Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
File size: 113,417 Bytes
08c8a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
Ada-95: A guide for C and C++ programmers

by Simon Johnston

1995

Welcome

... to the Ada guide especially written for C and C++ programmers.

Summary

I have endeavered to present below a tutorial for C and C++ programmers to show them what Ada
can provide and how to set about turning the knowledge and experience they have gained in C/C++
into good Ada programming. This really does expect the reader to be familiar with C/C++, although
C only programmers should be able to read it OK if they skip section 3.

My thanks to S. Tucker Taft for the mail that started me on this.

1

Contents

1 Ada Basics.

1.1 C/C++ types to Ada types.

. . .

.

.

.

.

.

.

1.1.1 Declaring new types and subtypes. .

.

.

.

.

1.1.2

Simple types, Integers and Characters. .

1.1.3

Strings. {3.6.3} . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

1.1.4

Floating {3.5.7} and Fixed {3.5.9} point. .

1.1.5 Enumerations {3.5.1} and Ranges.

1.1.6 Arrays {3.6}.

. . . . . .

1.1.7 Records {3.8}.

. . . . .

.

.

.

.

.

.

.

.

1.1.8 Access types (pointers) {3.10}. .

1.1.9 Ada advanced types and tricks. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1.1.10 C Unions in Ada, (food for thought). .

1.2 C/C++ statements to Ada. . . . .

.

.

1.2.1 Compound Statement {5.6} .

1.2.2

if Statement {5.3} . . . .

1.2.3

switch Statement {5.4} .

1.2.4 Ada loops {5.5} . . . . .

1.2.4.1 while Loop .

1.2.4.2

do Loop . .

1.2.4.3

for Loop . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1.2.4.4

break and continue .

1.2.5

return {6.5} . . . . . . .

1.2.6

labels and goto {5.8} . .

1.2.7

exception handling {11.2}

1.2.8

sub-programs . . . . .

.

1.3 Ada Safety.

. . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

7

8

8

9

10

10

11

13

15

16

18

22

23

24

24

25

26

26

26

26

27

28

29

29

30

33

CONTENTS

CONTENTS

1.3.1

Static provability. . . . .

.

.

.

.

.

.

1.3.2

Predefined exceptions and pragmas.

1.3.3 Unchecked programming.

.

.

.

.

.

2 Ada Packages. {7}

2.1 What a package looks like

. . .

2.2

Include a package in another

. .

2.3 Package data hiding {7.3} . . . .

2.4 Hierarchical packages.

. . . .

2.5 Renaming identifiers.

. . . . .

.

.

.

.

.

.

.

.

.

.

.

.

3 Ada-95 Object Oriented Programming.

3.1 The tagged type. . . . . . . . . .

3.2 Class member attributes.

. . .

.

3.3 Class member functions.

. . . .

3.4 Virtual member functions.

. . .

3.5 Static members.

. . . . . . . . .

3.6 Constructors/Destructors for Ada.

3.7

3.8

Inheritance, single and multiple.

public/protected/private.

. . .

.

3.9 A more complete example.

. . .

4 Generics

4.1 A generic procedure {12.6} . . .

4.2 Generic packages {12.7}

. . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4.3 Generic types and other parameters {12.4} .

5

IO

5.1 Ada.Text_IO . . . . . . . . .

.

.

.

.

.

5.2 Ada.Sequential_IO and Ada.Direct_IO .

5.3 Streams . . . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

6

Interfacing to other languages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

33

34

35

37

37

38

39

40

41

43

44

44

45

45

45

45

45

46

46

49

49

50

51

52

52

53

55

56

3

CONTENTS

7 Concurrency

CONTENTS

57

57

57

57

58

58

58

60

61

61

63

63

64

64

7.1 Tasks

. . . . . . . . . . . . . .

7.1.1 Tasks as threads . . . . .

7.1.2 A Simple task . . . . . .

7.1.3 Task as types . . . . . .

.

.

.

.

7.2 Task synchronization (Rendezvouz)

7.2.1

entry/accept . . . . . . .

7.2.2

select

. . . . . . . . . .

7.2.3

guarded entries . . . . .

7.2.4

delays . . . . . . . . . .

7.2.5

select else . . . . . . . .

7.2.6

termination . . . . . . .

7.2.7

conditional entry calls

.

7.3 Protected types

. . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4

Introduction.

This document is written primarily for C and C++ programmers and is set out to describe the Ada
programming language in a way more accessible to them. I have used the standard Ada documentation
conventions, code will look like this and keywords will look like this. I will include references
to the Ada Reference Manual in braces and in italics, {1.1}, which denotes section 1.1. The ARM
is reference 1 at the end of this document. Another useful reference is the Lovelace on-line tutorial
which is a great way to pick up Ada basics.

I will start out by describing the Ada predefined types, and the complex types, and move onto the
simple language constructs. Section 2 will start to introduce some very Ada specific topics and
section 3 describes the new Ada-95 Object Oriented programming constructs. Section 5 describes
the Ada tools for managing concurrency, the task and protected types, these are worth investing some
time getting to grips with. Section 6 is a tour of the Ada IO library and covers some of the differences
in concept and implementation between it and C stdio.

Please feel free to comment on errors, things you don’t like and things you would like to see. If I don’t
get the comments then I can’t take it forward, and the question you would like answered is almost
certainly causing other people problems too.

If you are new to Ada and do not have an Ada compiler handy then why not try the GNAT Ada
compiler. This compiler is based on the well known GCC C/C++ and Objective-C compiler and
provides a high quality Ada-83 and Ada-95 compiler for many platforms. Here is the FTP site (ftp:
//cs.nyu.edu/pub/gnat) see if there is one for you.

5

Document Status.

This document is still under revision and I receive a number of mails asking for improvements and
fixing bugs and spelling mistakes I have introduced. I will try and keep this section up to date on what
needs to be done and what I would like to do.

Current Status

Section 2 More on 2.3 (data hiding) and 2.4 (Hierarchical packages)

Section 3 First issue of this section, 3.6, 3.7, 3.8 and 3.9 have additional work planned. They may

also require re-work pending comments.

Section 5 Section 5.3 (streams) not yet done.

Section 6 New sections to be added for each language.

Section 7 Major re-work following comments from Bill Wagner, 7.2.7 added, requires some more

words, and section 7.3 requires more justification etc.

Wish List

I would like to use a consistant example throughout, building it up as we go along. The trouble is I
don’t think I have space in an HTML page to do this.

6

1

Ada Basics.

This section hopes to give you a brief introduction to Ada basics, such as types, statements and
packages. Once you have these you should be able to read quite a lot of Ada source without difficulty.
You are expected to know these things as we move on so it is worth reading.

One thing before we continue, most of the operators are similar, but you should notice these differ-
ences:

Operator
Assignment
Equality
NonEquality
PlusEquals
SubtractEquals
MultiplyEquals
DivisionEquals
OrEquals
AndEquals
Modulus
Remainder
AbsoluteValue
Exponentiation
Range

C/C++ Ada
:=
=
/=

=
==
!=
+=
-=
*=
/=
|=
&=
%

mod
rem
abs
**
. .

One of the biggest things to stop C/C++ programmers in their tracks is that Ada is case insensitive,
so begin BEGIN Begin are all the same. This can be a problem when porting case sensitive C code
into Ada.

Another thing to watch for in Ada source is the use of ’ the tick. The tick is used to access attributes
for an object, for instance the following code is used to assign to value a the size in bits of an integer.

int a = sizeof(int) * 8;

a : Integer := Integer’Size;

Another use for it is to access the attributes First and Last, so for an integer the range of possible
values is Integer’First to Integer’Last. This can also be applied to arrays so if you are

7

1.1. C/C++ TYPES TO ADA TYPES.

1. ADA BASICS.

passed an array and don’t know the size of it you can use these attribute values to range over it in a
loop (see section 1.1.5 on page 11). The tick is also used for other Ada constructs as well as attributes,
for example character literals, code statements and qualified expressions ( 1.1.8 on page 16).

1.1 C/C++ types to Ada types.

This section attempts to outline how to move C/C++ type declarations into an Ada program and help
you understand Ada code. Section 1.1.8 introduces some Ada specific advanced topics and tricks you
can use in such areas as bit fields, type representation and type size.

Note that ’objects’ are defined in reverse order to C/C++, the object name is first, then the object type,
as in C/C++ you can declare lists of objects by seperating them with commas.

int i;
int a, b, c;
int j = 0;
int k, l = 1;
i : Integer;
a, b, c : Integer;
j : Integer := 0;
k, l : Integer := 1;

The first three declarations are the same, they create the same objects, and the third one assigns j the
value 0 in both cases. However the fourth example in C leaves k undefined and creates l with the
value 1. In the Ada example it should be clear that both k and l are assigned the value 1.

Another difference is in defining constants.

const int days_per_week = 7;
days_per_week : constant Integer := 7;
days_per_week : constant := 7;

In the Ada example it is possible to define a constant without type, the compiler then chooses the
most appropriate type to represent it.

1.1.1 Declaring new types and subtypes.

Before we delve into descriptions of the predefined Ada types it is important to show you how Ada
defines a type.

Ada is a strongly typed language, in fact possibly the strongest. This means that its type model is
strict and absolutely stated. In C the use of typedef introduces a new name which can be used as a
new type, though the weak typing of C and even C++ (in comparison) means that we have only really
introduced a very poor synonym. Consider:

typedef int INT;
INT a;
int b;
a = b; // works, no problem

8

1.1. C/C++ TYPES TO ADA TYPES.

1. ADA BASICS.

The compiler knows that they are both ints. Now consider:

type INT is new Integer;
a : INT;
b : Integer;
a := b; -- fails.

The important keyword is new, which really sums up the way Ada is treating that line, it can be read
as "a new type INT has been created from the type Integer", whereas the C line may be interpreted
as "a new name INT has been introduced as a synonym for int".

This strong typing can be a problem, and so Ada also provides you with a feature for reducing the
distance between the new type and its parent, consider:

subtype INT is Integer;
a : INT;
b : Integer;
a := b; -- works.

The most important feature of the subtype is to constrain the parent type in some way, for example to
place an upper or lower boundary for an integer value (see section below on ranges).

1.1.2 Simple types, Integers and Characters.

We have seen above the Integer type, there are a few more with Ada, these are listed below.

Integer, Long_Integer etc. Any Ada compiler must provide the Integer type, this is a signed integer,
and of implementation defined size. The compiler is also at liberty to provide Long_Integer,
Short_Integer, Long_Long_Integer etc as needed.

