param example: :return: """ if not isinstance(func_hash, str): func_hash = str(func_hash) example_data = str(example.__dict__).encode('utf-8') + b'\n' bloom_filter_representation = func_hash + '_' + example_data.decode('utf-8') # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): self.hit_count += 1 return {} self.miss_count += 1 # Add to Bloom Filter self.bloom_filter.add(bloom_filter_representation) try: self.ensure_persistence_location_exists() except Exception as e: return {} log_file_path = self.get_patch_location_for_function(func_hash, extension=PATCH_FILE_EXTENSION) if log_file_path not in self.buffers: self.buffers[log_file_path] = bytearray() if log_file_path not in self.flush_limit: self.flush_limit[log_file_path] = 1 self.buffers[log_file_path].extend(example_data) self.write_count += 1 if log_file_path not in self.buffer_rolling_size: self.buffer_rolling_size[log_file_path] = 1 else: self.buffer_rolling_size[log_file_path] += 1 if self.write_count >= self.write_limit: written_datapoints = self.flush() self.save_bloom_filter() self.write_count = 0 # Reset counter return written_datapoints if len(self.buffers[log_file_path]) >= min(self.flush_limit[log_file_path], 4096): # Flush after reaching 4KB written_datapoints = {} <fim_suffix> except Exception as e: pass return written_datapoints return {} def save_bloom_filter(self): try: self.bloom_filter.save() except Exception as e: self.warning("Could not save Bloom filter: {}".format(e)) def flush(self): # get log directory written_datapoints = {} for log_file_path, buffer in self.buffers.items(): if len(buffer) > 0: try: self.write(log_file_path, buffer, mode="a+b") written_datapoints[self.get_hash_from_path(log_file_path)] = self.buffer_rolling_size[log_file_path] self.buffer_rolling_size[log_file_path] = 0 buffer.clear() except Exception as e: pass return written_datapoints def load_function_config(self, func_hash): """ Get the config file for the function. Uses the message and log directory Config file has to be in .json """ default = False try: # try to get the config from the disk. If inaccessible, create a new default one self.ensure_persistence_location_exists() log_file_path = self.get_patch_location_for_function(func_hash) config_path = f"{log_file_path}.json" if not self.does_object_exist(config_path): function_config = self.default_function_config default = True func_config_dict = function_config.to_dict() # remove teacher_models from the config func_config_dict.pop("teacher_models") self.write_json(config_path, func_config_dict) else: function_config = FunctionConfig().load_from_dict(self.read_json(config_path)) except Exception as e: function_config = self.default_function_config default = True return function_config, default def update_function_config(self, func_hash, config_to_be_saved): """ Save the config file """ log_file_path = self.get_patch_location_for_function(func_hash) config_path = f"{log_file_path}.json" try: func_config_dict = config_to_be_saved.to_dict() # remove teacher_models from the config func_config_dict.pop("teacher_models") self.write_json(config_path, func_config_dict) except Exception as e: pass def write_json(self, path, data): self.write(path, json.dumps(data)) def read_json(self, path): return json.loads(self.read(path)) <fim_middle>try: self.write(log_file_path, self.buffers[log_file_path], mode="a+b") # update buffers written_datapoints[func_hash] = self.buffer_rolling_size[log_file_path] self.buffers[log_file_path].clear() self.buffer_rolling_size[log_file_path] = 0 self.flush_limit[log_file_path] = 2 * self.flush_limit[log_file_path] self.save_bloom_filter()
try: self.write(log_file_path, self.buffers[log_file_path], mode="a+b") # update buffers written_datapoints[func_hash] = self.buffer_rolling_size[log_file_path] self.buffers[log_file_path].clear() self.buffer_rolling_size[log_file_path] = 0 self.flush_limit[log_file_path] = 2 * self.flush_limit[log_file_path] self.save_bloom_filter()
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/function_modeler.py def _construct_config_from_finetune(self, finetune_hash: str, finetune: FinetuneJob): """ Construct a valid function config from a finetune job Args: finetune_hash: The hash of the function finetune: The finetune job Returns: config: The function config """ model = finetune.fine_tuned_model # get the ending location of finetune hash in the model name finetune_hash_end = model.model_name.find(finetune_hash) + len(finetune_hash) # get the next character after the finetune hash next_char = model.model_name[finetune_hash_end] # get the number of training runs nr_of_training_runs = decode_int(next_char) + 1 nr_of_training_points = (2 ** (nr_of_training_runs - 1)) * 200 config = { "distilled_model": model, "current_model_stats": { "trained_on_datapoints": nr_of_training_points, "running_faults": []}, "last_training_run": {"trained_on_datapoints": nr_of_training_points}, "current_training_run": {}, "teacher_models": [], # default teacher models, will be overwritten if needed "nr_of_training_runs": nr_of_training_runs} config = FunctionConfig().load_from_dict(config) return config # tanuki_py/src/tanuki/utils.py def _deep_tuple(obj): """ Convert a list or dict to a tuple recursively to allow for hashing and becoming a key for mock_behaviors :param obj: :return: """ # transform pydantic objects into dicts if hasattr(obj, "__dict__"): obj = obj.__dict__ if isinstance(obj, list) or isinstance(obj, tuple): return tuple(_deep_tuple(e) for e in obj) elif isinstance(obj, dict): return tuple((k, _deep_tuple(v)) for k, v in sorted(obj.items())) else: return obj # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): <fim_suffix> except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True
try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): <fim_suffix> except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>try: return self.instantiate(data, arg)
try: return self.instantiate(data, arg)
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: <fim_suffix> except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>try: return int(float(data))
try: return int(float(data))
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it <fim_suffix> except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>try: instantiated_item = self.instantiate(item, item_type)
try: instantiated_item = self.instantiate(item, item_type)
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/function_modeler.py def _construct_config_from_finetune(self, finetune_hash: str, finetune: FinetuneJob): """ Construct a valid function config from a finetune job Args: finetune_hash: The hash of the function finetune: The finetune job Returns: config: The function config """ model = finetune.fine_tuned_model # get the ending location of finetune hash in the model name finetune_hash_end = model.model_name.find(finetune_hash) + len(finetune_hash) # get the next character after the finetune hash next_char = model.model_name[finetune_hash_end] # get the number of training runs nr_of_training_runs = decode_int(next_char) + 1 nr_of_training_points = (2 ** (nr_of_training_runs - 1)) * 200 config = { "distilled_model": model, "current_model_stats": { "trained_on_datapoints": nr_of_training_points, "running_faults": []}, "last_training_run": {"trained_on_datapoints": nr_of_training_points}, "current_training_run": {}, "teacher_models": [], # default teacher models, will be overwritten if needed "nr_of_training_runs": nr_of_training_runs} config = FunctionConfig().load_from_dict(config) return config # tanuki_py/src/tanuki/utils.py def _deep_tuple(obj): """ Convert a list or dict to a tuple recursively to allow for hashing and becoming a key for mock_behaviors :param obj: :return: """ # transform pydantic objects into dicts if hasattr(obj, "__dict__"): obj = obj.__dict__ if isinstance(obj, list) or isinstance(obj, tuple): return tuple(_deep_tuple(e) for e in obj) elif isinstance(obj, dict): return tuple((k, _deep_tuple(v)) for k, v in sorted(obj.items())) else: return obj # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime <fim_suffix> except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>try: obj = origin(**value) return True
try: obj = origin(**value) return True
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) <fim_suffix> except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>try: return target_type.model_validate(data)
try: return target_type.model_validate(data)
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation <fim_suffix> except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>try: return target_type(**data)
