soonchang commited on
Commit
a67fe7e
·
verified ·
1 Parent(s): cb66f04

Update readme

Browse files
Files changed (2) hide show
  1. README.md +64 -25
  2. README_ms.md +64 -25
README.md CHANGED
@@ -86,26 +86,37 @@ MalayMMLU is the first multitask language understanding (MLU) for Malay Language
86
  <td>38.07</td>
87
  <td>38.02</td>
88
  </tr>
 
 
 
 
 
 
 
 
 
 
 
89
  <tr>
90
  <td rowspan="4">OpenAI</td>
91
  <td>GPT-4o</td>
92
  <td style="color: green; text-align: center"><b>&#10003</b></td>
93
- <td><strong>87.12</strong></td>
94
- <td><strong>88.12</strong></td>
95
- <td><strong>83.83</strong></td>
96
- <td><strong>82.58</strong></td>
97
- <td><strong>83.09</strong></td>
98
- <td><strong>84.98</strong></td>
99
  </tr>
100
  <tr>
101
  <td>GPT-4</td>
102
  <td style="color: green; text-align: center"><b>&#10003</b></td>
103
- <td><ins>82.90</ins></td>
104
- <td><ins>83.91</ins></td>
105
  <td>78.80</td>
106
- <td><ins>77.29</ins></td>
107
- <td><ins>77.33</ins></td>
108
- <td><ins>80.11</ins></td>
109
  </tr>
110
  <tr>
111
  <td>GPT-4o mini</td>
@@ -128,7 +139,7 @@ MalayMMLU is the first multitask language understanding (MLU) for Malay Language
128
  <td>67.78</td>
129
  </tr>
130
  <tr>
131
- <td rowspan="7">Meta</td>
132
  <td>LLaMA-3.1 (70B)</td>
133
  <td></td>
134
  <td>78.75</td>
@@ -138,6 +149,16 @@ MalayMMLU is the first multitask language understanding (MLU) for Malay Language
138
  <td>75.32</td>
139
  <td>78.44</td>
140
  </tr>
 
 
 
 
 
 
 
 
 
 
141
  <tr>
142
  <td>LLaMA-3.1 (8B)</td>
143
  <td></td>
@@ -204,7 +225,7 @@ MalayMMLU is the first multitask language understanding (MLU) for Malay Language
204
  <td></td>
205
  <td>79.09</td>
206
  <td>79.95</td>
207
- <td><ins>80.88</ins></td>
208
  <td>75.80</td>
209
  <td>75.05</td>
210
  <td>77.79</td>
@@ -382,6 +403,35 @@ MalayMMLU is the first multitask language understanding (MLU) for Malay Language
382
  <td>63.61</td>
383
  <td>67.58</td>
384
  </tr>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385
  <tr>
386
  <td>Cohere for AI</td>
387
  <td>Command R (32B)</td>
@@ -520,17 +570,6 @@ MalayMMLU is the first multitask language understanding (MLU) for Malay Language
520
  <td>43.54</td>
521
  <td>44.30</td>
522
  </tr>
523
- <tr>
524
- <td>Mesolitica</td>
525
- <td>MaLLaM-v2<sup>†</sup> (5B)</td>
526
- <td></td>
527
- <td>42.57</td>
528
- <td>46.44</td>
529
- <td>42.24</td>
530
- <td>40.82</td>
531
- <td>38.74</td>
532
- <td>42.08</td>
533
- </tr>
534
  <tr>
535
  <td>Yellow.ai</td>
536
  <td>Komodo<sup>†</sup> (7B)</td>
@@ -547,7 +586,7 @@ MalayMMLU is the first multitask language understanding (MLU) for Malay Language
547
  Highest scores are <strong>bolded</strong> and second highest scores are <ins>underlined</ins>.
548
  † denotes LLMs fine-tuned with Southeast Asia datasets.
549
  †† denotes open-source GLM-4.
550
-
551
 