Unsigned Integers Ada does not have a defined unsigned integer, so this can be synthesised by a

range type (see section 1.1.5), and Ada-95 has a defined package, System.Unsigned_Types
which provide such a set of types.
Ada-95 has added a modular type which specifies the maximum value, and also the feature that
arithmatic is cyclic, underflow/overflow cannot occur. This means that if you have a modular
type capable of holding values from 0 to 255, and its current value is 255, then incrementing
it wraps it around to zero. Contrast this with range types (previously used to define unsigned
integer types) in section 1.1.5 below. Such a type is defined in the form:

type BYTE is mod 256;
type BYTE is mod 2**8;

The first simply specifies the maximum value, the second specifies it in a more ’precise’ way,
and the 2**x form is often used in system programming to specify bit mask types. Note: it is
not required to use 2**x, you can use any value, so 10**10 is legal also.

Character {3.5.2} This is very similar to the C char type, and holds the ASCII character set. However
it is actually defined in the package Standard {A.1} as an enumerated type (see section
1.1.5). There is an Ada equivalent of the C set of functions in ctype.h which is the package
Ada.Characters.Handling.
Ada Also defines a Wide_Character type for handling non ASCII character sets.

9

1.1. C/C++ TYPES TO ADA TYPES.

1. ADA BASICS.

Boolean {3.5.3} This is also defined in the package Standard as an enumerated type (see below)

as (FALSE, TRUE).

1.1.3 Strings. {3.6.3}

Heres a god send to C/C++ programmers, Ada has a predefined String type (defined again in Standard).
There is a good set of Ada packages for string handling, much better defined than the set provided by
C, and Ada has a & operator for string concatenation.

As in C the basis for the string is an array of characters, so you can use array slicing (see below) to
extract substrings, and define strings of set length. What, unfortunatly, you cannot do is use strings as
unbounded objects, hence the following.

type A_Record is

record

illegal : String;
legal

: String(1 .. 20);

end record;

procedure check(legal : in String);

The illegal structure element is because Ada cannot use ’unconstrained’ types in static declarations,
so the string must be constrained by a size. Also note that the lower bound of the size must be greater
than or equal to 1, the C/C++ array[4] which defines a range 0..3 cannot be used in Ada, 1..4
must be used.

One way to specify the size is by initialisation, for example:

Name : String := "Simon";

is the same as defining Name as a String(1..5) and assigning it the value "Simon" seperatly..

For parameter types unconstrained types are allowed, similar to passing int array[] in C.

To overcome the constraint problem for strings Ada has a predefined package Ada.Strings.Unbounded
which implements a variable length string type.

1.1.4 Floating {3.5.7} and Fixed {3.5.9} point.

Ada has two non-integer numeric types, the floating point and fixed point types. The predefined
floating point type is Float and compilers may add Long_Float, etc. A new Float type may be
defined in one of two ways:

type FloatingPoint1 is new Float;
type FloatingPoint2 is digits 5;

The first simply makes a new floating point type, from the standard Float, with the precision and
size of that type, regardless of what it is.

The second line asks the compiler to create a new type, which is a floating point type "of some kind"
with a minimum of 5 digits of precision. This is invaluable when doing numeric intensive operations

10

1.1. C/C++ TYPES TO ADA TYPES.

1. ADA BASICS.

and intend to port the program, you define exactly the type you need, not what you think might do
today.

If we go back to the subject of the tick, you can get the number of digits which are actually used by
the type by the attribute ’Digits. So having said we want a type with minimum of 5 digits we can
verify this:

number_of_digits : Integer := FloatingPoint2’Digits;

Fixed point types are unusual, there is no predefined type ’Fixed’ and such type must be declared in
the long form:

type Fixed is delta 0.1 range -1.0..1.0;

This defines a type which ranges from -1.0 to 1.0 with an accuracy of 0.1. Each element, accuracy,
low-bound and high-bound must be defined as a real number.

There is a specific form of fixed point types (added by Ada-95) called decimal types. These add a
clause digits, and the range clause becomes optional.

type Decimal is delta 0.01 digits 10;

This specifies a fixed point type of 10 digits with two decimal places. The number of digits includes
the decimal part and so the maximum range of values becomes -99,999,999.99. . . +99,999,999.99

1.1.5 Enumerations {3.5.1} and Ranges.

Firstly enumerations. These are not at all like C/C++s enums, they are true sets and the fact that the
Boolean type is in fact:

type Boolean is (FALSE, TRUE);

should give you a feeling for the power of the type.

You have already seen a range in use (for strings), it is expressed as low ..
of the most useful ways of expressing interfaces and parameter values, for example:

high and can be one

type Hours
type Hours24 is range 0 .. 23;
type Minutes is range 1 .. 60;

is new Integer range 1 .. 12;

There is now no way that a user can pass us an hour outside the range we have specified, even to
the extent that if we define a parameter of type Hours24 we cannot assign a value of Hours even
though it can only be in the range. Another feature is demonstrated, for Hours we have said we
want to restrict an Integer type to the given range, for the next two we have asked the compiler
to choose a type it feels appropriate to hold the given range, this is a nice way to save a little finger
tapping, but should be avoided Ada provides you a perfect environment to specify precisely what you
want, use it the first definition leaves nothing to the imagination.

Now we come to the rules on subtypes for ranges, and we will define the two Hours again as follows:

11

1.1. C/C++ TYPES TO ADA TYPES.

1. ADA BASICS.

type Hours24
subtype Hours is Hours24 range 1..12;

is new range 0..23;

This limits the range even further, and as you might expect a subtype cannot extend the range beyond
its parent, so range 0 ..

25 would have been illegal.

Now we come to the combining of enumerations and ranges, so that we might have:

type All_Days is (Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, Sunday);

subtype Week_Days is All_Days range Monday .. Friday;
subtype Weekend is All_Days range Saturday .. Sunday;

We can now take a Day, and see if we want to go to work:

Day : All_Days := Today;
if Day in Week_Days then

go_to_work;

end if;

Or you could use the form if Day in range Monday ..
extra types.

Friday and we would not need the

Ada provides four useful attributes for enumeration type handling, note these are used slightly differ-
ently than many other attributes as they are applied to the type, not the object.

Succ This attribute supplies the ’successor’ to the current value, so the ’Succ value of an object

containing Monday is Tuesday.
Note: If the value of the object is Sunday then an exception is raised, you cannot Succ past
the end of the enumeration.

Pred This attribute provides the ’predecessor’ of a given value, so the ’Pred value of an object

containing Tuesday is Monday.
Note: the rule above still applies ’Pred of Monday is an error.

Val This gives you the value (as a member of the enumeration) of element n in the enumeration. Thus

Val(2) is Wednesday.
Note: the rule above still applies, and note also that ’Val(0) is the same as ’First.

Pos This gives you the position in the enumeration of the given element name. Thus ’Pos(Wednesday)

is 2.
Note: the range rules still apply, also that ’Last will work, and return Sunday.

All_Days’Succ(Monday) = Tuesday
All_Days’Pred(Tuesday) = Monday
All_Days’Val(0) = Monday
All_Days’First = Monday
All_Days’Val(2) = Wednesday
All_Days’Last = Sunday
All_Days’Succ(All_Days’Pred(Tuesday)) = Tuesday

12

1.1. C/C++ TYPES TO ADA TYPES.

1. ADA BASICS.

Ada also provides a set of 4 attributes for range types, these are intimatly associated with those above
and are:

First This provides the value of the first item in a range. Considering the range 0 .. 100 then

’First is 0.

Last This provides the value of the last item in a range, and so considering above, ’Last is 100.

Length This provides the number of items in a range, so ’Length is actually 101.

Range This funnily enough returns in this case the value we gave it, but you will see when we come

onto arrays how useful this feature is.

As you can see these have no direct C/C++ equivalent and are part of the reason for Ada’s reputation
for safety, you can define for a parameter exactly the range of values it might take, it all amounts to
better practice for large developments where your interface is read by many people who may not be
able to tell that the integer parameter day starts at 0, which indicates Wednesday etc.

1.1.6 Arrays {3.6}.

Arrays in Ada make use of the range syntax to define their bounds and can be arrays of any type, and
can even be declared as unknown size.

Some example:

char name[31];
int track[3];
int dbla[3][10];
int init[3] = { 0, 1, 2 };
typedef char[31] name_type;
track[2] = 1;
dbla[0][3] = 2;

Name : array (0 .. 30) of Character; -- OR
Name : String (1 .. 30);
Track : array (0 .. 2) of Integer;
DblA
: array (0 .. 2) of array (0 .. 9) of Integer; -- OR
DblA
: array (0 .. 2,0 .. 9) of Integer;
: array (0 .. 2) of Integer := (0, 1, 2);
Init
type Name_Type is array (0 .. 30) of Character;
track(2)
:= 1;
dbla(0,3) := 2;
-- Note try this in C.
a, b : Name_Type;
a := b; -- will copy all elements of b into a.

Simple isn’t it, you can convert C arrays into Ada arrays very easily. What you don’t get is all the
things you can do with Ada arrays that you can’t do in C/C++.

13

1.1. C/C++ TYPES TO ADA TYPES.

1. ADA BASICS.

non-zero based ranges. Because Ada uses ranges to specify the bounds of an array then you can
easily set the lower bound to anything you want, for example:

Example : array (-10 .. 10) of Integer;

non-integer ranges.
In the examples above we have used the common abbreviation for range spec-
ifiers. The ranges above are all integer ranges, and so we did not need to use the correct form which
is:

array(type range low .. high)

which would make Example above array(Integer range -10 ..
where we’re going, take an enumerated type, All_Days and you can define an array:

10). Now you can see

Hours_Worked : array (All_Days range Monday .. Friday);

unbounded array types. The examples above did demonstrate how to declare an array type. One
of Ada’s goals is reuse, and to have to define a function to deal with a 1..10 array, and another for a
0..1000 array is silly. Therefore Ada allows you to define unbounded array types. An unbounded type
can be used as a parameter type, but you cannot simply define a variable of such a type. Consider:

Vector is array (Integer range <>) of Float;

type
procedure sort_vector(sort_this : in out Vector);
Illegal_Variable : Vector;
Legal_Variable
subtype SmallVector is Vector(0..1);
Another_Legal

: Vector(1..5);

: SmallVector;

This does allow us great flexibility to define functions and procedures to work on arrays regardless
of their size, so a call to sort_vector could take the Legal_Variable object or an object of
type SmallVector, etc. Note that a variable of type Smallvector is constrained and so can be
legally created.

array range attributes.
If you are passed a type which is an unbounded array then if you want to
loop through it then you need to know where it starts. So we can use the range attributes introduced
in 1.1.5 to iterate over a given array thus: attributes for array types. Consider:

Example : array (1 .. 10) of Integer;
for i in Example’First .. Example’Last loop
for i in Example’Range loop

Note that if you have a multiple dimension array then the above notation implies that the returned
values are for the first dimension, use the notation Array_Name’attribute(dimension) for
multi-dimensional arrays.