try: return target_type(**data)
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/trackers/abc_buffered_logger.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/function_modeler.py def _save_contrastive_alignment_pair(self, function_hash: str, args, kwargs, pair, positive=True): """ Save a contrastive pair """ example = FunctionExample(args, kwargs, pair) if function_hash not in self.store_data_blacklist: successfully_saved, new_datapoint = self.data_worker.log_embeddable_align(function_hash, example, positive) else: successfully_saved = False new_datapoint = True if successfully_saved: if positive: if function_hash in self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS]: self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[POSITIVE_EMBEDDABLE_ALIGNMENTS][function_hash] = 1 if not positive: if function_hash in self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS]: self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[NEGATIVE_EMBEDDABLE_ALIGNMENTS][function_hash] = 1 if new_datapoint: # update align buffer if function_hash not in self.embeddable_align_buffer: self.embeddable_align_buffer[function_hash] = bytearray() self.embeddable_align_buffer[function_hash].extend(str(example.__dict__).encode('utf-8') + b'\r\n') # tanuki_py/src/tanuki/function_modeler.py def save_symbolic_align_statements(self, function_hash, args, kwargs, output): """ Save the align statements and add to the align buffer Do not save if the function hash is in the store data blacklist Then just add the datapoints to the align buffer """ # prepare output for saving and later parsing # make a deepcopy of the output to avoid changing the original object copy_output = copy.deepcopy(output) parsed_output = prepare_object_for_saving(copy_output) # prepare args and kwargs for saving copy_args = copy.deepcopy(args) copy_kwargs = copy.deepcopy(kwargs) parsed_args = prepare_object_for_saving(copy_args) parsed_kwargs = prepare_object_for_saving(copy_kwargs) example = FunctionExample(parsed_args, parsed_kwargs, parsed_output) if function_hash not in self.store_data_blacklist: successfully_saved, new_datapoint = self.data_worker.log_symbolic_align(function_hash, example) else: successfully_saved = False new_datapoint = True if successfully_saved: if function_hash in self.dataset_sizes[SYMBOLIC_ALIGNMENTS]: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] += 1 else: self.dataset_sizes[SYMBOLIC_ALIGNMENTS][function_hash] = 1 if new_datapoint: # update align buffer if function_hash not in self.symbolic_align_buffer: self.symbolic_align_buffer[function_hash] = bytearray() self.symbolic_align_buffer[function_hash].extend(str(example.__dict__).encode('utf-8') + b'\r\n') # tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py def get_patch_location_for_function(self, func_hash, extension: Union[ ALIGN_FILE_EXTENSION_TYPE, PATCH_FILE_EXTENSION_TYPE] = "") -> str: """ Get the local location of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ return os.path.join(self.log_directory, func_hash + extension) """ import json from abc import abstractmethod from typing import Dict, Any, Literal from tanuki.bloom_filter import BloomFilter from tanuki.constants import EXPECTED_ITEMS, FALSE_POSITIVE_RATE, ALIGN_FILE_EXTENSION, \ POSITIVE_FILE_EXTENSION, NEGATIVE_FILE_EXTENSION, PATCH_FILE_EXTENSION from tanuki.persistence.filter.bloom_interface import IBloomFilterPersistence from tanuki.trackers.dataset_worker import DatasetWorker from tanuki.models.function_config import FunctionConfig # PATCH_FILE_EXTENSION_TYPE = Literal[".patches"] # ALIGN_FILE_EXTENSION_TYPE = Literal[".alignments"] # POSITIVE_EMBEDDING_FILE_EXTENSION_TYPE = Literal[".positive_embedding"] # NEGATIVE_EMBEDDING_FILE_EXTENSION_TYPE = Literal[".negative_embedding"] # # PATCH_FILE_EXTENSION: PATCH_FILE_EXTENSION_TYPE = ".patches" # ALIGN_FILE_EXTENSION: ALIGN_FILE_EXTENSION_TYPE = ".alignments" # POSITIVE_EMBEDDING_FILE_EXTENSION: POSITIVE_EMBEDDING_FILE_EXTENSION_TYPE = ".contrastive_positives" # NEGATIVE_EMBEDDING_FILE_EXTENSION: NEGATIVE_EMBEDDING_FILE_EXTENSION_TYPE = ".contrastive_negatives" # # EXPECTED_ITEMS = 10000 # FALSE_POSITIVE_RATE = 0.01 # LIB_NAME = "tanuki" # ENVVAR = "TANUKI_LOG_DIR" class ABCBufferedLogger(DatasetWorker): def __init__(self, name, level=15): self.buffers = {} self.mapped_files = {} self.miss_count = 0 self.hit_count = 0 self.flush_limit = {} self.buffer_rolling_size = {} self.write_count = 0 self.write_limit = 1000 # Save the Bloom filter every 1000 writes super().__init__(name, level) self.bloom_filter = self.create_bloom_filter() self.load_bloom_filter() self.default_function_config = FunctionConfig() @abstractmethod def get_bloom_filter_persistence(self) -> IBloomFilterPersistence: """ Get an instance of the bloom filter persistence provider. This exposes some persistent file storage, that must support reading and writing raw byte streams. :return: """ pass @abstractmethod def load_existing_datasets(self) -> Dict[str, Dict[str, Any]]: """ Get the lengths of all datasets backing the registered functions, including aligns. :return: """ pass @abstractmethod def ensure_persistence_location_exists(self): """ Ensure that the place we will be writing to actually exists. If not, create it. """ pass @abstractmethod def get_patch_location_for_function(self, func_hash, extension="") -> str: """ Get the address of the function patch file. :param func_hash: The representation of the function :param extension: Whether this is a patch or an alignment :return: """ pass @abstractmethod def write(self, path, data, mode="a") -> None: pass @abstractmethod def read(self, path) -> str: pass @abstractmethod def get_hash_from_path(self, path) -> str: pass @abstractmethod def does_object_exist(self, path) -> bool: pass def create_bloom_filter(self): bloom_filter_persistence = self.get_bloom_filter_persistence() bloom_filter = BloomFilter( bloom_filter_persistence, expected_number_of_elements=EXPECTED_ITEMS, false_positive_probability=FALSE_POSITIVE_RATE) return bloom_filter def load_bloom_filter(self): try: self.bloom_filter.load() except FileNotFoundError: self.debug("No Bloom filter found. Creating a new one.") def write_symbolic_align_call(self, func_hash, example) -> bool: log_file_path = self.get_patch_location_for_function(func_hash, extension=ALIGN_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False def write_embeddable_align_call(self, func_hash, example, positive=True) -> bool: if positive: log_file_path = self.get_patch_location_for_function(func_hash, extension=POSITIVE_FILE_EXTENSION) else: log_file_path = self.get_patch_location_for_function(func_hash, extension=NEGATIVE_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False def log_embeddable_align(self, func_hash, example, positive=True, **kws): """ Log a contrastive function invocation Args: func_hash: A string representation of the function signature and input parameters example: The example object positive: Whether the example is positive or negative **kws: """ successfully_saved, new_datapoint = False, False try: self.ensure_persistence_location_exists() except Exception as e: return successfully_saved, new_datapoint # prepend the function hash to the example bloom_filter_representation = func_hash + '_' + str(example.__dict__) + '\n' # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): return successfully_saved, new_datapoint new_datapoint = True # add to bloom filter self.bloom_filter.add(bloom_filter_representation) self.save_bloom_filter() successfully_saved = self.write_embeddable_align_call(func_hash, example, positive) return successfully_saved, new_datapoint def log_symbolic_align(self, func_hash, *args, **kws): """ Log an align function invocation to the file system :param func_hash: A string representation of the function signature and input parameters :param args: Example objects :param kws: :return: """ successfully_saved, new_datapoint = False, False try: self.ensure_persistence_location_exists() except Exception as e: return successfully_saved, new_datapoint example = args[0] # prepend the function hash to the example bloom_filter_representation = func_hash + '_' + str(example.__dict__) + '\n' # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): return successfully_saved, new_datapoint new_datapoint = True # add to bloom filter self.bloom_filter.add(bloom_filter_representation) self.save_bloom_filter() successfully_saved = self.write_symbolic_align_call(func_hash, example) return successfully_saved, new_datapoint def log_symbolic_patch(self, func_hash, example): """ Log a patched function invocation to the file system :param func_hash: A string representation of the function signature and input parameters :param example: :return: """ if not isinstance(func_hash, str): func_hash = str(func_hash) example_data = str(example.