Datasets:

ArXiv:
License:
albertvillanova HF staff commited on
Commit
bce62c2
·
verified ·
1 Parent(s): db080b6

Update loading script

Browse files
Files changed (1) hide show
  1. medical_dialog.py +135 -166
medical_dialog.py CHANGED
@@ -46,15 +46,21 @@ _LICENSE = "Unknown"
46
 
47
  # URLS of processed data
48
  _URLS = {
49
- "en": {
50
- "train": "https://drive.google.com/uc?export=download&id=1ria4E6IdTIPsikL4Glm3uy1tFKJKw0W8",
51
- "validation": "https://drive.google.com/uc?export=download&id=1KAZneuwdfEVQQM6euCX4pMDP-9DQpiB5",
52
- "test": "https://drive.google.com/uc?export=download&id=10izqL71kcgnteYsf87Vh6j_mZ8sZM2Rc",
 
 
 
 
 
 
53
  },
54
- "zh": {
55
- "train": "https://drive.google.com/uc?export=download&id=1AaDJoHaiHAwEZwtskRH8oL1UP4FRgmgx",
56
- "validation": "https://drive.google.com/uc?export=download&id=1TvfZCmQqP1kURIfEinOcj5VOPelTuGwI",
57
- "test": "https://drive.google.com/uc?export=download&id=1pmmG95Yl6mMXRXDDSRb9-bYTxOE7ank5",
58
  },
59
  }
60
 
@@ -77,33 +83,6 @@ class MedicalDialog(datasets.GeneratorBasedBuilder):
77
  ),
78
  ]
79
 
80
- @property
81
- def manual_download_instructions(self):
82
- *processed, _ = self.config.name.split(".")
83
- return (
84
- None
85
- if processed
86
- else """\
87
- \n For English:\nYou need to go to https://drive.google.com/drive/folders/1g29ssimdZ6JzTST6Y8g6h-ogUNReBtJD?usp=sharing,\
88
- and manually download the dataset from Google Drive. Once it is completed,
89
- a file named Medical-Dialogue-Dataset-English-<timestamp-info>.zip will appear in your Downloads folder(
90
- or whichever folder your browser chooses to save files to). Unzip the folder to obtain
91
- a folder named "Medical-Dialogue-Dataset-English" several text files.
92
-
93
- Now, you can specify the path to this folder for the data_dir argument in the
94
- datasets.load_dataset(...) option.
95
- The <path/to/folder> can e.g. be "/Downloads/Medical-Dialogue-Dataset-English".
96
- The data can then be loaded using the below command:\
97
- `datasets.load_dataset("medical_dialog", name="en", data_dir="/Downloads/Medical-Dialogue-Dataset-English")`.
98
-
99
- \n For Chinese:\nFollow the above process. Change the 'name' to 'zh'.The download link is https://drive.google.com/drive/folders/1r09_i8nJ9c1nliXVGXwSqRYqklcHd9e2
100
-
101
- **NOTE**
102
- - A caution while downloading from drive. It is better to download single files since creating a zip might not include files <500 MB. This has been observed mutiple times.
103
- - After downloading the files and adding them to the appropriate folder, the path of the folder can be given as input tu the data_dir path.
104
- """
105
- )
106
-
107
  def _info(self):
108
  if self.config.name == "zh":
109
  features = datasets.Features(
@@ -158,23 +137,13 @@ class MedicalDialog(datasets.GeneratorBasedBuilder):
158
  """Returns SplitGenerators."""
159
  *processed, lang = self.config.name.split(".")
160
  if processed:
161
- data_dir = dl_manager.download(_URLS[lang])
 
162
  splits = [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]
163
- return [datasets.SplitGenerator(name=split, gen_kwargs={"filepaths": data_dir[split]}) for split in splits]
164
  else:
165
- path_to_manual_file = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
166
- if not os.path.exists(path_to_manual_file):
167
- raise FileNotFoundError(
168
- f"{path_to_manual_file} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('medical_dialog', data_dir=...)`. Manual download instructions: {self.manual_download_instructions})"
169
- )
170
-
171
- filepaths = [
172
- os.path.join(path_to_manual_file, txt_file_name)
173
- for txt_file_name in sorted(os.listdir(path_to_manual_file))
174
- if txt_file_name.endswith("txt")
175
- ]
176
-
177
- return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": filepaths})]
178
 