14

1.1. C/C++ TYPES TO ADA TYPES.

1. ADA BASICS.

Initialisation by range (Aggregates {}???) When initialising an array one can initialise a range of
elements in one go:

Init : array (0 .. 3) of Integer := (0 .. 3 => 1);
Init : array (0 .. 3) of Integer := (0 => 1, others => 0);

The keyword others sets any elements not explicitly handled.

Slicing Array slicing is something usually done with memcpy in C/C++. Take a section out of one
array and assign it into another.

Large : array (0 .. 100) of Integer;
Small : array (0 .. 3) of Integer;
-- extract section from one array into another.
Small(0 .. 3) := Large(10 .. 13);
-- swap top and bottom halfs of an array.
Large := Large(51 .. 100) & Large(1..50);

Note: Both sides of the assignment must be of the same type, that is the same dimensions with each
element the same. The following is illegal.

-- extract section from one array into another.
Small(0 .. 3) := Large(10 .. 33);
--

^^^^^^^^ range too big.

1.1.7 Records {3.8}.

You shouldn’t have too much problem here, you can see an almost direct mapping from C/C++ to
Ada for simple structures. Note the example below does not try to convert type to type, thus the C
char*, to hold a string is converted to the Ada String type.

struct _device {

int major_number;
int minor_number;
char name[20];

};
typedef struct _device Device;

type struct_device is

record

major_number : Integer;
minor_number : Integer;
name : String(1 .. 19);

end record;

type Device is new struct_device;

15

1.1. C/C++ TYPES TO ADA TYPES.

1. ADA BASICS.

As you can see, the main difference is that the name we declare for the initial record is a type, and
can be used from that point on. In C all we have declared is a structure name, we then require the
additional step of typedef-ing to add a new type name.

Ada uses the same element reference syntax as C, so to access the minor_number element of an
object lp1 of type Device we write lp1.minor_number. Ada does allow, like C, the initialisation
of record members at declaration. In the code below we introduce a feature of Ada, the ability to
name the elements we are going to initialise. This is useful for clarity of code, but more importantly
it allows us to only initialise the bits we want.

Device lp1 = {1, 2, "lp1"};
lp1 : Device := (1, 2, "lp1");
lp2 : Device := (major_number => 1,
minor_number => 3,
name => "lp2");

tmp : Device := (major_number => 255,

name => "tmp");

When initialising a record we use an aggregate, a construct which groups together the members. This
facility (unlike aggregates in C) can also be used to assign members at other times as well.

tmp : Device;
-- some processing
tmp := (major_number => 255, name => "tmp");

This syntax can be used anywhere where parameters are passed, initialisation (as above) function/procedure
calls, variants and discriminants and generics. The code above is most useful if we have a default value
for minor_number, so the fact that we left it out won’t matter. This is possible in Ada.

This facility improves readability and as far as most Ada programmers believe maintainability.

type struct_device is

record

major_number : Integer := 0;
minor_number : Integer := 0;
name : String(1 .. 19) := "unknown";

end record;

Structures/records like this are simple, and there isn’t much more to say. The more interesting problem
for Ada is modelling C unions (see section 1.1.10 on page 22).

1.1.8 Access types (pointers) {3.10}.

The topic of pointers/references/access types is the most difficult, each language has its own set of
rules and tricks. In C/C++ the thing you must always remember is that the value of a pointer is the
real memory address, in Ada it is not. It is a type used to access the data.

Ada access types are safer, and in some ways easier to use and understand, but they do mean that a
lot of C code which uses pointers heavily will have to be reworked to use some other means.

The most common use of access types is in dynamic programming, for example in linked lists.

16

1.1. C/C++ TYPES TO ADA TYPES.

1. ADA BASICS.

struct _device_event {

int major_number;
int minor_number;
int event_ident;
struct _device_event* next;

};

type Device_Event;
type Device_Event_Access is access Device_Event;
type Device_Event is

record

major_number : Integer := 0;
minor_number : Integer := 0;
event_ident
: Integer := 0;
next : Device_Event_Access := null;
-- Note: the assignement to null is not required,
-- Ada automatically initialises access types to
-- null if no other value is specified.

end record;

The Ada code may look long-winded but it is also more expressive, the access type is declared before
the record so a real type can be used for the declaration of the element next. Note: we have to forward
declare the record before we can declare the access type, is this extra line worth all the moans we hear
from the C/C++ community that Ada is overly verbose?

When it comes to dynamically allocating a new structure the Ada allocator syntax is much closer to
C++ than to C.

Event_1 := new Device_Event;
Event_1.next := new Device_Event’(1, 2, EV_Paper_Low, null);

There are three things of note in the example above. Firstly the syntax, we can say directly that
we want a new thing, none of this malloc rubbish. Secondly that there is no difference in syntax
between access of elements of a statically allocated record and a dynamically allocated one. We use
the record.element syntax for both. Lastly that we can initialise the values as we create the
object, the tick is used again, not as an attribute, but with parenthases in order to form a qualified
expresssion.

Ada allows you to assign between access types, and as you would expect it only changes what the
access type points to, not the contents of what it points to. One thing to note again, Ada allows you to
assign one structure to another if they are of the same type, and so a syntax is required to assign the
contents of an access type, its easier to read than write, so:

dev1, dev2 : Device_Event;
pdv1, pdv2 : Device_Event_Access;
dev1 := dev2; -- all elements copied.
pdv1 := pdv2; -- pdv1 now points to contents of pdv2.
pdv1.all := pdv2.all; -- !!

17

1.1. C/C++ TYPES TO ADA TYPES.

1. ADA BASICS.

What you may have noticed is that we have not discussed the operator to free the memory we have
allocated, the equivalent of C’s free() or C++’s delete.

There is a good reason for this, Ada does not have one.

To digress for a while, Ada was designed as a language to support garbage collection, that is the
runtime would manage deallocation of no longer required dynamic memory. However at that time
garbage collection was slow, required a large overhead in tracking dynamic memory and tended to
make programs irratic in performance, slowing as the garbage collector kicks in. The language spec-
ification therefore states {13.11} "An implementation need not support garbage collection ...". This
means that you must, as in C++ manage your own memory deallocation.

Ada requires you to use the generic procedure Unchecked_Deallocation (see 1.3.3 on page 36)
to deallocate a dynamic object. This procedure must be instantiated for each dynamic type and should
not (ideally) be declared on a public package spec, ie provide the client with a deallocation procedure
which uses Unchecked_Deallocation internally.

1.1.9 Ada advanced types and tricks.

Casting (wow) As you might expect from what we have seen so far Ada must allow us some way
to relax the strong typing it enforces. In C the cast allows us to make anything look like something
else, in Ada type coersion can allow you to convert between two similar types, ie:

type Thing is new Integer;
an_Integer : Integer;
a_Thing : Thing;
an_Integer := a_Thing; -- illegal
an_Integer := Integer(a_Thing);

This can only be done between similar types, the compiler will not allow such coersion between very
different types, for this you need the generic procedure Unchecked_Conversion (see 1.3.3 on
page 35) which takes as an argument one type, and returns another. The only constraint on this is that
they must be the same size.

Procedure types. {} Ada-83 did not allow the passing of procedures as subprogram parameters at
execution time, or storing procedures in records etc. The rationale for this was that it broke the ability
to statically prove the code. Ada-95 has introduced the ability to define types which are in effect
similar to C’s ability to define pointers to functions.

In C/C++ there is the most formidable syntax for defining pointers to functions and so the Ada syntax
should come as a nice surprise:

typedef int (*callback_func)(int param1, int param2);

type Callback_Func is access function(param_1 : in Integer;
param_2 : in Integer)

return Integer;

18

1.1. C/C++ TYPES TO ADA TYPES.

1. ADA BASICS.

Discriminant types {3.7}. Discriminant types are a way of parameterising a compound type (such
as a record, tagged, task or protected type). For example:

type Event_Item is

record

Event_ID
Event_Info : String(1 .. 80);

: Integer;

end record;

type Event_Log(Max_Size : Integer) is

record

Log_Opened : Date_Type;
Events : array (1 .. Max_Size) of Event_Item;

end record;

First we declare a type to hold our event information in. We then declare a type which is a log of such
events, this log has a maximum size, and rather than the C answer, define an array large enough for
the maximum ever, or resort to dynamic programming the Ada approach is to instantiate the record
with a max value and at time of instantiation define the size of the array.

My_Event_Log : Event_Log(1000);

If it is known that nearly all event logs are going to be a thousand items in size, then you could make
that a default value, so that the following code is identical to that above.

type Event_Log(Max_Size : Integer := 1000) is

record

Log_Opened : Date_Type
Events : array (Integer range 1 .. Max_Size) of Event_Item;

end record;

My_Event_Log : Event_Log;

Again this is another way in which Ada helps, when defining an interface, to state precisely what we
want to provide.

Variant records {3.8.1}. Anyone who has worked in a Pascal language will recognise variant
records, they are a bit like C/C++ unions except that the are very different :-)

Ada variant records allow you to define a record which has 2 or more blocks of data of which only
one is visible at any time. The visibility of the block is determined by a discriminant which is then
’cased’.

type Transport_Type is (Sports, Family, Van);

type Car(Type : Transport_Type) is

record

Registration_Date : Date_Type;

19

1.1. C/C++ TYPES TO ADA TYPES.

1. ADA BASICS.

Colour : Colour_Type;
case Type is

when Sports =>

Soft_Top : Boolean;

when Family =>

Number_Seats : Integer;
Rear_Belts : Boolean;

when Van =>

Cargo_Capacity: Integer;

end case;
end record;

So if you code My_Car :
Car(Family); then you can ask for the number of seats in the car,
and whether the car has seat belts in the rear, but you cannot ask if it is a soft top, or what its cargo
capacity is.

I guess you’ve seen the difference between this and C unions. In a C union representation of the above
any block is visible regardless of what type of car it is, you can easily ask for the cargo capacity of
a sports car and C will use the bit pattern of the boolean to provide you with the cargo capacity. Not
good.