__dict__).encode('utf-8') + b'\n' bloom_filter_representation = func_hash + '_' + example_data.decode('utf-8') # Check Bloom Filter if self.bloom_filter.lookup(bloom_filter_representation): self.hit_count += 1 return {} self.miss_count += 1 # Add to Bloom Filter self.bloom_filter.add(bloom_filter_representation) <fim_suffix> except Exception as e: return {} log_file_path = self.get_patch_location_for_function(func_hash, extension=PATCH_FILE_EXTENSION) if log_file_path not in self.buffers: self.buffers[log_file_path] = bytearray() if log_file_path not in self.flush_limit: self.flush_limit[log_file_path] = 1 self.buffers[log_file_path].extend(example_data) self.write_count += 1 if log_file_path not in self.buffer_rolling_size: self.buffer_rolling_size[log_file_path] = 1 else: self.buffer_rolling_size[log_file_path] += 1 if self.write_count >= self.write_limit: written_datapoints = self.flush() self.save_bloom_filter() self.write_count = 0 # Reset counter return written_datapoints if len(self.buffers[log_file_path]) >= min(self.flush_limit[log_file_path], 4096): # Flush after reaching 4KB written_datapoints = {} try: self.write(log_file_path, self.buffers[log_file_path], mode="a+b") # update buffers written_datapoints[func_hash] = self.buffer_rolling_size[log_file_path] self.buffers[log_file_path].clear() self.buffer_rolling_size[log_file_path] = 0 self.flush_limit[log_file_path] = 2 * self.flush_limit[log_file_path] self.save_bloom_filter() except Exception as e: pass return written_datapoints return {} def save_bloom_filter(self): try: self.bloom_filter.save() except Exception as e: self.warning("Could not save Bloom filter: {}".format(e)) def flush(self): # get log directory written_datapoints = {} for log_file_path, buffer in self.buffers.items(): if len(buffer) > 0: try: self.write(log_file_path, buffer, mode="a+b") written_datapoints[self.get_hash_from_path(log_file_path)] = self.buffer_rolling_size[log_file_path] self.buffer_rolling_size[log_file_path] = 0 buffer.clear() except Exception as e: pass return written_datapoints def load_function_config(self, func_hash): """ Get the config file for the function. Uses the message and log directory Config file has to be in .json """ default = False try: # try to get the config from the disk. If inaccessible, create a new default one self.ensure_persistence_location_exists() log_file_path = self.get_patch_location_for_function(func_hash) config_path = f"{log_file_path}.json" if not self.does_object_exist(config_path): function_config = self.default_function_config default = True func_config_dict = function_config.to_dict() # remove teacher_models from the config func_config_dict.pop("teacher_models") self.write_json(config_path, func_config_dict) else: function_config = FunctionConfig().load_from_dict(self.read_json(config_path)) except Exception as e: function_config = self.default_function_config default = True return function_config, default def update_function_config(self, func_hash, config_to_be_saved): """ Save the config file """ log_file_path = self.get_patch_location_for_function(func_hash) config_path = f"{log_file_path}.json" try: func_config_dict = config_to_be_saved.to_dict() # remove teacher_models from the config func_config_dict.pop("teacher_models") self.write_json(config_path, func_config_dict) except Exception as e: pass def write_json(self, path, data): self.write(path, json.dumps(data)) def read_json(self, path): return json.loads(self.read(path)) <fim_middle>try: self.ensure_persistence_location_exists()
try: self.ensure_persistence_location_exists()
TRY
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/function_modeler.py def _construct_config_from_finetune(self, finetune_hash: str, finetune: FinetuneJob): """ Construct a valid function config from a finetune job Args: finetune_hash: The hash of the function finetune: The finetune job Returns: config: The function config """ model = finetune.fine_tuned_model # get the ending location of finetune hash in the model name finetune_hash_end = model.model_name.find(finetune_hash) + len(finetune_hash) # get the next character after the finetune hash next_char = model.model_name[finetune_hash_end] # get the number of training runs nr_of_training_runs = decode_int(next_char) + 1 nr_of_training_points = (2 ** (nr_of_training_runs - 1)) * 200 config = { "distilled_model": model, "current_model_stats": { "trained_on_datapoints": nr_of_training_points, "running_faults": []}, "last_training_run": {"trained_on_datapoints": nr_of_training_points}, "current_training_run": {}, "teacher_models": [], # default teacher models, will be overwritten if needed "nr_of_training_runs": nr_of_training_runs} config = FunctionConfig().load_from_dict(config) return config # tanuki_py/src/tanuki/utils.py def _deep_tuple(obj): """ Convert a list or dict to a tuple recursively to allow for hashing and becoming a key for mock_behaviors :param obj: :return: """ # transform pydantic objects into dicts if hasattr(obj, "__dict__"): obj = obj.__dict__ if isinstance(obj, list) or isinstance(obj, tuple): return tuple(_deep_tuple(e) for e in obj) elif isinstance(obj, dict): return tuple((k, _deep_tuple(v)) for k, v in sorted(obj.items())) else: return obj # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True <fim_suffix> # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>except: return False
except: return False
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) <fim_suffix> raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>except: continue
except: continue
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) <fim_suffix> if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>except (ValueError, TypeError): pass
except (ValueError, TypeError): pass
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/function_modeler.py def _construct_config_from_finetune(self, finetune_hash: str, finetune: FinetuneJob): """ Construct a valid function config from a finetune job Args: finetune_hash: The hash of the function finetune: The finetune job Returns: config: The function config """ model = finetune.fine_tuned_model # get the ending location of finetune hash in the model name finetune_hash_end = model.model_name.find(finetune_hash) + len(finetune_hash) # get the next character after the finetune hash next_char = model.model_name[finetune_hash_end] # get the number of training runs nr_of_training_runs = decode_int(next_char) + 1 nr_of_training_points = (2 ** (nr_of_training_runs - 1)) * 200 config = { "distilled_model": model, "current_model_stats": { "trained_on_datapoints": nr_of_training_points, "running_faults": []}, "last_training_run": {"trained_on_datapoints": nr_of_training_points}, "current_training_run": {}, "teacher_models": [], # default teacher models, will be overwritten if needed "nr_of_training_runs": nr_of_training_runs} config = FunctionConfig().load_from_dict(config) return config # tanuki_py/src/tanuki/utils.py def _deep_tuple(obj): """ Convert a list or dict to a tuple recursively to allow for hashing and becoming a key for mock_behaviors :param obj: :return: """ # transform pydantic objects into dicts if hasattr(obj, "__dict__"): obj = obj.__dict__ if isinstance(obj, list) or isinstance(obj, tuple): return tuple(_deep_tuple(e) for e in obj) elif isinstance(obj, dict): return tuple((k, _deep_tuple(v)) for k, v in sorted(obj.items())) else: return obj # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True <fim_suffix> # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>except Exception as e: print(e) return False
except Exception as e: print(e) return False
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) <fim_suffix> raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>except (ValueError, TypeError): pass
except (ValueError, TypeError): pass
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) <fim_suffix> # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data)
except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data)
