File size: 5,404 Bytes
5612586 3ebbc67 5612586 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pathfinder-X2 Segmentation Benchmark."""
import os
import pandas as pd
import datasets
_CITATION = """\
@article{suard2023pathfinder,
title={Pathfinder-X2: A Challenging Dataset for Evaluating Large Language Models on Long-Range Dependencies},
author={Suard, Tyler},
journal={},
year={2023}
}
"""
_DESCRIPTION = """\
The rapid progress of large language models has led to impressive results in a wide array of tasks. However, there remains a need for increasingly challenging datasets to evaluate these models' ability to handle long-range dependencies. In this paper, we present Pathfinder-X2, a novel dataset that builds upon the Pathfinder and Pathfinder-X datasets. Pathfinder-X2 comprises 512x512 pixel images, designed to test large language models' capacity to segment a specific white line dash "snake" with a circle at its tip among a collection of similar, distractor snakes. The increased image resolution and complexity of Pathfinder-X2 present a substantially more challenging task for large language models, contributing to the ongoing development and assessment of such models.
"""
_HOMEPAGE = "https://huggingface.co/datasets/Tylersuard/PathfinderX2/"
_LICENSE = "C.C. B.Y. 4.0"
_URLS = {
"instance_segmentation": {
"images": "https://pathfinder-x2.s3.us-west-1.amazonaws.com/Pathfinder-X2+images.zip",
"annotations": "https://pathfinder-x2.s3.us-west-1.amazonaws.com/Pathfinder-X2+masks.zip",
},
}
class PathfinderX2(datasets.GeneratorBasedBuilder):
"""Pathfinder X2 Segmentation Benchmark dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="instance_segmentation", version=VERSION, description="The instance segmentation variant."
),
]
DEFAULT_CONFIG_NAME = "instance_segmentation"
def _info(self):
features = datasets.Features(
{
"image": datasets.Image(),
"annotation": datasets.Image(),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
data_dirs = dl_manager.download(urls)
train_data = dl_manager.iter_archive(data_dirs["images"]), dl_manager.iter_archive(
data_dirs["annotations"]
)
val_data = dl_manager.iter_archive(data_dirs["images"]), dl_manager.iter_archive(data_dirs["annotations"])
test_data = dl_manager.iter_archive(data_dirs["images"]), dl_manager.iter_archive(data_dirs["annotations"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data": train_data,
"split": "training",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data": test_data,
"split": "testing"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data": val_data,
"split": "validation",
},
),
]
def _generate_examples(self, data, split):
if split == "testing":
images, annotations = data
for idx, (path, file) in enumerate(data):
if path.endswith(".png"):
yield idx, {
"image": {"path": path, "bytes": file.read()},
"annotation": None,
}
else:
images, annotations = data
image_id2annot = {}
# loads the annotations for the split into RAM (less than 100 MB) to support streaming
for path_annot, file_annot in annotations:
if split in path_annot and path_annot.endswith(".png"):
image_id = os.path.basename(path_annot).split(".")[0]
image_id2annot[image_id] = (path_annot, file_annot.read())
for idx, (path_img, file_img) in enumerate(images):
if split in path_img and path_img.endswith(".png"):
image_id = os.path.basename(path_img).split(".")[0]
path_annot, bytes_annot = image_id2annot[image_id]
yield idx, {
"image": {"path": path_img, "bytes": file_img.read()},
"annotation": {"path": path_annot, "bytes": bytes_annot},
} |