To simplify things you can subtype the variant record with types which define the variant (note in the
example the use of the designator for clarity).

subtype Sports_Car is Car(Sports);
subtype Family_Car is Car(Type => Family);
subtype Small_Van

is Car(Type => Van);

Exceptions {11.1}. Exceptions are a feature which C++ is only now getting to grips with, although
Ada was designed with exceptions included from the beginning. This does mean that Ada code will
use exceptions more often than not, and certainly the standard library packages will raise a number of
possible exceptions.

Unlike C++ where an exception is identified by its type in Ada they are uniquely identified by name.
To define an exception for use, simply

parameter_out_of_range : Exception;

These look and feel like constants, you cannot assign to them etc, you can only raise an exception and
handle an exception.

Exceptions can be argued to be a vital part of the safety of Ada code, they cannot easily be ignored,
and can halt a system quickly if something goes wrong, far faster than a returned error code which in
most cases is completely ignored.

System Representation of types {13}. As you might expect with Ada’s background in embedded
and systems programming there are ways in which you can force a type into specific system repre-
sentations.

20

1.1. C/C++ TYPES TO ADA TYPES.

1. ADA BASICS.

type BYTE is range 0 .. 255;
for BYTE use 8;

This first example shows the most common form of system representation clause, the size attribute.
We have asked the compiler to give us a range, from 0 to 255 and the compiler is at liberty to provide
the best type available to hold the representation. We are forcing this type to be 8 bits in size.

type DEV_Activity is (READING, WRITING, IDLE);
for DEV_Activity use (READING => 1, WRITING => 2, IDLE => 3);

Again this is useful for system programming it gives us the safety of enumeration range checking, so
we can only put the correct value into a variable, but does allow us to define what the values are if
they are being used in a call which expects specific values.

type DEV_Available is BYTE;
for DEV_Available use at 16#00000340#;

This example means that all objects of type DEV_Available are placed at memory address 340
(Hex). This placing of data items can be done on a per object basis by using:

type DEV_Available is BYTE;
Avail_Flag : DEV_Available;
for Avail_Flag’Address use 16#00000340#;

Note the address used Ada’s version of the C 0x340 notation, however the general form is base#number#
where the base can be anything, including 2, so bit masks are real easy to define, for example:

Is_Available : constant BYTE := 2#1000_0000#;
Not_Available: constant BYTE := 2#0000_0000#;

Another feature of Ada is that any underscores in numeric constants are ignored, so you can break
apart large numbers for readability.

type DEV_Status is 0 .. 15;

type DeviceDetails is

record

status : DEV_Activity;
rd_stat: DEV_Status;
wr_stat: DEV_Status;

end record;

for DeviceDetails use

record at mod 2;

status
at 0 range 0 .. 7;
rd_stat at 1 range 0 .. 3;
wr_stat at 1 range 4 .. 7;

end record;

21

1.1. C/C++ TYPES TO ADA TYPES.

1. ADA BASICS.

This last example is the most complex, it defines a simple range type, and a structure. It then defines
two things to the compiler, first the mod clause sets the byte packing for the structure, in this case
back on two-byte boundaries. The second part of this structure defines exactly the memory image of
the record and where each element occurs. The number after the ’at’ is the byte offset and the range,
or size, is specified in number of bits.

From this you can see that the whole structure is stored in two bytes where the first byte is stored as
expected, but the second and third elements of the record share the second byte, low nibble and high
nibble.

This form becomes very important a little later on.

1.1.10 C Unions in Ada, (food for thought).

Ada has more than one way in which it can represent a union as defined in a C program, the method
you choose depends on the meaning and usage of the C union.

Firstly we must look at the two ways unions are identified. Unions are used to represent the data in
memory in more than one way, the programmer must know which way is relevant at any point in time.
This variant identifier can be inside the union or outside, for example:

struct _device_input {

int device_id;
union {

type_1_data from_type_1;
type_2_data from_type_2;

} device_data;

};
void get_data_func(_device_input* from_device);

union device_data {

type_1_data from_type_1;
type_2_data from_type_2;

};
void get_data_func(int *device_id, device_data* from_device);

In the first example all the data required is in the structure, we call the function and get back a structure
which holds the union and the identifier which denotes which element of the union is active. In the
second example only the union is returned and the identifier is seperate.

The next step is to decide whether, when converting such code to Ada, you wish to maintain simply
the concept of the union, or whether you are required to maintain the memory layout also. Note: the
second choice is usually only if your Ada code is to pass such a structure to a C program or get one
from it.

If you are simply retaining the concept of the union then you would not use the second form, use the
first form and use a variant record.

type Device_ID is new Integer;
type Device_Input(From_Device : Device_ID) is

record

22

1.2. C/C++ STATEMENTS TO ADA.

1. ADA BASICS.

case From_Device is

when 1 =>

From_Type_1 : Type_1_Data;

when 2 =>

From_Type_2 : Type_2_Data;

end case;
end record;

The above code is conceptually the same as the first piece of C code, however it will probably look
very different, you could use the following representation clause to make it look like the C code (type
sizes are not important).

for Device_Input use

record

From_Device at 0 range 0 .. 15;
From_Type_1 at 2 range 0 .. 15;
From_Type_2 at 2 range 0 .. 31;

end record;

You should be able to pass this to and from C code now. You could use a representation clause for the
second C case above, but unless you really must pass it to some C code then re-code it as a variant
record.

We can also use the abilities of Unchecked_Conversion to convert between different types
(see 1.3.3 on page 35). This allows us to write the following:

type Type_1_Data is

record

Data_1 : Integer;

end record;

type Type_2_Data is

record

Data_1 : Integer;

end record;

function Type_1_to_2 is new Unchecked_Conversion

(Source => Type_1_data, Target => Type_2_Data);

This means that we can read/write items of type Type_1_Data and when we need to represent the
data as Type_2_Data we can simply write

Type_1_Object : Type_1_Data := ReadData;
:
Type_2_Object : Type_2_Data := Type_1_to_2(Type_1_Object);

1.2 C/C++ statements to Ada.

I present below the set of C/C++ statement types available, with each its Ada equivalent.

Note: All Ada statements can be qualified by a name, this be discussed further in the section on Ada
looping constructs, however it can be used anywhere to improve readability, for example:

23

1.2. C/C++ STATEMENTS TO ADA.

1. ADA BASICS.

begin

Init_Code:

begin

Some_Code;

end Init_Code;

Main_Loop:

loop

if Some_Value then

exit loop Main_Loop;

end if;

end loop Main_Loop;

Term_Code:

begin

Some_Code;

end Term_Code;

end A_Block;

1.2.1 Compound Statement {5.6}

A compound statement is also known as a block and in C allows you to define variables local to that
block, in C++ variables can be defined anywhere. In Ada they must be declared as part of the block,
but must appear in the declare part just before the block starts.

{

}

declarations
statements

declare

declarations

begin

statement

end;

1.2.2

if Statement {5.3}

If statements are the primary selection tool available to programmers. The Ada if statement also has
the ’elsif’ construct (which can be used more than once in any if statement), very useful for large
complex selections where a switch/case statement is not possible.

Note: Ada does not require brackets around the expressions used in if, case or loop statements.

if (expression)
{

statement

} else {

statement

}

24

1.2. C/C++ STATEMENTS TO ADA.

1. ADA BASICS.

if expression then

statement

elsif expression then

statement

else

statement

end if;

1.2.3

switch Statement {5.4}

The switch or case statement is a very useful tool where the number of possible values is large, and
the selection expression is of a constant scalar type.

switch (expression)
{

case value: statement
default: statement

}

case expression is

=> statement
when value
when others => statement

end case;

There is a point worth noting here. In C the end of the statement block between case statements is a
break statement, otherwise we drop through into the next case. In Ada this does not happen, the end
of the statement is the next case.

This leads to a slight problem, it is not uncommon to find a switch statement in C which looks like
this:

switch (integer_value) {
case 1:
case 2:
case 3:
case 4:

value_ok = 1;
break;

case 5:
case 6:
case 7:

break;

}

This uses ranges (see 1.1.5 on page 11) to select a set of values for a single operation, Ada also allows
you to or values together, consider the following:

25

1.2. C/C++ STATEMENTS TO ADA.

1. ADA BASICS.

case integer_value is

when 1 .. 4 => value_ok := 1;
when 5 | 6 | 7 => null;

end case;

You will also note that in Ada there must be a statement for each case, so we have to use the Ada
null statement as the target of the second selection.

1.2.4 Ada loops {5.5}

All Ada loops are built around the simple loop ... end construct

loop

statement

end loop;

1.2.4.1 while Loop

The while loop is common in code and has a very direct Ada equivalent.

while (expression)
{

statement

}

while expression loop

statement

end loop;

1.2.4.2 do Loop

The do loop has no direct Ada equivalent, though section 1.2.4.4 will show you how to synthesize
one.

do
{

statement

} while (expression)

-- no direct Ada equivalent.

1.2.4.3 for Loop

The for loop is another favourite, Ada has no direct equivalent to the C/C++ for loop (the most
frighteningly overloaded statement in almost any language) but does allow you to iterate over a range,
allowing you access to the most common usage of the for loop, iterating over an array.

26

1.2. C/C++ STATEMENTS TO ADA.

1. ADA BASICS.

for (init-statement ; expression-1 ; loop-statement)
{

statement

}

for ident in range loop

statement

end loop;

However Ada adds some nice touches to this simple statement.

Firstly, the variable ident is actually declared by its appearance in the loop, it is a new variable which
exists for the scope of the loop only and takes the correct type according to the specified range.

Secondly you will have noticed that to loop for 1 to 10 you can write the following Ada code:

for i in 1 .. 10 loop

null;

end loop;

What if you want to loop from 10 down to 1? In Ada you cannot specify a range of 10 ..
1 as
this is defined as a ’null range’. Passing a null range to a for loop causes it to exit immediatly. The
code to iterate over a null range such as this is:

for i in reverse 1 .. 10 loop

null;

end loop;

1.2.4.4 break and continue

In C and C++ we have two useful statements break and continue which may be used to add fine
control to loops. Consider the following C code:

while (expression) {
if (expression1) {

continue;

}
if (expression2) {

break;

}

}

This code shows how break and continue are used, you have a loop which takes an expression to
determine general termination procedure. Now let us assume that during execution of the loop you
decide that you have completed what you wanted to do and may leave the loop early, the break forces
a ’jump’ to the next statement after the closing brace of the loop. A continue is similar but it takes
you to the first statement after the opening brace of the loop, in effect it allows you to reevaluate the
loop.

In Ada there is no continue, and break is now exit.