552
  ## Citation
553
 
 
86
  <td>38.07</td>
87
  <td>38.02</td>
88
  </tr>
89
+ <tr>
90
+ <td>YTL</td>
91
+ <td style="font-family: sans-serif;">llmu 0.1</td>
92
+ <td></td>
93
+ <td><strong>87.77</strong></td>
94
+ <td><strong>89.26</strong></td>
95
+ <td><strong>86.66</strong></td>
96
+ <td><strong>85.27</strong></td>
97
+ <td><strong>86.40</strong></td>
98
+ <td><strong>86.98</strong></td>
99
+ </tr>
100
  <tr>
101
  <td rowspan="4">OpenAI</td>
102
  <td>GPT-4o</td>
103
  <td style="color: green; text-align: center"><b>&#10003</b></td>
104
+ <td><ins>87.12</ins></td>
105
+ <td><ins>88.12</ins></td>
106
+ <td><ins>83.83</ins></td>
107
+ <td><ins>82.58</ins></td>
108
+ <td><ins>83.09</ins></td>
109
+ <td><ins>84.98</ins></td>
110
  </tr>
111
  <tr>
112
  <td>GPT-4</td>
113
  <td style="color: green; text-align: center"><b>&#10003</b></td>
114
+ <td>82.90</td>
115
+ <td>83.91</td>
116
  <td>78.80</td>
117
+ <td>77.29</td>
118
+ <td>77.33</td>
119
+ <td>80.11</td>
120
  </tr>
121
  <tr>
122
  <td>GPT-4o mini</td>
 
139
  <td>67.78</td>
140
  </tr>
141
  <tr>
142
+ <td rowspan="8">Meta</td>
143
  <td>LLaMA-3.1 (70B)</td>
144
  <td></td>
145
  <td>78.75</td>
 
149
  <td>75.32</td>
150
  <td>78.44</td>
151
  </tr>
152
+ <tr>
153
+ <td>LLaMA-3.3 (70B)</td>
154
+ <td></td>
155
+ <td>78.82</td>
156
+ <td>80.46</td>
157
+ <td>78.71</td>
158
+ <td>75.79</td>
159
+ <td>73.85</td>
160
+ <td>77.38</td>
161
+ </tr>
162
  <tr>
163
  <td>LLaMA-3.1 (8B)</td>
164
  <td></td>
 
225
  <td></td>
226
  <td>79.09</td>
227
  <td>79.95</td>
228
+ <td>80.88</td>
229
  <td>75.80</td>
230
  <td>75.05</td>
231
  <td>77.79</td>
 
403
  <td>63.61</td>
404
  <td>67.58</td>
405
  </tr>
406
+ <tr>
407
+ <td rowspan="3">Mesolitica</td>
408
+ <td>MaLLaM-v2.5 Small<sup>‡</sup></td>
409
+ <td></td>
410
+ <td>73.00</td>
411
+ <td>71.00</td>
412
+ <td>70.00</td>
413
+ <td>72.00</td>
414
+ <td>70.00</td>
415
+ <td>71.53</td>
416
+ </tr>
417
+ <td>MaLLaM-v2.5 Tiny<sup>‡</sup></td>
418
+ <td></td>
419
+ <td>67.00</td>
420
+ <td>66.00</td>
421
+ <td>68.00</td>
422
+ <td>69.00</td>
423
+ <td>66.00</td>
424
+ <td>67.32</td>
425
+ </tr>
426
+ <td>MaLLaM-v2<sup>†</sup> (5B)</td>
427
+ <td></td>
428
+ <td>42.57</td>
429
+ <td>46.44</td>
430
+ <td>42.24</td>
431
+ <td>40.82</td>
432
+ <td>38.74</td>
433
+ <td>42.08</td>
434
+ </tr>
435
  <tr>
436
  <td>Cohere for AI</td>
437
  <td>Command R (32B)</td>
 
570
  <td>43.54</td>
571
  <td>44.30</td>
572
  </tr>
 
 
 
 
 
 
 
 
 
 
 
573
  <tr>
574
  <td>Yellow.ai</td>
575
  <td>Komodo<sup>†</sup> (7B)</td>
 
586
  Highest scores are <strong>bolded</strong> and second highest scores are <ins>underlined</ins>.
587
  † denotes LLMs fine-tuned with Southeast Asia datasets.
588
  †† denotes open-source GLM-4.
589
+ ‡ result from https://mesolitica.com/mallam.
590
 
