Datasets:

Modalities:
Text
Formats:
csv
Languages:
Italian
Tags:
legal
Libraries:
Datasets
pandas
License:
ItaIst / document_to_corpus.py
RedHitMark's picture
minor fix and fix encoding
1ecf085
import os
import pandas as pd
BASE_DIR = os.path.join(".")
if __name__ == "__main__":
chapters = []
for root, dirs, files in os.walk(os.path.join(BASE_DIR, "documents")):
if "extracted_text.md" in files:
with open(os.path.join(root, "extracted_text.md"), "r", encoding="utf-8") as file:
full_path = os.path.join(root, "extracted_text.md")
text = file.read()
lines = text.split("\n")
chapters_indices = [i for i in range(len(lines)) if lines[i].startswith("# ")]
for i in range(len(chapters_indices)):
next_index = chapters_indices[i + 1] if i < len(chapters_indices) - 1 else len(lines)
title = lines[chapters_indices[i]][2:].strip()
content = '\n'.join(lines[chapters_indices[i] + 1:next_index])
content = '\n'.join(line.rstrip() for line in content.split("\n"))
content = content.rstrip()
chapters.append({
'region': full_path.split('\\')[-5],
'topic': full_path.split('\\')[-4],
'document_type': full_path.split('\\')[-3],
'entity': full_path.split('\\')[-2].split('_')[1],
'document_date': full_path.split('\\')[-2].split('_')[0],
'document_id': full_path.split('\\')[-2].split('_')[2],
'progress': i+1,
"title": title,
"content": content
})
df = pd.DataFrame(chapters).sort_values(by=['region', 'topic', 'document_type', 'document_id', 'progress'])
df.to_csv(os.path.join(BASE_DIR, 'corpus.csv'), index=False, encoding='utf-8')
df.to_csv(os.path.join(BASE_DIR, 'corpus.tsv'), sep='\t', index=False, encoding='utf-8')
df.to_excel(os.path.join(BASE_DIR, 'corpus.xlsx'), index=False)