27

1.2. C/C++ STATEMENTS TO ADA.

1. ADA BASICS.

while expression loop
if expression2 then

exit;
end if;
end loop;

The Ada exit statement however can combine the expression used to decide that it is required, and so
the code below is often found.

while expression loop

exit when expression2;

end loop;

This leads us onto the do loop, which can now be coded as:

loop

statement
exit when expression;

end loop;

Another useful feature which C and C++ lack is the ability to ’break’ out of nested loops, consider

while ((!feof(file_handle) && (!percent_found)) {

for (char_index = 0; buffer[char_index] != ’\n’; char_index++) {

if (buffer[char_index] == ’%’) {

percent_found = 1;
break;

}
// some other code, including get next line.

}

}

This sort of code is quite common, an inner loop spots the termination condition and has to signal this
back to the outer loop. Now consider

Main_Loop:
while not End_Of_File(File_Handle) loop

for Char_Index in Buffer’Range loop

exit when Buffer(Char_Index) = NEW_LINE;
exit Main_Loop when Buffer(Char_Index) = PERCENT;

end loop;

end loop Main_Loop;

1.2.5

return {6.5}

Here again a direct Ada equivalent, you want to return a value, then return a value,

return value; // C++ return

return value; -- Ada return

28

1.2. C/C++ STATEMENTS TO ADA.

1. ADA BASICS.

1.2.6

labels and goto {5.8}

Don’t do it !!, OK one day you might need to, so heres how. Declare a label and jump to it.

label:

goto label;

< <label> >

goto label;

1.2.7

exception handling {11.2}

Ada and the newer verions of C++ support exception handling for critical errors. Exception handling
consists of three components, the exception, raising the exception and handling the exception.

In C++ there is no exception type, when you raise an exception you pass out any sort of type, and
selection of the exception is done on its type.
In Ada as seen above there is a ’psuedo-type’ for
exceptions and they are then selected by name.

Firstly lets see how you catch an exception, the code below shows the basic structure used to protect
statement1, and execute statement2 on detection of the specified exception.

try {

statement1

} catch (declaration) {

statement2

}

begin

statement1

exception

when ident => statement2
when others => statement2

end;

Let us now consider an example, we will call a function which we know may raise a particular
exception, but it may raise some we don’t know about, so we must pass anything else back up to
whoever called us.

try {

function_call();

} catch (const char* string_exception) {

if (!strcmp(string_exception, "the_one_we_want")) {

handle_it();

} else {
throw;

}

} catch (...) {

throw;

29

1.2. C/C++ STATEMENTS TO ADA.

1. ADA BASICS.

}

begin

function_call;

exception

when the_one_we_want => handle_it;
when others => raise;

end;

This shows how much safer the Ada version is, we know exactly what we are waiting for and can
immediately process it. In the C++ case all we know is that an exception of type ’const char*’ has
been raised, we must then check it still further before we can handle it.

You will also notice the similarity between the Ada exception catching code and the Ada case state-
ment, this also extends to the fact that the when statement can catch multiple exceptions. Ranges of
exceptions are not possible, however you can or exceptions, to get:

begin

function_call;

exception

when the_one_we_want |

another_possibility => handle_it;

when others => raise;

end;

This also shows the basic form for raising an exception, the throw statement in C++ and the raise
statement in Ada. Both normally raise a given exception, but both when invoked with no exception
reraise the last one. To raise the exception above consider:

throw (const char*)"the_one_we_want";

raise the_one_we_want;

1.2.8

sub-programs

The following piece of code shows how C/C++ and Ada both declare and define a function. Decla-
ration is the process of telling everyone that the function exists and what its type and parameters are.
The definitions are where you actually write out the function itself. (In Ada terms the function spec
and function body).

return_type func_name(parameters);
return_type func_name(parameters)
{

declarations
statement

}

function func_name(parameters) return return_type;
function func_name(parameters) return return_type is

30

1.2. C/C++ STATEMENTS TO ADA.

1. ADA BASICS.

declarations

begin

statement

end func_name;

Let us now consider a special kind of function, one which does not return a value. In C/C++ this is
represented as a return type of void, in Ada this is called a procedure.

void func_name(parameters);
procedure func_name(parameters);

Next we must consider how we pass arguments to functions.

void func1(int
void func2(int* by_address);
void func3(int& by_reference); // C++ only.

by_value);

These type of parameters are I hope well understood by C and C++ programmers, their direct Ada
equivalents are:

is new Integer;

type int
type int_star is access int;
procedure func1(by_value
procedure func2(by_address
procedure func3(by_reference : in out int);

: in
: in out int_star);

int);

Finally a procedure or function which takes no parameters can be written in two ways in C/C++,
though only one is Ada.

void func_name();
void func_name(void);
int func_name(void);

procedure func_name;
function

func_name return Integer;

Ada also provides two features which will be understood by C++ programmers, possibly not by C
programmers, and a third I don’t know how C does without:

Overloading Ada allows more than one function/procedure with the same name as long as they can
be uniquely identified by their signature (a combination of their parameter and return types).

function Day return All_Days;
function Day(a_date : in Date_Type) return All_Days;

The first returns you the day of week, of today, the second the day of week from a given date. They
are both allowed, and both visible. The compiler decides which one to use by looking at the types
given to it when you call it.

31

1.2. C/C++ STATEMENTS TO ADA.

1. ADA BASICS.

Operator overloading {6.6} As in C++ you can redefine the standard operators in Ada, unlike C++
you can do this outside a class, and for any operator, with any types. The syntax for this is to replace
the name of the function (operators are always functions) with the operator name in quotes, ie:

function "+"(Left, Right : in Integer) return Integer;

Available operators are:

=
+
*

<=
&

<
-
/
and or xor

>

>=
abs not
**

mod rem

Parameter passing modes C++ allows three parameter passing modes, by value, by pointer and by
reference (the default mode for Ada).

void func(int by_value, int* by_pointer, int& by_reference);

Ada provides two optional keywords to specify how parameters are passed, in and out. These are
used like this:

Integer);
procedure proc(Parameter : in
procedure proc(Parameter :
out Integer);
procedure proc(Parameter : in out Integer);
Integer);
procedure proc(Parameter :

If these keywords are used then the compiler can protect you even more, so if you have an out
parameter it will warn you if you use it before it has been set, also it will warn you if you assign to an
in parameter.

Note that you cannot mark parameters with out in functions as functions are used to return values,
such side affects are disallowed.

Default parameters {6.4.1} Ada (and C++) allow you to declare default values for parameters, this
means that when you call the function you can leave such a parameter off the call as the compiler
knows what value to use.

procedure Create

(File : in out File_Type;

Mode : in
Name : in
Form : in

File_Mode := Inout_File;
String := "";
String := "");

This example is to be found in each of the Ada file based IO packages, it opens a file, given the
file ’handle’ the mode, name of the file and a system independant ’form’ for the file. You can see
that the simplest invokation of Create is Create(File_Handle); which simply provides the
handle and all other parameters are defaulted (In the Ada library a file name of "" implies opening
a temporary file). Now suppose that we wish to provide the name of the file also, we would have
to write Create(File_Handle, Inout_File, "text.file"); wouldn’t we? The Ada
answer is no. By using designators as has been demonstrated above we could use the form:

32

1.3. ADA SAFETY.

1. ADA BASICS.

Create(File => File_Handle,

Name => "text.file");

and we can leave the mode to pick up its default. This skipping of parameters is a uniquely Ada
feature.

Nested procedures Simple, you can define any number of procedures within the definition of an-
other as long as they appear before the begin.

procedure Sort(Sort_This : in out An_Array) is

procedure Swap(Item_1, Item_2 : in out Array_Type) is
begin
end Swap;

begin
end Sort;

Notes: you can get in a mess with both C++ and Ada when mixing overloading and defaults. For
example:

procedure increment(A_Value : A_Type);
procedure increment

(A_Value : in out A_Type;

By

: in

Integer := 1);

If we call increment with one parameter which of the two above is called? Now the compiler will
show such things up, but it does mean you have to think carefully and make sure you use defaults
carefully.

1.3 Ada Safety.

Ada is probably best known for its role in safetly critical systems. Ada is probably best known for its
role in safety critical systems. Boeing standardized on Ada as the language for the new 777, and I can
assure you such a decision is not taken lightly.

Ada is also commonly assumed to be a military language, with the US Department of Defense its
prime advocate, this is not the case, a number of commercial and government developments have
now been implemented in Ada. Ada is an excellent choice if you wish to spend your development
time solving your customers problems, not hunting bugs in C/C++ which an Ada compiler would not
have allowed.

1.3.1 Static provability.

Ada-83 did not provide Object Oriented features, and did not even provide procedural types as such
constructs meant that you could only follow the path of the code at runtime. Ada-83 was statically
provable, you could follow the route the code would take given certain inputs from the source code

33

1.3. ADA SAFETY.

1. ADA BASICS.

alone. This has been a great benefit and has provided Ada programmers with a great deal of confidence
in the code they wrote.

Ada-95 has introduced these new features, Object Oriented programming through tagged types and
procedural types which make it more difficult to statically prove an Ada-95 program, but the language
designers decided that such features merited their inclusion in the language to further another goal,
that of high reuse.

1.3.2 Predefined exceptions and pragmas.

A number of exceptions can be raised by the standard library and/or the runtime environment. You
may expect to come accross at least one while you are learning Ada (and more once you know it ;-).

Constraint_Error

This exception is raised when a constraint is exceeded, such constraints include

• Numeric under/overflow.

• Range bounds exceeded.

• Reference to invalid record component.

• Dereference of null access type.

Program_Error

This is raised by the run-time to mark an erroneous program event, such as calling a procedure
before package initialisation, or bad instantiation of a generic package.

Storage_Error

This exception is raised when a call to new could not be satisfied due to lack of memory.

Tasking_Error

This is raised when problems occur during tasking rendezvous (see section 7.2 on page 58).

This is not a list of the predefined pragmas {L} what I have provided is the set of options to the pragma
Supress which can be used to stop certain run-time checks taking place. The pragma works from
that point to the end of the innermost enclosing scope, or the end of the scope of the named object
(see below).

Access_Check

Raises Constraint_Error on dereference of a null access value.

Accessibility_Check

Raises Program_Error on access to inaccessible object or subprogram.

Discriminant_Check

Raises Constraint_Error on access to incorrect component in a discriminant record.

Division_Check

Raises Constraint_Error on divide by zero.

34

1. ADA BASICS.

1.3. ADA SAFETY.

Elaboration_Check

Raises Program_Error on unelaborated package or subprogram body.