179
  def _generate_examples(self, filepaths):
180
  """Yields examples. Iterates over each file and give the creates the corresponding features.
@@ -205,130 +174,130 @@ class MedicalDialog(datasets.GeneratorBasedBuilder):
205
  array = ""
206
  else:
207
  id_ = -1
208
- for filepath in filepaths:
209
- with open(filepath, encoding="utf-8") as f_in:
210
- # Parameters to just "sectionize" the raw data
211
- last_part = ""
212
- last_dialog = {}
213
- last_list = []
214
- last_user = ""
215
- check_list = []
216
-
217
- # These flags are present to have a single function address both chinese and english data
218
- # English data is a little hahazard (i.e. the sentences spans multiple different lines),
219
- # Chinese is compact with one line for doctor and patient.
220
- conv_flag = False
221
- des_flag = False
222
-
223
- while True:
224
- line = f_in.readline()
225
- if not line:
226
- break
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227
 
228
- # Extracting the dialog id
229
- if line[:2] == "id": # Hardcode alert!
230
- # Handling ID references that may come in the description
231
- # These were observed in the Chinese dataset and were not
232
- # followed by numbers
233
- try:
234
- dialogue_id = int(re.findall(r"\d+", line)[0])
235
- except IndexError:
236
- continue
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237
 
238
- # Extracting the url
239
- if line[:4] == "http": # Hardcode alert!
240
- dialogue_url = line.rstrip()
241
 
242
- # Extracting the patient info from description.
243
- if line[:11] == "Description": # Hardcode alert!
244
- last_part = "description"
245
- last_dialog = {}
246
- last_list = []
247
- last_user = ""
248
- last_conv = {"speaker": "", "utterance": ""}
249
  while True:
250
- line = f_in.readline()
251
  if (not line) or (line in ["\n", "\n\r"]):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252
  break
253
- else:
254
- if data_lang == "zh": # Condition in chinese
255
- if line[:5] == "病情描述:": # Hardcode alert!
256
- last_user = "病人"
257
- sen = f_in.readline().rstrip()
258
- des_flag = True
259
 
260
- if data_lang == "en":
261
- last_user = "Patient"
262
- sen = line.rstrip()
263
- des_flag = True
264
-
265
- if des_flag:
266
- if sen == "":
267
- continue
268
- if sen in check_list:
269
- last_conv["speaker"] = ""
270
- last_conv["utterance"] = ""
271
- else:
272
- last_conv["speaker"] = last_user
273
- last_conv["utterance"] = sen
274
- check_list.append(sen)
275
- des_flag = False
276
- break
277
- # Extracting the conversation info from dialogue.
278
- elif line[:8] == "Dialogue": # Hardcode alert!
279
- if last_part == "description" and len(last_conv["utterance"]) > 0:
280
- last_part = "dialogue"
281
  if data_lang == "zh":
282
- last_user = "病人"
 
 
 
283
 
 
 
284
  if data_lang == "en":
285
- last_user = "Patient"
286
-
287
- while True:
288
- line = f_in.readline()
289
- if (not line) or (line in ["\n", "\n\r"]):
290
- conv_flag = False
291
- last_user = ""
 
 
 
 
 
 
 
 
 