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/abc_buffered_logger.py def write_symbolic_align_call(self, func_hash, example) -> bool: log_file_path = self.get_patch_location_for_function(func_hash, extension=ALIGN_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False # tanuki_py/src/tanuki/trackers/abc_buffered_logger.py def write_embeddable_align_call(self, func_hash, example, positive=True) -> bool: if positive: log_file_path = self.get_patch_location_for_function(func_hash, extension=POSITIVE_FILE_EXTENSION) else: log_file_path = self.get_patch_location_for_function(func_hash, extension=NEGATIVE_FILE_EXTENSION) try: # Now, write to the file dumpable_object = str(example.__dict__) self.write(log_file_path, dumpable_object + "\n", mode="a") return True except Exception as e: return False # tanuki_py/src/tanuki/trackers/filesystem_buffered_logger.py def load_existing_datasets(self) -> Dict[str, Dict[str, str]]: log_directory = self.log_directory dataset_lengths = { SYMBOLIC_ALIGNMENTS: {}, POSITIVE_EMBEDDABLE_ALIGNMENTS: {}, NEGATIVE_EMBEDDABLE_ALIGNMENTS: {}, PATCHES: {}, } try: if not os.path.exists(log_directory): os.makedirs(log_directory) # get all the files in the log directory files = os.listdir(log_directory) # discard all .json files files = [x for x in files if ".json" not in x] except Exception as e: return dataset_lengths for file in files: if ALIGN_FILE_EXTENSION not in file \ and PATCH_FILE_EXTENSION not in file \ and POSITIVE_FILE_EXTENSION not in file \ and NEGATIVE_FILE_EXTENSION not in file: continue elif ALIGN_FILE_EXTENSION in file: dataset_type = SYMBOLIC_ALIGNMENTS elif POSITIVE_FILE_EXTENSION in file: dataset_type = POSITIVE_EMBEDDABLE_ALIGNMENTS elif NEGATIVE_FILE_EXTENSION in file: dataset_type = NEGATIVE_EMBEDDABLE_ALIGNMENTS else: dataset_type = PATCHES func_hash = file.replace(ALIGN_FILE_EXTENSION, "").replace(PATCH_FILE_EXTENSION, "") dataset_lengths[dataset_type][func_hash] = -1 return dataset_lengths """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) <fim_suffix> return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>except json.JSONDecodeError: return False
except json.JSONDecodeError: return False
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/language_models/openai_api.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/language_models/anyscale_api.py def generate(self, model, system_message, prompt, **kwargs): """ The main generation function, given the args, kwargs, function_modeler, function description and model type, generate a response Args model (Anyscaleconfig): The model to use for generation. system_message (str): The system message to use for generation. prompt (str): The prompt to use for generation. kwargs (dict): Additional generation parameters. """ self.check_api_key() temperature = kwargs.get("temperature", 0.1) top_p = kwargs.get("top_p", 1) frequency_penalty = kwargs.get("frequency_penalty", 0) presence_penalty = kwargs.get("presence_penalty", 0) max_new_tokens = kwargs.get("max_new_tokens") # check if there are any generation parameters that are not supported unsupported_params = [param for param in kwargs.keys() if param not in LLM_GENERATION_PARAMETERS] if len(unsupported_params) > 0: # log warning logging.warning(f"Unused generation parameters sent as input: {unsupported_params}."\ f"For Anyscale, only the following parameters are supported: {LLM_GENERATION_PARAMETERS}") params = { "model": model.model_name, "temperature": temperature, "max_tokens": max_new_tokens, "top_p": top_p, "frequency_penalty": frequency_penalty, "presence_penalty": presence_penalty, } if model.parsing_helper_tokens["start_token"]: prompt += model.parsing_helper_tokens["start_token"] messages = [ { "role": "system", "content": system_message }, { "role": "user", "content": prompt } ] params["messages"] = messages counter = 0 choice = None # initiate response so exception logic doesnt error out when checking for error in response response = {} while counter <= 5: try: anyscale_headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } response = requests.post( f"{ANYSCALE_URL}/chat/completions", headers=anyscale_headers, json=params, timeout=50 ) response = response.json() choice = response["choices"][0]["message"]["content"].strip("'") break except Exception as e: if ("error" in response and "code" in response["error"] and response["error"]["code"] == 'invalid_api_key'): raise Exception(f"The supplied Anyscale API key {self.api_key} is invalid") if counter == 5: raise Exception(f"Anyscale API failed to generate a response: {e}") counter += 1 time.sleep(2 ** counter) continue if not choice: raise Exception("Anyscale API failed to generate a response") if model.parsing_helper_tokens["end_token"]: # remove the end token from the choice choice = choice.split(model.parsing_helper_tokens["end_token"])[0] # check if starting token is in choice if model.parsing_helper_tokens["start_token"] in choice: # remove the starting token from the choice choice = choice.split(model.parsing_helper_tokens["start_token"])[-1] return choice.strip() # tanuki_py/src/tanuki/language_models/togetherai_api.py def generate(self, model, system_message, prompt, **kwargs): """ The main generation function, given the args, kwargs, function_modeler, function description and model type, generate a response Args model (OpenAIConfig): The model to use for generation. system_message (str): The system message to use for generation. prompt (str): The prompt to use for generation. kwargs (dict): Additional generation parameters. """ self.check_api_key() if model.model_name not in self.model_configs: self.model_configs[model.model_name] = together.Models.info(model.model_name)['config'] temperature = kwargs.get("temperature", 0.1) top_p = kwargs.get("top_p", 1) frequency_penalty = kwargs.get("frequency_penalty", 0) presence_penalty = kwargs.get("presence_penalty", 0) max_new_tokens = kwargs.get("max_new_tokens") # check if there are any generation parameters that are not supported unsupported_params = [param for param in kwargs.keys() if param not in LLM_GENERATION_PARAMETERS] if len(unsupported_params) > 0: # log warning logging.warning(f"Unused generation parameters sent as input: {unsupported_params}."\ f"For OpenAI, only the following parameters are supported: {LLM_GENERATION_PARAMETERS}") params = { "model": model.model_name, "temperature": temperature, "max_tokens": max_new_tokens, "top_p": top_p, "frequency_penalty": frequency_penalty, "presence_penalty": presence_penalty } if "stop" in self.model_configs[model.model_name]: params["stop"] = list(self.model_configs[model.model_name]["stop"]) if model.parsing_helper_tokens["end_token"]: params["stop"] = model.parsing_helper_tokens["end_token"] chat_prompt = model.chat_template if chat_prompt is None: try: prompt_format = str(self.model_configs[model.model_name]['prompt_format']) final_prompt = prompt_format.format(system_message=system_message, prompt=prompt) except: logging.warning("Chat prompt is not defined for this model. "\ "Please define it in the model config. Using default chat prompt") chat_prompt = "[INST]{system_message}[/INST]\n{user_prompt}" final_prompt = chat_prompt.format(system_message=system_message, user_prompt=prompt) else: final_prompt = chat_prompt.format(system_message=system_message, user_prompt=prompt) if model.parsing_helper_tokens["start_token"]: final_prompt += model.parsing_helper_tokens["start_token"] params["prompt"] = final_prompt counter = 0 choice = None # initiate response so exception logic doesnt error out when checking for error in response response = {} while counter <= 5: try: openai_headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } response = requests.post( TOGETHER_AI_URL, headers=openai_headers, json=params, timeout=50 ) response = response.json() choice = response["output"]["choices"][0]["text"].strip("'") break except Exception as e: if ("error" in response and "code" in response["error"] and response["error"]["code"] == 'invalid_api_key'): raise Exception(f"The supplied Together AI API key {self.api_key} is invalid") if counter == 5: raise Exception(f"Together AI API failed to generate a response: {e}") counter += 1 time.sleep(2 ** counter) continue if not choice: raise Exception("TogetherAI API failed to generate a response") if model.parsing_helper_tokens["end_token"]: # remove the end token from the choice choice = choice.split(model.parsing_helper_tokens["end_token"])[0] # check if starting token is in choice if model.parsing_helper_tokens["start_token"] in choice: # remove the starting token from the choice choice = choice.split(model.parsing_helper_tokens["start_token"])[-1] return choice.strip() # tanuki_py/src/tanuki/language_models/llama_bedrock_api.py def generate(self, model: BaseModelConfig, system_message: str, prompt: str, **kwargs): """ Generate a response using the Bedrock API for the specified LLama model. Args: model: The model to use for generation. system_message: The system message to use for generation. prompt: The prompt to use for generation. kwargs: Additional generation parameters. Returns: The generated response. """ # this needs to be done generally better, introduce the LLM_gen params class # so you can config it at the start temperature = kwargs.get("temperature", 0.1) top_p = kwargs.get("top_p", 1) max_tokens_to_sample = kwargs.get("max_new_tokens") # check if there are any generation parameters that are not supported unsupported_params = [param for param in kwargs.keys() if param not in LLM_GENERATION_PARAMETERS] if len(unsupported_params) > 0: # log warning logging.warning(f"Unused generation parameters sent as input: {unsupported_params}."