Index_Check

Raises Constraint_Error on out of range array index.

Length_Check

Raises Constraint_Error on array length violation.

Overflow_Check

Raises Constraint_Error on overflow from numeric operation.

Range_Check

Raises Constraint_Error on out of range scalar value.

Storage_Check

Raises Storage_Error if not enough storage to satisfy a new call.

Tag_Check

Raises Constraint_Error if object has an invalid tag for operation.

pragma Suppress(Access_Check);
pragma Suppress(Access_Check, On => My_Type_Ptr);

The first use of the pragma above turns off checking for null access values throughout the code (for
the lifetime of the suppress), whereas the second only suppresses the check for the named data item.

The point of this section is that by default all of these checks are enabled, and so any such errors will
be trapped.

1.3.3 Unchecked programming.

You can subvert some of Adas type consistency by the use of unchecked programming. This is
basically a set of procedures which do unsafe operations. These are:

Unchecked_Conversion

This generic function is defined as:

generic
type Source (<>) is limited private;
type Target (<>) is limited private;
function Ada.Unchecked_Conversion (Source_Object : Source)

return Target;

and should be instantiated like the example below (taken from one of the Ada-95 standard
library packages Ada.Interfaces.C).

function Character_To_char is new

Unchecked_Conversion (Character, char);

35

1.3. ADA SAFETY.

1. ADA BASICS.

and can then be used to convert and Ada character to a C char, thus

A_Char : Interfaces.C.char := Character_To_char(’a’);

Unchecked_Deallocation

This generic function is defined as:

generic
type Object (<>) is limited private;
type Name is access Object;
procedure Ada.Unchecked_Deallocation (X : in out Name);

this function, instantiated with two parameters, only requires one for operation,

type My_Type is new Integer;
type My_Ptr
procedure Free is new Unchecked_Deallocation (My_Type, My_Ptr);
Thing : My_Ptr := new My_Type;
Free(Thing);

is access My_Type;

36

2

Ada Packages. {7}

Ada has one feature which many C/C++ programmers like to think they have an equivalent too - the
package - they do not.

It is worth first looking at the role of header files in C/C++. Header files are simply program text
which by virtue of the preprocessor are inserted into the compilers input stream. The #include
directive knows nothing about what it is including and can lead to all sorts of problems, such as
people who #include "thing.c". This sharing of code by the preprocessor lead to the #ifdef
construct as you would have different interfaces for different people. The other problem is that C/C++
compilations can sometime take forever because a included b included c . . . or the near fatal a
included a included a . . .

Stroustrup has tried ref [9] (in vain, as far as I can see) to convince C++ programmers to remove
dependance on the preprocessor but all the drawbacks are still there.

Any Ada package on the other hand consists of two parts, the specification (header) and body (code).
The specification however is a completely stand alone entity which can be compiled on its own and
so must include specifications from other packages to do so. An Ada package body at compile time
must refer to its package specification to ensure legal declarations, but in many Ada environments it
would look up a compiled version of the specification.

The specification contains an explicit list of the visible components of a package and so there can be
no internal knowledge exploited as is often the case in C code, ie module a contains a functions aa()
but does not export it through a header file, module b knows how a is coded and so uses the extern
keyword to declare knowledge of it, and use it. C/C++ programmers therefore have to mark private
functions and data as static.

2.1 What a package looks like

Below is the skeleton of a package, spec and body.

--file example.ads, the package specification.
package example is
:
:
end example;

37

2.2. INCLUDE A PACKAGE IN ANOTHER

2. ADA PACKAGES. {7}

--file example.adb, the package body.
package body example is
:
:
end example;

2.2 Include a package in another

Whereas a C file includes a header by simply inserting the text of the header into the current com-
pilation stream with #include "example.h", the Ada package specification has a two stage
process.

Working with the example package above let us assume that we need to include another package, say
My_Specs into this package so that it may be used. Firstly where do you insert it? Like C, package
specifications can be inserted into either a specification or body depending on who is the client. Like
a C header/code relationship any package included in the specification of package A is visible to the
body of A, but not to clients of A. Each package is a seperate entity.

-- Specification for package example
with Project_Specs;
package example is

type My_Type is new Project_Spec.Their_Type;

end example;

-- Body for package example
with My_Specs;
package body example is

type New_Type_1 is new My_Specs.Type_1;
type New_Type_2 is new Project_Specs.Type_1;

end example;

You can see here the basic visibility rules, the specification has to include Project_Specs so that
it can declare My_Type. The body automatically inherits any packages included in its spec, so that
you can see that although the body does not include Project_Specs that package is used in the
declaration of New_Type_1. The body also includes another package My_Specs to declare the
new type New_Type_2, the specification is unaware of this include and so cannot use My_Specs
to declare new types. In a similar way an ordinary client of the package example cannot use the
inclusion of Project_Specs, they would have to include it themselves.

To use an item, say a the type Type_1 you must name it My_Specs.Type_1, in effect you have
included the package name, not its contents. To get the same effect as the C #include you must
also add another statement to make:

with My_Specs; use My_Specs
package body example is
:
:
end example;

38

2.3. PACKAGE DATA HIDING {7.3}

2. ADA PACKAGES. {7}

It is usual in Ada to put the with and the use on the same line, for clarity. There is much more to be
said about Ada packages, but that should be enough to start with. There is a special form of the use
statement which can simply include an element (types only) from a package, consider:

use type Ada.Calendar.Time;

2.3 Package data hiding {7.3}

Data encapulation requires, for any level of safe reuse, a level of hiding. That is to say we need to
defer the declaration of some data to a future point so that any client cannot depend on the structure
of the data and allows the provider the ability to change that structure if the need arises.

In C this is done by presenting the ’private type’ as a void* which means that you cannot know
anything about it, but implies that no one can do any form of type checking on it. In C++ we can
forward declare classes and so provide an anonymous class type.

/* C code */
typedef void* list;
list create(void);
// C++
class Our_List {
public:

Our_List(void);

private:

class List_Rep;
List_Rep* Representation;

};

You can see that as a C++ programmer you have the advantage that when writing the implementa-
tion of Our_List and its internal representation List_Rep you have all the advantages of type
checking, but the client still knows absolutely nothing about how the list is structured.

In Ada this concept is formalised into the ’private part’ of a package. This private part is used to
define items which are forward declared as private.

package Our_List is
type List_Rep is private;
function Create return List_Rep;
private

type List_Rep is

record

-- some data

end record;
end Our_List;

As you can see the way the Ada private part is usually used the representation of List_Rep is
exposed, but because it is a private type the only operations that the client may use are = and /=, all
other operations must be provided by functions and procedures in the package.

39

2.4. HIERARCHICAL PACKAGES.

2. ADA PACKAGES. {7}

Note: we can even restrict use of = and /= by declaring the type as limited private when you
wish to have no predefined operators available.

You may not in the public part of the package specification declare variables of the private type as the
representation is not yet known, we can declare constants of the type, but you must declare them in
both places, forward reference them in the public part with no value, and then again in the private part
to provide a value:

package Example is

type A is private;
B : constant A;

private

type A is new Integer;
B : constant A := 0;

end Example;

To get exactly the same result as the C++ code above then you must go one step further, you must not
expose the representation of List_Rep, and so you might use:

package Our_List is

type List_Access is limited private;
function Create return List_Access;

private

type List_Rep; -- opaque type
type List_Access is access List_Rep;

end Our_List;

We now pass back to the client an access type, which points to a ’deferred incomplete type’ whose
representation is only required to be exposed in the package body.

2.4 Hierarchical packages.

Ada allows the nesting of packages within each other, this can be useful for a number of reasons.
With Ada-83 this was possible by nesting package specs and bodies physically, thus:

package Outer is

package Inner_1 is
end Inner_1;
package Inner_2 is
end Inner_2;

private
end Outer;

Ada-95 has added to this the possibility to define child packages outside the physical scope of a
package, thus:

40

2.5. RENAMING IDENTIFIERS.

2. ADA PACKAGES. {7}

package Outer is
package Inner_1 is
end Inner_1;
end Outer;
package Outer.Inner_2 is
end Outer.Inner_2;

As you can see Inner_2 is still a child of outer but can be created at some later date, by a different
team.

2.5 Renaming identifiers.

This is not a package specific topic, and it is only introduced here as the using of packages is the most
common place to find a renames clause.

Consider:

with Outer;
with Outer.Inner_1;
package New_Package is

OI_1 renames Outer.Inner_1;
type New_type is new OI_1.A_Type;

end New_Package;

The use of OI_1 not only saves us a lot of typing, but if outer were the package Sorting_Algorithms,
and Inner_1 was Insertion_Sort, then we could have
Sort renames Sorting_Algorithms.Insertion_Sort
and then at some later date if you decide that a quick sort is more approriate then you simply change
the renames clause, and the rest of the package spec stays exactly the same.

Similarly if you want to include 2 functions from two different package with the same name then,
rather than relying on overloading, or to clarify your code text you could:

with Package1;
function Function1 return Integer renames Package1.Function;
with Package2;
function Function2 return Integer renames Package2.Function;

Another example of a renames clause is where you are using some complex structure and you want to
in effect use a synonym for it during some processing. In the example below we have a device handler
structure which contains some procedure types which we need to execute in turn. The first example
contains a lot of text which we don’t really care about, so the second removes most of it, thus leaving
bare the real work we are attempting to do.

for device in Device_Map loop

Device_Map(device).Device_Handler.Request_Device;
Device_Map(device).Device_Handler.

Process_Function(Process_This_Request);

41

2.5. RENAMING IDENTIFIERS.

2. ADA PACKAGES. {7}

Device_Map(device).Device_Handler.Relinquish_Device;

end loop;

for device in Device_Map loop

declare

Device_Handler : Device_Type renames
Device_Map(device).Device_Handler;

begin

Device_Handler.Request_Device;
Device_Handler.Process_Function(Process_This_Request);
Device_Handler.Relinquish_Device;

end;

end loop;

42

3

Ada-95 Object Oriented Programming.

C++ extends C with the concept of a class. A class is an extension of the existing struct construct
which we have reviewed in section 1.1.7 on page 15. The difference with a class is that a class not
only contains data (member attributes) but code as well (member functions). A class might look like:

class A_Device {
public:

A_Device(char*, int, int);
char* Name(void);
int
int

Major(void);
Minor(void);

protected:

char* name;
int
int

major;
minor;

};

This defines a class called A_Device, which encapsulates a Unix-like /dev entry. Such an entry has a
name and a major and minor number, the actual data items are protected so a client cannot alter them,
but the client can see them by calling the public interface functions.