 
292
  last_list.append(copy.deepcopy(last_conv))
293
- # To ensure close of conversation, only even number of sentences
294
- # are extracted
295
- last_turn = len(last_list)
296
- if int(last_turn / 2) > 0:
297
- temp = int(last_turn / 2)
298
- id_ += 1
299
- last_dialog["file_name"] = filepath
300
- last_dialog["dialogue_id"] = dialogue_id
301
- last_dialog["dialogue_url"] = dialogue_url
302
- last_dialog["dialogue_turns"] = last_list[: temp * 2]
303
- yield id_, last_dialog
304
- break
305
-
306
- if data_lang == "zh":
307
- if line[:3] == "病人:" or line[:3] == "医生:": # Hardcode alert!
308
- user = line[:2] # Hardcode alert!
309
- line = f_in.readline()
310
- conv_flag = True
311
-
312
- # The elif block is to ensure that multi-line sentences are captured.
313
- # This has been observed only in english.
314
- if data_lang == "en":
315
- if line.strip() == "Patient:" or line.strip() == "Doctor:": # Hardcode alert!
316
- user = line.replace(":", "").rstrip()
317
- line = f_in.readline()
318
- conv_flag = True
319
- elif line[:2] != "id": # Hardcode alert!
320
- conv_flag = True
321
-
322
- # Continues till the next ID is parsed
323
- if conv_flag:
324
- sen = line.rstrip()
325
- if sen == "":
326
- continue
327
-
328
- if user == last_user:
329
- last_conv["utterance"] = last_conv["utterance"] + sen
330
- else:
331
- last_user = user
332
- last_list.append(copy.deepcopy(last_conv))
333
- last_conv["utterance"] = sen
334
- last_conv["speaker"] = user
 
46
 
47
  # URLS of processed data
48
  _URLS = {
49
+ "en": "data/Medical-Dialogue-Dataset-English.zip",
50
+ "zh": "data/Medical-Dialogue-Dataset-Chinese.zip",
51
+ "processed.en": "data/processed-english.zip",
52
+ "processed.zh": "data/processed-chinese.zip",
53
+ }
54
+ _FILENAMES = {
55
+ "processed.en": {
56
+ "train": "english-train.json",
57
+ "validation": "english-dev.json",
58
+ "test": "english-test.json",
59
  },
60
+ "processed.zh": {
61
+ "train": "train_data.json",
62
+ "validation": "validate_data.json",
63
+ "test": "test_data.json",
64
  },
65
  }
66
 
 
83
  ),
84
  ]
85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  def _info(self):
87
  if self.config.name == "zh":
88
  features = datasets.Features(
 
137
  """Returns SplitGenerators."""
138
  *processed, lang = self.config.name.split(".")
139
  if processed:
140
+ # data_dir = dl_manager.download(_URLS[lang])
141
+ data_dir = dl_manager.download_and_extract(_URLS[self.config.name])
142
  splits = [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]
143
+ return [datasets.SplitGenerator(name=split, gen_kwargs={"filepaths": os.path.join(data_dir, _FILENAMES[self.config.name][split])}) for split in splits]
144
  else:
145
+ archive = dl_manager.download(_URLS[self.config.name])
146
+ return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": dl_manager.iter_archive(archive)})]
 
 
 
 
 
 
 
 
 
 
 
147
 
148
  def _generate_examples(self, filepaths):
149
  """Yields examples. Iterates over each file and give the creates the corresponding features.
 
174
  array = ""
175
  else:
176
  id_ = -1
177
+ for filepath, f_in in filepaths:
178
+ # with open(filepath, encoding="utf-8") as f_in:
179
+ # Parameters to just "sectionize" the raw data
180
+ last_part = ""
181
+ last_dialog = {}
182
+ last_list = []
183
+ last_user = ""
184
+ check_list = []
185
+
186
+ # These flags are present to have a single function address both chinese and english data
187
+ # English data is a little hahazard (i.e. the sentences spans multiple different lines),
188
+ # Chinese is compact with one line for doctor and patient.
189
+ conv_flag = False
190
+ des_flag = False
191
+
192
+ while True:
193
+ line = f_in.readline().decode("utf-8")
194
+ if not line:
195
+ break
196
+
197
+ # Extracting the dialog id
198
+ if line[:2] == "id": # Hardcode alert!
199
+ # Handling ID references that may come in the description
200
+ # These were observed in the Chinese dataset and were not
201
+ # followed by numbers
202
+ try:
203
+ dialogue_id = int(re.findall(r"\d+", line)[0])
204
+ except IndexError:
205
+ continue
206
+
207
+ # Extracting the url
208
+ if line[:4] == "http": # Hardcode alert!
209
+ dialogue_url = line.rstrip()
210
+
211
+ # Extracting the patient info from description.
212
+ if line[:11] == "Description": # Hardcode alert!
213
+ last_part = "description"
214
+ last_dialog = {}
215
+ last_list = []
216
+ last_user = ""
217
+ last_conv = {"speaker": "", "utterance": ""}
218
+ while True:
219
+ line = f_in.readline().decode("utf-8")
220
+ if (not line) or (line in ["\n", "\n\r"]):
221
+ break
222
+ else:
223
+ if data_lang == "zh": # Condition in chinese
224
+ if line[:5] == "病情描述:": # Hardcode alert!
225
+ last_user = "病人"
226
+ sen = f_in.readline().decode("utf-8").rstrip()
227
+ des_flag = True
228
 