\ f"For Llama Bedrock, only the following parameters are supported: {LLM_GENERATION_PARAMETERS}") chat_prompt = model.chat_template if chat_prompt is None: raise Exception("Chat prompt is not defined for this model"\ "Please define it in the model config") final_prompt = chat_prompt.format(system_message=system_message, user_prompt=prompt) if model.parsing_helper_tokens["start_token"]: final_prompt += model.parsing_helper_tokens["start_token"] body = json.dumps({ "prompt": final_prompt, "max_gen_len": max_tokens_to_sample, "temperature": temperature, "top_p": top_p, }) response_body = self.send_api_request(model, body) choice = response_body.get("generation") if model.parsing_helper_tokens["end_token"]: # remove the end token from the choice choice = choice.split(model.parsing_helper_tokens["end_token"])[0] # check if starting token is in choice if model.parsing_helper_tokens["start_token"] in choice: # remove the starting token from the choice choice = choice.split(model.parsing_helper_tokens["start_token"])[-1] return choice.strip() """ from typing import List import logging import time # import abstract base class from openai import OpenAI from openai.types import CreateEmbeddingResponse from openai.types.fine_tuning import FineTuningJob from tanuki.language_models.llm_finetune_api_abc import LLM_Finetune_API from tanuki.models.embedding import Embedding from tanuki.language_models.embedding_api_abc import Embedding_API from tanuki.language_models.llm_api_abc import LLM_API import os from tanuki.constants import DEFAULT_DISTILLED_MODEL_NAME from tanuki.language_models.llm_configs.openai_config import OpenAIConfig from tanuki.models.finetune_job import FinetuneJob import copy OPENAI_URL = "https://api.openai.com/v1/chat/completions" import requests LLM_GENERATION_PARAMETERS = ["temperature", "top_p", "max_new_tokens", "frequency_penalty", "presence_penalty"] class OpenAI_API(LLM_API, Embedding_API, LLM_Finetune_API): def __init__(self) -> None: # initialise the abstract base class super().__init__() self.api_key = os.environ.get("OPENAI_API_KEY") self.client = None def embed(self, texts: List[str], model: OpenAIConfig, **kwargs) -> List[Embedding]: """ Generate embeddings for the provided texts using the specified OpenAI model. Lightweight wrapper over the OpenAI client. :param texts: A list of texts to embed. :param model: The model to use for embeddings. :return: A list of embeddings. """ self.check_api_key() try: response: CreateEmbeddingResponse = self.client.embeddings.create( input=texts, model=model.model_name, **kwargs ) assert response.object == "list" assert len(response.data) == len(texts) embeddings = [] for embedding_response in response.data: assert embedding_response.object == "embedding" embeddings.append(Embedding(embedding_response.embedding)) return embeddings except Exception as e: print(f"An error occurred: {e}") return None def generate(self, model, system_message, prompt, **kwargs): """ The main generation function, given the args, kwargs, function_modeler, function description and model type, generate a response Args model (OpenAIConfig): The model to use for generation. system_message (str): The system message to use for generation. prompt (str): The prompt to use for generation. kwargs (dict): Additional generation parameters. """ self.check_api_key() temperature = kwargs.get("temperature", 0.1) top_p = kwargs.get("top_p", 1) frequency_penalty = kwargs.get("frequency_penalty", 0) presence_penalty = kwargs.get("presence_penalty", 0) max_new_tokens = kwargs.get("max_new_tokens") # check if there are any generation parameters that are not supported unsupported_params = [param for param in kwargs.keys() if param not in LLM_GENERATION_PARAMETERS] if len(unsupported_params) > 0: # log warning logging.warning(f"Unused generation parameters sent as input: {unsupported_params}."\ f"For OpenAI, only the following parameters are supported: {LLM_GENERATION_PARAMETERS}") params = { "model": model.model_name, "temperature": temperature, "max_tokens": max_new_tokens, "top_p": top_p, "frequency_penalty": frequency_penalty, "presence_penalty": presence_penalty, } if model.parsing_helper_tokens["start_token"]: prompt += model.parsing_helper_tokens["start_token"] messages = [ { "role": "system", "content": system_message }, { "role": "user", "content": prompt } ] params["messages"] = messages counter = 0 choice = None # initiate response so exception logic doesnt error out when checking for error in response response = {} while counter <= 5: try: openai_headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } response = requests.post( OPENAI_URL, headers=openai_headers, json=params, timeout=50 ) response = response.json() choice = response["choices"][0]["message"]["content"].strip("'") break <fim_suffix> if not choice: raise Exception("OpenAI API failed to generate a response") if model.parsing_helper_tokens["end_token"]: # remove the end token from the choice choice = choice.split(model.parsing_helper_tokens["end_token"])[0] # check if starting token is in choice if model.parsing_helper_tokens["start_token"] in choice: # remove the starting token from the choice choice = choice.split(model.parsing_helper_tokens["start_token"])[-1] return choice def list_finetuned(self, model_config, limit=100, **kwargs) -> List[FinetuneJob]: self.check_api_key() response = self.client.fine_tuning.jobs.list(limit=limit) jobs = [] for job in response.data: finetune_job = self.create_finetune_job(job, model_config) jobs.append(finetune_job) return jobs def get_finetuned(self, job_id, model_config: OpenAIConfig) -> FinetuneJob: self.check_api_key() response = self.client.fine_tuning.jobs.retrieve(job_id) finetune_job = self.create_finetune_job(response, model_config= model_config) return finetune_job def finetune(self, file, suffix, model_config, **kwargs) -> FinetuneJob: self.check_api_key() # Use the stream as a file response = self.client.files.create(file=file, purpose='fine-tune') training_file_id = response.id if not model_config.base_model_for_sft: model_config.base_model_for_sft = DEFAULT_DISTILLED_MODEL_NAME # submit the finetuning job finetuning_response: FineTuningJob = self.client.fine_tuning.jobs.create(training_file=training_file_id, model=model_config.base_model_for_sft, suffix=suffix) finetune_job = self.create_finetune_job(finetuning_response, model_config) return finetune_job def create_finetune_job(self, response: FineTuningJob, model_config: OpenAIConfig) -> FinetuneJob: finetuned_model_config = copy.deepcopy(model_config) finetuned_model_config.model_name = response.fine_tuned_model finetune_job = FinetuneJob(response.id, response.status, finetuned_model_config) return finetune_job def check_api_key(self): # check if api key is not none if not self.api_key: # try to get the api key from the environment, maybe it has been set later self.api_key = os.getenv("OPENAI_API_KEY") if not self.api_key: raise ValueError("OpenAI API key is not set") if not self.client: self.client = OpenAI(api_key=self.api_key) <fim_middle>except Exception as e: if ("error" in response and "code" in response["error"] and response["error"]["code"] == 'invalid_api_key'): raise Exception(f"The supplied OpenAI API key {self.api_key} is invalid") if counter == 5: raise Exception(f"OpenAI API failed to generate a response: {e}") counter += 1 time.sleep(2 ** counter) continue
except Exception as e: if ("error" in response and "code" in response["error"] and response["error"]["code"] == 'invalid_api_key'): raise Exception(f"The supplied OpenAI API key {self.api_key} is invalid") if counter == 5: raise Exception(f"OpenAI API failed to generate a response: {e}") counter += 1 time.sleep(2 ** counter) continue
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) <fim_suffix> safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.")
except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.")