The code above also introduces a constructor, a function with the same name as the class which is
called whenever the class is created. In C++ these may be overloaded and are called either by the
new operator, or in local variable declarations as below.

A_Device lp1("lp1", 10, 1);
A_Device* lp1;

lp1 = new A_Device("lp1", 10, 1);

Creates a new device object called lp1 and sets up the name and major/minor numbers.

Ada has also extended its equivalent of a struct, the record but does not directly attach the member
functions to it. First the Ada equivalent of the above class is

package Devices is

type Device is tagged private;

43

3.1. THE TAGGED TYPE.

3. ADA-95 OBJECT ORIENTED PROGRAMMING.

type Device_Type is access Device;
function Create(Name

: String;

Major : Integer;
Minor : Integer)

function Name(this : Device_Type)
function Major(this : Device_Type) return Integer;
function Minor(this : Device_Type) return Integer;

return Device_Type;
return String;

private

type Device is tagged

record
Name
Major : Integer;
Minor : Integer;

: String(1 .. 20);

end record;

end Devices;

and the equivalent declaration of an object would be:

lp1 : Devices.Device_Type := Devices.Create("lp1", 10, 1);

3.1 The tagged type.

The addition of the keyword tagged to the definition of the type Device makes it a class in C++
terms. The tagged type is simply an extension of the Ada-83 record type but (in the same way C++’s
class is an extension of C’s struct) which includes a ’tag’ which can identify not only its own
type but its place in the type hierarchy.

The tag can be accessed by the attribute ’Tag but should only be used for comparison, ie

dev1, dev2 : Device;
if dev1’Tag = dev2’Tag then

this can identify the isa relationship between two objects.

Another important attribute ’Class exists which is used in type declarations to denote the class-wide
type, the inheritence tree rooted at that type, ie

type Device_Class is Device’Class;
-- or more normally
type Device_Class is access Device’Class;

The second type denotes a pointer to objects of type Device and any objects whos type has been
inherited from Device.

3.2 Class member attributes.

Member attributes in C++ directly map onto data members of the tagged type. So the char* name
directly maps into Name : String.

44

3.3. CLASS MEMBER FUNCTIONS.

3. ADA-95 OBJECT ORIENTED PROGRAMMING.

3.3 Class member functions.

Non-virtual, non-const, non-static member functions map onto subprograms, within the same package
as the tagged type, whos first parameter is of that tagged type or an access to the tagged type, or who
returns such a type.

3.4 Virtual member functions.

Virtual member functions map onto subprograms, within the same package as the tagged type, whos
first parameter is of the class-wide type, or an access to the class-wide type, or who returns such a
type.

A pure virtual function maps onto a virtual member function with the keywords is abstract
before the semicolon. When any pure virtual member functions exist the tagged type they refer to
must also be identified as abstract. Also, if an abstract tagged type has been introduced which has no
data, then the following shorthand can be used:

type Root_Type is abstract tagged null record;

3.5 Static members.

Static members map onto subprograms within the same package as the tagged type. These are no
different from normal Ada-83 subprograms, it is up to the programmer when applying coding rules
to identify only member functions or static functions in a package which includes a tagged type.

3.6 Constructors/Destructors for Ada.

As you can see from the example above there is no constructors and destructors in Ada. In the example
above we have synthesised this with the Create function which creates a new object and returns it.
If you intend to use this method then the most important thing to remember is to use the same name
throughout, Create Copy Destroy etc are all useful conventions.

Ada does provide a library package Ada.Finalization which can provide constructor/destructor
like facilities for tagged types.

Note: See [4].

3.7

Inheritance, single and multiple.

The most common attribute sited as the mark of a true object oriented language is support for inheri-
tance. Ada-95 adds this as tagged type extension.

For example, let us now inherit the device type above to make a tape device, firstly in C++

45

3.8. PUBLIC/PROTECTED/PRIVATE.

3. ADA-95 OBJECT ORIENTED PROGRAMMING.

class A_Tape : public A_Device {
public:

A_Tape(char*, int, int);
int Block_Size(void);

protected:

int block_size;

};

Now let us look at the example in Ada.

package Device.Tapes is

type Tape is new device with private;
type Tape_Type is access Tape;
function Create(Name : String;

Major : Integer;
Minor : Integer) return Tape_Type;

function Block_Size(this : Tape_Type) return Integer;

private

type Tape is new Device with

record

Block_Size : Integer;

end record;

end Device.Tapes;

Ada does not directly support multiple inheritance, ref [5] has an example of how to synthesise mulit-
ple inheritance.

3.8 public/protected/private.

In the example at the top of this section we provided the Device comparison.
In this example
the C++ class provided a public interface and a protected one, the Ada equivalent then provided an
interface in the public part and the tagged type declaration in the private part. Because of the rules for
child packages (see 2.4 on page 40) a child of the Devices package can see the private part and so
can use the definition of the Device tagged type.

Top mimic C++ private interfaces you can choose to use the method above, which in effect makes
them protected, or you can make them really private by using opaque types (see 2.3 on page 39).

3.9 A more complete example.

class base_device {
public:

major(void) const;
minor(void) const;

char* name(void) const;
int
int
enum { block, character, special } io_type;
io_type type(void) const;

46

3.9. A MORE COMPLETE EXAMPLE.

3. ADA-95 OBJECT ORIENTED PROGRAMMING.

char read(void) = 0;
void write(char) = 0;
static char* type_name(void);

protected:

_major;
_minor;

char* _name;
int
int
static const io_type _type;
base_device(void);

private:

int _device_count;

};

The class above shows off a number of C++ features,

• Some const member functions.

• Some pure virtual member functions.

• A Static member function.

• Some protected member attributes.

• A Static const member attribute.

• A protected constructor.

• A private member attribute.

All of these, including the reasons why they might be used should be familiar to you, below is an
equivalent specification in Ada.

package Devices is

is access Device;

type Device is abstract tagged limited private;
type Device_Type
type Device_Class is access Device’Class;
type IO_Type is (Block, Char, Special);
: in Device_Type) return String;
function Name(this
: in Device_Type) return Integer;
function Major(this
function Minor(this
: in Device_Type) return Integer;
function IOType(this : in Device_Type) return IO_Type;
function Read(this
procedure Write(this : Device_Class; Output : Character) is abstract;
function Type_Name return String;

return Character is abstract;

: Device_Class)

private

type Device_Count;
type Device_Private is access Device_Count;
type Device is abstract tagged limited
record
Name

: String(1 .. 20);

47

3.9. A MORE COMPLETE EXAMPLE.

3. ADA-95 OBJECT ORIENTED PROGRAMMING.

Major : Integer;
Minor : Integer;
Count : Device_Private;

end record;
Const_IO_Type
: constant IO_Type := special;
Const_Type_Name : constant String := "Device";

end Devices;

48

4

Generics

One of Ada’s strongest claims is the ability to code for reuse. C++ also claims reuse as one of its
goals through Object Oriented Programming. Ada-83 allowed you to manage the data encapsula-
tion and layering through the package mechanism and Ada-95 does include proper facilities for OO
Programming. Where Ada led however, and C++ is following is the area of generic, or template
programming.

4.1 A generic procedure {12.6}

For example. A sort algorithm is well understood, and we may like to code a sort for an array of int’s
in C, we would have a function like:

void sort(int *array, int num_elements);

however when you come to sort an array of structures you either have to rewrite the function, or you
end up with a generic sort function which looks like this:

void sort(void *array, int element_size, int element_count,
int (*compare)(void* el1, void *el2));

This takes a bland address for the start of the array user supplied parameters for the size of each
element and the number of elements and a function which compares two elements. C does not have
strong typing, but you have just stripped away any help the compiler might be able to give you by
using void*.

Now let us consider an Ada generic version of the sort function:

generic

type index_type is (<>);
type element_type is private;
type element_array is array (index_type range <>) of element_type;
with function "<" (el1, el2 : element_type) return Boolean;

procedure Sort(the_array : in out element_array);

49

4.2. GENERIC PACKAGES {12.7}

4. GENERICS

This shows us quite a few features of Ada generics and is a nice place to start, for example note that
we have specified a lot of detail about the thing we are going to sort, it is an array, for which we don’t
know the bounds so it is specified as range <>. We also can’t expect that the range is an integer
range and so we must also make the range type a parameter, index_type. Then we come onto the
element type, this is simply specified as private, so all we know is that we can test equality and assign
one to another. Now that we have specified exactly what it is we are going to sort we must ask for a
function to compare two elements, similar to C we must ask the user to supply a function, however
in this case we can ask for an operator function and notice that we use the keyword with before the
function.

I think that you should be able to see the difference between the Ada code and C code as far as
readability (and therefore maintainability) are concerned and why, therefore, Ada promotes the reuse
philosophy.

Now let’s use our generic to sort some of MyTypes.

MyArray : array (Integer 0 .. 100) of MyType;
function LessThan(el1, el2 : MyType) return Boolean;
procedure SortMyType is new Sort(Integer, MyType, MyArray, LessThan);
SortMyType(MyArray);

The first two lines simply declare the array we are going to sort and a little function which we use to
compare two elements (note: no self respecting Ada programmer would define a function LessThan
when they can use "<", this is simply for this example). We then go on to instantiate the generic
procedure and declare that we have an array called MyArray of type MyType using an Integer
range and we have a function to compare two elements. Now that the compiler has instantiated the
generic we can simply call it using the new name.

Note: The Ada compiler instantiates the generic and will ensure type safety throughout.

4.2 Generic packages {12.7}

Ada packages and generics where designed to go together, you will even find generic packages in the
Ada standard library. For example:

generic
type Element_Type is private;
package Ada.Direct_IO is

Is the standard method for writing out binary data structures, and so one could write out to a file:

type My_Struct is
record
...
end record;
package My_Struct_IO is new Ada.Direct_IO(My_Struct);
use My_Struct_IO;
Item : My_Struct;
File : My_Struct_IO;
...
My_Struct_IO.Write(File, Item);

50

4.3. GENERIC TYPES AND OTHER PARAMETERS {12.4}

4. GENERICS

Note: see section 5.2 on page 53 for a more detailed study of these packages and how they are used.

4.3 Generic types and other parameters {12.4}

The types you may specify for a generic subprogram or package are as follows:

type X is private

We can know nothing about the type, except that we may test for equality and we may assign one to
another. If we add in the keyword limited then even these abilities are unavailable.

type X(<>) is private

Added for Ada-95, this is similar to the parameter above except that we can define data items in the
body of our package of type X, this may be illegal if the type passed is unconstrained, ie String.
Ada-95 does not allow the instantiation of generics with unconstrained types, unless you use this
syntax in which case you cannot declare data items of this type.

type X is (<>)

The type is a discrete type, Integer, Character, Enumeration etc.

type X is range <>

The type indicates a range, ie 0 ..