591
  ## Citation
592
 
README_ms.md CHANGED
@@ -87,26 +87,37 @@ MalayMMLU ialah tanda aras kefahaman bahasa pelbagai tugas (Massive Multitask La
87
  <td>38.07</td>
88
  <td>38.02</td>
89
  </tr>
 
 
 
 
 
 
 
 
 
 
 
90
  <tr>
91
  <td rowspan="4">OpenAI</td>
92
  <td>GPT-4o</td>
93
  <td style="color: green; text-align: center"><b>&#10003</b></td>
94
- <td><strong>87.12</strong></td>
95
- <td><strong>88.12</strong></td>
96
- <td><strong>83.83</strong></td>
97
- <td><strong>82.58</strong></td>
98
- <td><strong>83.09</strong></td>
99
- <td><strong>84.98</strong></td>
100
  </tr>
101
  <tr>
102
  <td>GPT-4</td>
103
  <td style="color: green; text-align: center"><b>&#10003</b></td>
104
- <td><ins>82.90</ins></td>
105
- <td><ins>83.91</ins></td>
106
  <td>78.80</td>
107
- <td><ins>77.29</ins></td>
108
- <td><ins>77.33</ins></td>
109
- <td><ins>80.11</ins></td>
110
  </tr>
111
  <tr>
112
  <td>GPT-4o mini</td>
@@ -129,7 +140,7 @@ MalayMMLU ialah tanda aras kefahaman bahasa pelbagai tugas (Massive Multitask La
129
  <td>67.78</td>
130
  </tr>
131
  <tr>
132
- <td rowspan="7">Meta</td>
133
  <td>LLaMA-3.1 (70B)</td>
134
  <td></td>
135
  <td>78.75</td>
@@ -139,6 +150,16 @@ MalayMMLU ialah tanda aras kefahaman bahasa pelbagai tugas (Massive Multitask La
139
  <td>75.32</td>
140
  <td>78.44</td>
141
  </tr>
 
 
 
 
 
 
 
 
 
 
142
  <tr>
143
  <td>LLaMA-3.1 (8B)</td>
144
  <td></td>
@@ -205,7 +226,7 @@ MalayMMLU ialah tanda aras kefahaman bahasa pelbagai tugas (Massive Multitask La
205
  <td></td>
206
  <td>79.09</td>
207
  <td>79.95</td>
208
- <td><ins>80.88</ins></td>
209
  <td>75.80</td>
210
  <td>75.05</td>
211
  <td>77.79</td>
@@ -383,6 +404,35 @@ MalayMMLU ialah tanda aras kefahaman bahasa pelbagai tugas (Massive Multitask La
383
  <td>63.61</td>
384
  <td>67.58</td>
385
  </tr>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386
  <tr>
387
  <td>Cohere for AI</td>
388
  <td>Command R (32B)</td>
@@ -521,17 +571,6 @@ MalayMMLU ialah tanda aras kefahaman bahasa pelbagai tugas (Massive Multitask La
521
  <td>43.54</td>
522
  <td>44.30</td>
523
  </tr>
524
- <tr>
525
- <td>Mesolitica</td>
526
- <td>MaLLaM-v2<sup>†</sup> (5B)</td>
527
- <td></td>
528
- <td>42.57</td>
529
- <td>46.44</td>
530
- <td>42.24</td>
531
- <td>40.82</td>
532
- <td>38.74</td>
533
- <td>42.08</td>
534
- </tr>
535
  <tr>
536
  <td>Yellow.ai</td>
537
  <td>Komodo<sup>†</sup> (7B)</td>
@@ -548,7 +587,7 @@ MalayMMLU ialah tanda aras kefahaman bahasa pelbagai tugas (Massive Multitask La
548
  Markah tertinggi telah <strong>ditebalkan</strong> dan markah kedua tertinggi telah <ins>digariskan</ins>.
549
  † menunjukkan LLM yang dilatih dengan dataset Asia Tenggara.
550
  †† menunjukkan GLM-4 sumber terbuka.
551
-
552
 