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) <fim_suffix> # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.")
except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.")
CATCH
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/validator.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/trackers/dataset_worker.py def log_symbolic_patch(self, func_hash, example): """ Save the example to the patch dataset for the function hash Output must be a dictionary with the following structure: { "func_hash": int } Where func_hash is the hash of the function and int is the number of datapoints written to the dataset for this function Args: func_hash (str): the function hash example (FunctionExample): the example to be saved Returns: dict: dictionary with the structure above """ # tanuki_py/src/tanuki/__init__.py def get_instance_from_args(args): # Check if there are any arguments if args: first_arg = args[0] # Check if the first argument is named "self" or "cls" (or any other specific name) if isinstance(first_arg, ast.Name) and first_arg.id in ("self", "cls"): instance = first_arg args = args[1:] # Remove the first argument else: instance = None else: instance = None return instance, args # tanuki_py/src/tanuki/trackers/dataset_worker.py def load_function_config(self, func_hash): """ Get the config file for the function. Function config must be a dictionary and have the following structure: distilled_model (str): distilled_model_name ("" if no distilled model), current_model_stats (dict): dict for current model stats example: { "trained_on_datapoints" (int): 12 (number of datapoints trained on, 0 if not trained yet), "running_faults" (list): [0, 0, 1] (list of 0s and 1s, where 0 is no fault and 1 is fault) } last_training_run (dict): dict for the last training run example: { "job_id" (str): job_id for last training run, "trained_on_datapoints" (int): dataset_size that was trained on, "last_checked" (datetime in "%Y-%m-%d %H:%M:%S"): When the last check was made for status of training run) } Example when no training has been done yet: { "trained_on_datapoints": 0 } current_training_run (dict): Same structure as last_training_run, only is non-empty if currently a model is training Example when no training has been done yet: {} teacher_models (list of string): list of teacher models example: ["gpt-4", "gpt-4-32k"] nr_of_training_runs (int): number of training runs that have been done in total } The config file must be returned as a dictionary Args: func_hash (str): the function hash Returns: dict: the function config """ pass """ import abc from collections import defaultdict import collections import typing from collections import deque import dataclasses import inspect import json from dataclasses import is_dataclass from typing import get_origin, get_args, Any, Mapping, MutableMapping, OrderedDict, Literal, Union, get_type_hints, \ Type, Sequence, Tuple, Optional from pydantic import BaseModel, create_model import datetime class Validator: def __init__(self): # Extract types from collections and collections.abc collection_types = {cls for name, cls in collections.__dict__.items() if isinstance(cls, type)} abc_collection_types = {cls for name, cls in collections.abc.__dict__.items() if isinstance(cls, type)} # Filter out types that have dictionary-like methods self.dict_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'keys') and hasattr(cls, 'items') } self.list_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'append') and hasattr(cls, 'pop') } self.set_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, 'add') and hasattr(cls, 'discard') } # Add the general Sequence to list-like types # if python version is 3.9 or above, use collections.abc.Sequence if hasattr(collections.abc, 'Sequence'): self.list_like_types.add(collections.abc.Sequence) else: self.list_like_types.add(collections.Sequence) self.list_like_types.add(typing.List) # Add the general Mapping to dict-like types if hasattr(collections.abc, 'Mapping'): self.dict_like_types.add(collections.abc.Mapping) else: self.dict_like_types.add(collections.Mapping) self.dict_like_types.add(typing.Dict) # Add the general Set to set-like types if hasattr(collections.abc, 'Set'): self.set_like_types.add(collections.abc.Set) else: self.set_like_types.add(collections.Set) self.set_like_types.add(typing.Set) # Add the general Tuple to tuple-like types self.tuple_like_types = { cls for cls in collection_types.union(abc_collection_types) if hasattr(cls, '__getitem__') and hasattr(cls, '__len__') } self.tuple_like_types.add(typing.Tuple) def is_base_type(self, _type: Any) -> bool: """Determine if a type is a base type.""" return _type in {int, float, str, bool, None} def validate_base_type(self, value: Any, typ: Any) -> bool: """Validate base types.""" if typ is None: return value is None return isinstance(value, typ) def validate_output(self, output: str, type_definition: Any) -> bool: try: deserialized_output = json.loads(output) except json.JSONDecodeError: return False return self.check_type(deserialized_output, type_definition) def check_type(self, value: Any, type_definition: Any) -> bool: """ Validate a value against a type definition. Args: value: Any object or primitive value type_definition: The type definition to validate against Returns: Whether the value is valid for the type definition """ if type_definition is Any: return True if self.is_base_type(type_definition): return self.validate_base_type(value, type_definition) origin = get_origin(type_definition) or type_definition args = get_args(type_definition) # Handle base types if self.is_base_type(origin): return self.validate_base_type(value, origin) if origin == Literal: return value in args if origin == Union: return any(self.check_type(value, union_type) for union_type in args) # Handle tuples if origin == tuple: if not isinstance(value, tuple): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle lists if origin == list: if not isinstance(value, list): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle more complex types that are collections and list-like if origin is list or issubclass(origin, tuple(self.list_like_types)): if not any(isinstance(value, t) for t in self.list_like_types): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle sets if origin == set: if not isinstance(value, set): return False item_type = args[0] if args else Any return all(self.check_type(v, item_type) for v in value) # Handle datetime if origin in [datetime.datetime, datetime.date, datetime.time]: # try to instantiate datetime try: obj = origin(**value) return True except: return False # Handle dictionaries if origin is dict or issubclass(origin, tuple(self.dict_like_types)): if not isinstance(value, (dict, Mapping)):#, MutableMapping, OrderedDict)): return False if args: if len(args) == 1: key_type = args[0] value_type = Any # General assumption; specific dict-like types might differ elif len(args) == 2: key_type, value_type = args else: key_type = value_type = Any else: key_type = value_type = Any return all( self.check_type(k, key_type) and self.check_type(v, value_type) for k, v in value.items() ) # Handle pydantic models if self.is_pydantic_model(origin): try: #temp_model = create_model('TempModel', **value) if isinstance(value, origin): return True #return isinstance(temp_model, origin) # check if value is dict if not isinstance(value, dict): return False # get all required init arguments for origin # required arguments are the ones withouyt default values required_fields = [field for field, field_type in origin.__annotations__.items() if not (typing.get_origin(field_type) is Union and type(None) in typing.get_args(field_type))] # check that all required arguments are in value and do type checking for arg in required_fields: # check if it is in value if arg not in value: return False # get the type of the argument arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False # check that all arguments in value are correct type # this is additional check, because the above check only checks required arguments for arg, obj in value.items(): if arg in required_fields: continue arg_type = origin.__annotations__[arg] if not self.check_type(value[arg], arg_type): return False #origin.parse_obj(value) return True except Exception as e: print(e) return False # Handle dataclasses if self.is_dataclass_instance(origin): try: # for field in dataclasses.fields(origin): # field_name = field.name # field_type = field.type # if field_name not in value or not self.check_type(value[field_name], field_type): # return False # return True obj = origin(**value) return dataclasses.asdict(obj) == value except: return False # Handle dataclasses and arbitrary class types if inspect.isclass(origin) and not self.is_base_type(origin): # Ensure the value is an instance of the class if not isinstance(value, origin): return False # Gather type hints from the class and its bases type_hints = {} for cls in reversed(origin.