229
+ if data_lang == "en":
230
+ last_user = "Patient"
231
+ sen = line.rstrip()
232
+ des_flag = True
233
+
234
+ if des_flag:
235
+ if sen == "":
236
+ continue
237
+ if sen in check_list:
238
+ last_conv["speaker"] = ""
239
+ last_conv["utterance"] = ""
240
+ else:
241
+ last_conv["speaker"] = last_user
242
+ last_conv["utterance"] = sen
243
+ check_list.append(sen)
244
+ des_flag = False
245
+ break
246
+ # Extracting the conversation info from dialogue.
247
+ elif line[:8] == "Dialogue": # Hardcode alert!
248
+ if last_part == "description" and len(last_conv["utterance"]) > 0:
249
+ last_part = "dialogue"
250
+ if data_lang == "zh":
251
+ last_user = "病人"
252
 
253
+ if data_lang == "en":
254
+ last_user = "Patient"
 
255
 
 
 
 
 
 
 
 
256
  while True:
257
+ line = f_in.readline().decode("utf-8")
258
  if (not line) or (line in ["\n", "\n\r"]):
259
+ conv_flag = False
260
+ last_user = ""
261
+ last_list.append(copy.deepcopy(last_conv))
262
+ # To ensure close of conversation, only even number of sentences
263
+ # are extracted
264
+ last_turn = len(last_list)
265
+ if int(last_turn / 2) > 0:
266
+ temp = int(last_turn / 2)
267
+ id_ += 1
268
+ last_dialog["file_name"] = filepath
269
+ last_dialog["dialogue_id"] = dialogue_id
270
+ last_dialog["dialogue_url"] = dialogue_url
271
+ last_dialog["dialogue_turns"] = last_list[: temp * 2]
272
+ yield id_, last_dialog
273
  break
 
 
 
 
 
 
274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275
  if data_lang == "zh":
276
+ if line[:3] == "病人:" or line[:3] == "医生:": # Hardcode alert!
277
+ user = line[:2] # Hardcode alert!
278
+ line = f_in.readline().decode("utf-8")
279
+ conv_flag = True
280
 
281
+ # The elif block is to ensure that multi-line sentences are captured.
282
+ # This has been observed only in english.
283
  if data_lang == "en":
284
+ if line.strip() == "Patient:" or line.strip() == "Doctor:": # Hardcode alert!
285
+ user = line.replace(":", "").rstrip()
286
+ line = f_in.readline().decode("utf-8")
287
+ conv_flag = True
288
+ elif line[:2] != "id": # Hardcode alert!
289
+ conv_flag = True
290
+
291
+ # Continues till the next ID is parsed
292
+ if conv_flag:
293
+ sen = line.rstrip()
294
+ if sen == "":
295
+ continue
296
+
297
+ if user == last_user:
298
+ last_conv["utterance"] = last_conv["utterance"] + sen
299
+ else:
300
+ last_user = user
301
  last_list.append(copy.deepcopy(last_conv))
302
+ last_conv["utterance"] = sen
303
+ last_conv["speaker"] = user