553
  ## Rujukan
554
 
 
87
  <td>38.07</td>
88
  <td>38.02</td>
89
  </tr>
90
+ <tr>
91
+ <td>YTL</td>
92
+ <td style="font-family: sans-serif;">llmu 0.1</td>
93
+ <td></td>
94
+ <td><strong>87.77</strong></td>
95
+ <td><strong>89.26</strong></td>
96
+ <td><strong>86.66</strong></td>
97
+ <td><strong>85.27</strong></td>
98
+ <td><strong>86.40</strong></td>
99
+ <td><strong>86.98</strong></td>
100
+ </tr>
101
  <tr>
102
  <td rowspan="4">OpenAI</td>
103
  <td>GPT-4o</td>
104
  <td style="color: green; text-align: center"><b>&#10003</b></td>
105
+ <td><ins>87.12</ins></td>
106
+ <td><ins>88.12</ins></td>
107
+ <td><ins>83.83</ins></td>
108
+ <td><ins>82.58</ins></td>
109
+ <td><ins>83.09</ins></td>
110
+ <td><ins>84.98</ins></td>
111
  </tr>
112
  <tr>
113
  <td>GPT-4</td>
114
  <td style="color: green; text-align: center"><b>&#10003</b></td>
115
+ <td>82.90</td>
116
+ <td>83.91</td>
117
  <td>78.80</td>
118
+ <td>77.29</td>
119
+ <td>77.33</td>
120
+ <td>80.11</td>
121
  </tr>
122
  <tr>
123
  <td>GPT-4o mini</td>
 
140
  <td>67.78</td>
141
  </tr>
142
  <tr>
143
+ <td rowspan="8">Meta</td>
144
  <td>LLaMA-3.1 (70B)</td>
145
  <td></td>
146
  <td>78.75</td>
 
150
  <td>75.32</td>
151
  <td>78.44</td>
152
  </tr>
153
+ <tr>
154
+ <td>LLaMA-3.3 (70B)</td>
155
+ <td></td>
156
+ <td>78.82</td>
157
+ <td>80.46</td>
158
+ <td>78.71</td>
159
+ <td>75.79</td>
160
+ <td>73.85</td>
161
+ <td>77.38</td>
162
+ </tr>
163
  <tr>
164
  <td>LLaMA-3.1 (8B)</td>
165
  <td></td>
 
226
  <td></td>
227
  <td>79.09</td>
228
  <td>79.95</td>
229
+ <td>80.88</td>
230
  <td>75.80</td>
231
  <td>75.05</td>
232
  <td>77.79</td>
 
404
  <td>63.61</td>
405
  <td>67.58</td>
406
  </tr>
407
+ <tr>
408
+ <td rowspan="3">Mesolitica</td>
409
+ <td>MaLLaM-v2.5 Small<sup>‡</sup></td>
410
+ <td></td>
411
+ <td>73.00</td>
412
+ <td>71.00</td>
413
+ <td>70.00</td>
414
+ <td>72.00</td>
415
+ <td>70.00</td>
416
+ <td>71.53</td>
417
+ </tr>
418
+ <td>MaLLaM-v2.5 Tiny<sup>‡</sup></td>
419
+ <td></td>
420
+ <td>67.00</td>
421
+ <td>66.00</td>
422
+ <td>68.00</td>
423
+ <td>69.00</td>
424
+ <td>66.00</td>
425
+ <td>67.32</td>
426
+ </tr>
427
+ <td>MaLLaM-v2<sup>†</sup> (5B)</td>
428
+ <td></td>
429
+ <td>42.57</td>
430
+ <td>46.44</td>
431
+ <td>42.24</td>
432
+ <td>40.82</td>
433
+ <td>38.74</td>
434
+ <td>42.08</td>
435
+ </tr>
436
  <tr>
437
  <td>Cohere for AI</td>
438
  <td>Command R (32B)</td>
 
571
  <td>43.54</td>
572
  <td>44.30</td>
573
  </tr>
 
 
 
 
 
 
 
 
 
 
 
574
  <tr>
575
  <td>Yellow.ai</td>
576
  <td>Komodo<sup>†</sup> (7B)</td>
 
587
  Markah tertinggi telah <strong>ditebalkan</strong> dan markah kedua tertinggi telah <ins>digariskan</ins>.
588
  † menunjukkan LLM yang dilatih dengan dataset Asia Tenggara.
589
  †† menunjukkan GLM-4 sumber terbuka.
590
+ ‡ keputusan daripada https://mesolitica.com/mallam.
591
 
592
  ## Rujukan
593