__mro__): type_hints.update(get_type_hints(cls)) # Validate each attribute of the class for attr, attr_type in type_hints.items(): attr_value = getattr(value, attr, None) if not self.check_type(attr_value, attr_type): return False return True return False @staticmethod def is_pydantic_model(cls): return hasattr(cls, 'parse_obj') @staticmethod def is_dataclass_instance(cls): return hasattr(cls, '__annotations__') and hasattr(cls, '__dataclass_fields__') @staticmethod def _is_subclass_of_generic(cls: Type, generic: Type) -> bool: """Determine if the class is a subclass of a generic type.""" try: return issubclass(cls, generic) and cls is not generic except TypeError: if not hasattr(cls, '__origin__'): return False return cls.__origin__ is generic @staticmethod def _is_generic(cls: Type) -> bool: """Check if the provided type is a generic.""" return hasattr(cls, "__origin__") def _get_recursive_args(self, target_type: Type) -> Tuple[Type, ...]: """ Recursively check the base classes (i.e., the superclass chain) of the target type until we find one that retains the type arguments. :return: Type chain """ if get_args(target_type): return get_args(target_type) for base in target_type.__bases__: args = self._get_recursive_args(base) if args: return args return () def _find_generic_base_and_args(self, target_type: Type) -> Tuple[Type, Tuple[Type, ...]]: """ Navigate up the MRO to find the first generic base and its arguments. """ # First, check if target_type is a type annotation. # If so, directly return its origin and arguments. origin = get_origin(target_type) args = get_args(target_type) if origin and args: return origin, args # If target_type is a real class, then navigate its MRO. if hasattr(target_type, '__mro__'): if hasattr(target_type, '__orig_bases__'): for base in target_type.__orig_bases__: if get_args(base): return base, get_args(base) for base in target_type.__mro__: if get_args(base): return base, get_args(base) return None, () def _is_list_like(self, target_type: Type) -> bool: """Determine if the target type is list-like.""" if target_type in {list, typing.List}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {list, typing.List}: return True return False def _is_tuple_like(self, target_type: Type) -> bool: """Determine if the target type is tuple-like.""" if target_type in {tuple, typing.Tuple}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {tuple, typing.Tuple}: return True return False def _is_dict_like(self, target_type: Type) -> bool: """Determine if the target type is dict-like.""" if target_type in {dict, typing.Dict}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {dict, typing.Dict}: return True return False def _is_set_like(self, target_type: Type) -> bool: """Determine if the target type is set-like.""" if target_type in {set, typing.Set}: return True if hasattr(target_type, "__origin__") and target_type.__origin__ in {set, typing.Set}: return True return False def instantiate(self, data: Any, target_type: Type) -> Any: """ Attempts to convert a JSON-compatible data structure into an instance of the specified type. Args: data: JSON-compatible data structure to instantiate the target type. target_type: The type to instantiate from the given data. Returns: An instance of the target type initialized with the data. """ # Handle None type if data is None: return None origin = get_origin(target_type) or target_type # If the target type is a built-in, attempt to instantiate and return if self.is_base_type(target_type) or target_type is Any: # If the parsed data is a string and target type is str, return it directly if isinstance(data, str) and target_type is str: return data # If any, return the data directly if target_type is Any: return data try: return target_type(data) except (ValueError, TypeError): # Handle the special case where the string represents a float but we want an integer if target_type is int: try: return int(float(data)) except (ValueError, TypeError): pass if target_type is float: try: return int(float(data)) except (ValueError, TypeError): pass raise TypeError(f"Failed to instantiate {target_type} from provided data.") # special handling for datetime if origin == datetime.datetime: # try to instantiate datetime try: return datetime.datetime(**data) except: raise TypeError(f"Failed to instantiate {target_type} from provided data.") # check if origin is Union, if so, instantiate the first type that works if origin == Union: <fim_suffix> raise TypeError(f"Failed to instantiate {target_type} from provided data.") # If the data is a dictionary and the target is a custom class that can be instantiated from a dictionary. if isinstance(data, dict): if inspect.isclass(target_type) and not self.is_base_type(target_type): # Special handling for dataclasses if is_dataclass(target_type): fields = [f.name for f in dataclasses.fields(target_type)] type_hints = get_type_hints(target_type) filtered_data = {k: self.instantiate(v, type_hints.get(k, Any)) for k, v in data.items() if k in fields} return target_type(**filtered_data) # Special handling for Pydantic models if issubclass(target_type, BaseModel): # instantiate the sub attributes for attr, attr_type in target_type.__annotations__.items(): if attr in data: data[attr] = self.instantiate(data[attr], attr_type) try: return target_type.model_validate(data) except AttributeError as e: # backwards compatibility with pydantic < 2 return target_type.parse_obj(data) # For general classes, attempt instantiation try: return target_type(**data) except TypeError: raise TypeError(f"Failed to instantiate {target_type.__name__} from dictionary.") # Handle dictionary-like types # Check if the target type is or inherits from defaultdict if origin is defaultdict or (isinstance(origin, type) and issubclass(origin, defaultdict)): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # For defaultdict, you'll need a default factory. Here, I'm using `int` for simplicity, # but you might want to adapt this based on your needs. return defaultdict(int, instantiated_items) # Handle set-like dict types like OrderedDict # the first check needs to be done to ensure origin has the __mro__ attribute elif inspect.isclass(origin)and any(issubclass(base, dict) for base in origin.__mro__): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_items = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} return origin(instantiated_items) # Handle other dictionary-like types elif origin is dict or self._is_subclass_of_generic(origin, dict): key_type, value_type = get_args(target_type) if get_args(target_type) else (Any, Any) instantiated_dict = {self.instantiate(k, key_type): self.instantiate(v, value_type) for k, v in data.items()} # If the target_type is a subclass of dict, return an instance of target_type if self._is_subclass_of_generic(target_type, dict) and not self._is_generic(target_type): return target_type(instantiated_dict) else: return dict(instantiated_dict) # Tuples aren't supported in JSONable types, so we look for lists instead if isinstance(data, list): try: # If the origin or target type is a list-like type, or if it implements a list-like collections type # e.g Sequence[int] if origin is list or self._is_subclass_of_generic(origin, list): base, item_types = self._find_generic_base_and_args(target_type) item_type = item_types[0] if item_types else Any instantiated_items = [] for item in data: # For each item, validate and instantiate it try: instantiated_item = self.instantiate(item, item_type) except ValueError: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") safe = self.check_type(instantiated_item, item_type) if not safe: raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") instantiated_items.append(instantiated_item) # If target_type is a subclass of list, return an instance of target_type if self._is_subclass_of_generic(target_type, list) and not self._is_generic(target_type): return target_type(instantiated_items) return instantiated_items # Handle tuples if self._is_tuple_like(target_type) or (isinstance(origin, type) and issubclass(origin, tuple)): base, item_types = self._find_generic_base_and_args(target_type) instantiated_items = [] # If there are no subscripted types, assume Any if not item_types: item_types = (Any,) * len(data) for i, item in enumerate(data): # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_types[i]) instantiated_items.append(instantiated_item) # If the instantiated item does not match the expected type, raise an exception _type = item_types[i] if not isinstance(instantiated_item, _type): raise TypeError( f"Item {i} of type {type(item).__name__} does not match expected type {item_types[i].__name__}.") # Convert the list of instantiated items to a tuple instantiated_tuple = tuple(instantiated_items) # If target_type is a subclass of tuple, return an instance of target_type if self._is_subclass_of_generic(target_type, tuple): return target_type(instantiated_tuple) return instantiated_tuple # Handle sets if self._is_set_like(target_type) or (isinstance(origin, type) and issubclass(origin, set)): base, item_type = self._find_generic_base_and_args(target_type) if not item_type: item_type = Any instantiated_items = set() for item in data: # For each item, validate and instantiate it instantiated_item = self.instantiate(item, item_type[0]) instantiated_items.add(instantiated_item) # If the instantiated item does not match the expected type, raise an exception if not isinstance(instantiated_item, item_type[0]): raise TypeError( f"Item of type {type(item).__name__} does not match expected type {item_type[0].__name__}.") # If target_type is a subclass of set, return an instance of target_type if self._is_subclass_of_generic(target_type, set): return target_type(instantiated_items) return instantiated_items # Handle deques if origin is deque or (isinstance(origin, type) and issubclass(origin, set)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return deque(self.instantiate(item, item_type) for item in data) if origin is frozenset or (isinstance(origin, type) and issubclass(origin, frozenset)): item_type = get_args(target_type)[0] if get_args(target_type) else Any return frozenset(self.instantiate(item, item_type) for item in data) except TypeError as e: print(e) raise TypeError(f"Failed to instantiate {target_type} from list. {e}") # If none of the above, return the data as-is return data <fim_middle>for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue
for arg in get_args(target_type): try: return self.instantiate(data, arg) except: continue
FOR
prefix_suffix_full_complete_current_block_with_repo_rag_oracle
<filename>tanuki_py/src/tanuki/bloom_filter.py<fim_prefix>""" Here are some snippets of code retrieved from other files in this repository that may help you: # tanuki_py/src/tanuki/function_modeler.py def _configure_student_model(self, student_model: str, func_hash: str, task_type: str): """ Add custom student models to the function config First this is added to the teacher_models_override dict, which is used to override the teacher models Args: teacher_models: A list of teacher models to use for the function hash func_hash: The function hash to add the teacher models to """ if task_type == FunctionType.EMBEDDABLE: logging.info("Embeddable function type does not support student models") preconfigured_models = DEFAULT_STUDENT_MODELS if student_model not in preconfigured_models: raise Exception(f"Student model {student_model} is currently not supported.") model_config = preconfigured_models[student_model] self.student_model_override[func_hash] = model_config # tanuki_py/src/tanuki/function_modeler.py def postprocess_symbolic_datapoint(self, func_hash, function_description, example, repaired=True): """ Postprocess the datapoint First check if the datapoint should be added to the training data Add the datapoint if it should be added Then check if the function should be finetuned and execute finetuning if it should """ try: if func_hash not in self.store_data_blacklist: added = self.save_symbolic_datapoint(func_hash, example) if added: self._update_datapoint_config(repaired, func_hash) except Exception as e: print(e) print("Could not add datapoint to training data") if func_hash not in self.execute_finetune_blacklist: self.check_for_finetuning(function_description, func_hash) # tanuki_py/src/tanuki/language_models/language_model_manager.py def __call__(self, args, function_description: FunctionDescription, kwargs, validator: Validator, generation_parameters: dict) -> Any: # add the generation length if not there if "max_new_tokens" not in generation_parameters: generation_parameters["max_new_tokens"] = self.default_generation_length output = self.generate(args, kwargs, function_description, generation_parameters) # start parsing the object, very hacky way for the time being choice_parsed = self._parse_choice(output) valid = validator.check_type(choice_parsed, function_description.output_type_hint) if not valid: choice, choice_parsed, successful_repair = self.repair_output(args, kwargs, function_description, output.generated_response, validator, generation_parameters) if not successful_repair: raise TypeError( f"Output type was not valid. Expected an object of type {function_description.output_type_hint}, got '{output.generated_response}'") output.generated_response = choice output.distilled_model = False datapoint = FunctionExample(args, kwargs, output.generated_response) if output.suitable_for_finetuning and not output.distilled_model: self.function_modeler.postprocess_symbolic_datapoint(function_description.__hash__(), function_description, datapoint, repaired=not valid) instantiated = validator.instantiate(choice_parsed, function_description.output_type_hint) return instantiated """ import hashlib import logging import math import numpy as np from bitarray import bitarray from tanuki.persistence.filter.bloom_interface import IBloomFilterPersistence class BloomFilter: def __init__(self, persistence: IBloomFilterPersistence, size=None, hash_count=None, expected_number_of_elements=None, false_positive_probability=None): if not persistence: raise ValueError("Persistence cannot be None, it must be an instance of IBloomFilterPersistence") if not size and not hash_count and not expected_number_of_elements and not false_positive_probability: raise ValueError("Must specify either (size, hash_count) or (expected_number_of_elements, false_positive_probability") if expected_number_of_elements and false_positive_probability: size, hash_count = BloomFilter.optimal_bloom_filter_params(expected_number_of_elements, false_positive_probability) if not size and not hash_count: raise ValueError("Size and hash_count not set. This should never happen.") self.size = size self.hash_count = hash_count self.bit_array, self.indices = self.init_bit_array(size) self.persistence = persistence def init_bit_array(self, size): _bit_array = bitarray(size) _bit_array.setall(0) _indices = np.zeros(size, dtype=np.int32) return _bit_array, _indices def hash_functions(self, string): # h1(x) hash1 = int(hashlib.sha256(string.encode('utf-8')).hexdigest(), 16) # h2(x) hash2 = int(hashlib.md5(string.encode('utf-8')).hexdigest(), 16) return hash1, hash2 def lookup(self, string): hash1, hash2 = self.hash_functions(string) for seed in range(self.hash_count): index = (hash1 + seed * hash2) % self.size #print(f"Lookup: Seed={seed}, Digest={index}, BitValue={self.bit_array[index]}") if self.bit_array[index] == 0: return False return True def add(self, string): hash1, hash2 = self.hash_functions(string) <fim_suffix> def save(self): self.persistence.save(self.bit_array) def load(self): self.bit_array = self.persistence.load() length_in_bytes = int(len(self.bit_array)/8) expected_length = math.ceil(self.size / 8) if length_in_bytes != expected_length: logging.warning("Bit array length does not match expected size, and so might be corrupted. Reinitializing.") self.bit_array, self.indices = self.init_bit_array(self.size) self.save() @staticmethod def optimal_bloom_filter_params(n, p): """ Calculate the optimal bit array size (m) and number of hash functions (k) for a Bloom filter. n: expected number of items to be stored p: acceptable false positive probability Returns a tuple (m, k) """ m = - (n * math.log(p)) / (math.log(2) ** 2) k = (m / n) * math.log(2) return int(math.ceil(m)), int(math.ceil(k))<fim_middle>for seed in range(self.hash_count): index = (hash1 + seed * hash2) % self.size self.bit_array[index] = 1 #print(f"Add: Seed={seed}, Digest={index}, BitValue={self.bit_array[index]}")
for seed in range(self.hash_count): index = (hash1 + seed * hash2) % self.size self.bit_array[index] = 1 #print(f"Add: Seed={seed}, Digest={index}, BitValue={self.bit_array[index]}")
FOR
prefix_suffix_full_complete_current_block_with_repo_rag_oracle