100.

type X is mod <>

The type is a modulus type of unknown size (Added for Ada-95).

type X is digits <>

The type is a floating point type.

type X is delta <>

The type is a fixed point type.

type X is tagged private

The type is a tagged type, ie an Ada-95 extensible record.

There is one final parameter which may be passed to a generic package, another generic package
(Added for Ada-95).

with Generic_Tree;
generic

with package A_Tree is new Generic_Tree(<>);

package Tree_Walker is

-- some code.
end Tree_Walker;

This says that we have some package called Generic_Tree which is a generic package implementing
a tree of generic items. We want to be able to walk any such tree and so we say that we have a new
generic package which takes a parameter which must be an instantiated package. ie

package AST is new Generic_Tree(Syntax_Element);
package AST_Print is new Tree_Walker(AST);

51

5

IO

A common area for confusion is the Ada IO model, this has been shaped by the nature of the language
itself and specifically the strong typing which has a direct impact on the model used to construct the
IO libraries. If you stop and think about it briefly it is quite clear that with the typing rules we have
introduced above you cannot write a function like the C write() which takes any old thing and puts
it out to a file, how can you write a function which will take any parameter, even types which will be
introduced after it has been completed. Ada-83 took a two pronged approach to IO, with the package
Text_IO for simple, textual input output, and the packages Sequential_IO and Direct_IO
which are generic packages for binary output of structured data.

The most common problem for C and C++ programmers is the lack of the printf family of IO func-
tions. There is a good reason for their absence in Ada, the use in C of variable arguments, the ’...’ at
the end of the printf function spec. Ada cannot support such a construct as the type of each parameter
is unknown.

5.1 Ada.Text_IO

The common way to do console-like IO, similar to C’s printf(), puts() and putchar() is to use the
package Ada.Text_IO. This provides a set of overloaded functions called Put and Get to read
and write to the screen or to simple text files. There are also functions to open and close such files,
check end of file conditions and to do line and page management.

A simple program below uses Text_IO to print a message to the screen, including numerics! These
are achieved by using the types attribute ’Image which gives back a String representation of a value.

with Ada.Text_IO; use Ada.Text_IO;
procedure Test_IO is
begin

Put_Line("Test Starts Here >");
Put_Line("Integer is " & Integer’Image(2));
Put_Line("Float is " & Float’Image(2.0));
Put_Line("Test Ends Here");

end Test_IO;

It is also possible to use one of the generic child packages of Ada.Text_IO such as
Ada.Text_IO.Integer_IO which can be instantiated with a particular type to provide type safe
textual IO.

52

5.2. ADA.SEQUENTIAL_IO AND ADA.DIRECT_IO

5. IO

with Ada.Text_IO;
type My_Integer is new Integer;
package My_Integer_IO is new Ada.Text_IO.Integer_IO(My_Integer);
use My_Integer_IO;

5.2 Ada.Sequential_IO and Ada.Direct_IO

These two generic packages provide IO facilities for files which contain identical records. They can
be instantiated in a similar way to the generic text IO packages above, so for example:

with Ada.Direct_IO;
package A_Database is
type File_Header is

record

Magic_Number
: Special_Stamp;
Number_Of_Records : Record_Number;
: Record_Number;
First_Deleted

end record;

type Row is

record

Key : String(1 .. 80);
Data : String(1 .. 255);

end record;

package Header_IO is new Direct_IO (File_Header); use Header_IO;
package Row_IO
use Record_IO;
end A_Database;

is new Direct_IO (Row);

Now that we have some instantiated packages we can read and write records and headers to and from
a file. However we want each database file to consist of a header followed by a number of rows, so
we try the following

declare
Handle
A_Header : File_Header;
: Row;
A_Row

: Header_IO.File_Type;

begin

Header_IO.Open(File => Handle, Name => "Test");
Header_IO.Write(Handle, A_Header);
Row_IO.Write(Handle, A_Row);
Header_IO.Close(Handle);

end;

The obvious error is that Handle is defined as a type exported from the Header_IO package and so
cannot be passed to the procedure Write from the package Row_IO. This strong typing means that
both Sequential_IO and Direct_IO are designed only to work on files containg all elements
of the same type.

When designing a package, if you want to avoid this sort of problem (the designers of these packages
did intend this restriction) then embed the generic part within an enclosing package, thus

53

5.2. ADA.SEQUENTIAL_IO AND ADA.DIRECT_IO

5. IO

package generic_IO is

type File_Type is limited private;
procedure Create(File : File_Type ....
procedure Close .....
generic

Element_Type is private;

package Read_Write is

procedure Read(File : File_Type;

Element : Element_Type ...

procedure Write .....

end Read_Write;

end generic_IO;

Which would make our database package look something like

with generic_IO;
package A_Database is
type File_Header is

record

Magic_Number
: Special_Stamp;
Number_Of_Records : Record_Number;
: Record_Number;
First_Deleted

end record;

type Row is

record
Key
Data : String(1 .. 255);

: String(1 .. 80);

end record;

package Header_IO is new generic_IO.Read_Write (File_Header);
use Header_IO;
package Row_IO
use Record_IO;
end A_Database;
:
:
declare

is new generic_IO.Read_Write (Row);

: generic_IO.File_Type;

Handle
A_Header : File_Header;
: Row;
A_Row

begin

generic_IO.Open(File => Handle, Name => "Test");
Header_IO.Write(Handle, A_Header);
Row_IO.Write(Handle, A_Row);
generic_IO.Close(Handle);

end;

54

5.3. STREAMS

5.3 Streams

5. IO

This is a new Ada-95 feature which I will add once I have a copy of GNAT which supports the feature.
I like to have examples which I have compiled/tried.

55

6

Interfacing to other languages

Ada-95 has a specified set of packages under the top level package Interfaces which define
functions to allow you to convert data types between the Ada program and the external language
routines.

The full set of packages defined for interfaces are show below.

Interfaces

C

Pointers
Strings

COBOL

CPP

Fortran

56

7

Concurrency

To some this section does not fit in the remit of a C++ programmers guide to Ada, however most
modern operating systems contain constructs known either as lightweight processes or as threads.
These allow programmers to have multiple threads of execution within the same address space. Many
of you will be familiar with this concept and so I will use it as a basis for explaining tasks below, you
may skip the next paragraph.

Unlike C/C++ Ada defines a concurrency model as part of the language itself. Some languages
(Modula-3) provide a concurrency model through the use of standard library packages, and of course
some operating systems provide libraries to provide concurrency. In Ada there are two base com-
ponents, the task which encapsulates a concurrent process and the protected type which is a data
structure which provides guarded access to its data.

7.1 Tasks

7.1.1 Tasks as threads

For those who have not worked in a multi-threaded environment you might like to consider the ad-
vantages. In a non-multi-threaded UNIX (for example) the granularity of concurrency is the process.
This process is an atomic entity to communicate with other processes you must use sockets, IPC etc.
The only way to start a cooperating process is to initialise some global data and use the fork function
to start a process which is a copy of the current process and so inherits these global variables. The
problem with this model is that the global variables are now replicated in both processes, a change to
one is not reflected in the other.

In a multi-threaded environment multiple concurrent processes are allowed within the same address
space, that is they can share global data. Usually there are a set of API calls such as StartThread,
StopThread etc which manage these processes.

Note: An Ada program with no tasks is really an Ada process with a single running task, the default
code.

7.1.2 A Simple task

In the example below an Ada task is presented which will act like a thread found in a multi-threaded
operating system such as OS/2, Windows-NT or Solaris.

57

7.2. TASK SYNCHRONIZATION (RENDEZVOUZ)

7. CONCURRENCY

task X is
end X;

task body X is
begin
loop

-- processing.

end loop;

end X;

As with packages a task comes in two blocks, the specification and the body. Both of these are shown
above, the task specification simply declares the name of the task and nothing more. The body of the
task shows that it is a loop processing something. In many cases a task is simply a straight through
block of code which is executed in parallel, or it may be, as in this case, modelled as a service loop.

7.1.3 Task as types

Tasks can be defined as types, this means that you can define a task which can be used by any client.
Once defined as a task objects of that type can be created in the usual way. Consider:

task type X is
end X;
Item : X;
Items : array (0 .. 9) of X;

Note: however that tasks are declared as constants, you cannot assign to them and you cannot test for
equality.

7.2 Task synchronization (Rendezvouz)

The advantage of Ada tasking is that the Ada task model provides much more than the multi-threaded
operating systems mentioned above. When creating a thread to do some work we must seperately
create semaphores and/or other IPC objects to manage the cooperation between threads, and all of
this is of course system dependant.

The Ada tasking model defines methods for inter-task cooperation and much more in a system inde-
pendant way using constructs known as Rendezvous.

A Rendezvouz is just what it sounds like, a meeting place where two tasks arrange to meet up, if
one task reaches it first then it waits for the other to arrive. And in fact a queue is formed for each
rendezvous of all tasks waiting (in FIFO order).

7.2.1

entry/accept

A task contains a number of elements, data items, procedural code and rendezvous. A rendezvous is
represented in the task specification like a procedure call returning no value (though it can have in
out parameters). It can take any number of parameters, but rather that the keyword procedure the

58

7.2. TASK SYNCHRONIZATION (RENDEZVOUZ)

7. CONCURRENCY

keyword entry is used. In the task body however the keyword accept is used, and instead of the
procedure syntax of is begin simply do is used. The reason for this is that rendezvous in a task
are simply sections of the code in it, they are not seperate elements as procedures are.

Consider the example below, a system of some sort has a cache of elements, it requests an element
from the cache, if it is not in the cache then the cache itself reads an element from the master set. If
this process of reading from the master fills the cache then it must be reordered. When the process
finishes with the item it calls PutBack which updates the cache and if required updates the master.

task type Cached_Items is

entry Request(Item : out Item_Type);
entry PutBack(Item : in Item_Type);

end Cached_Items;

task body Cached_Items is

Log_File : Ada.Text_IO.File_Type;

begin

-- open the log file.
loop

accept Request(Item : out Item_Type) do

-- satisfy from cache or get new.

end Request;
-- if had to get new, then quickly
-- check cache for overflow.
accept PutBack(Item : in Item_Type) do

-- replace item in cache.

end PutBack;
-- if item put back has changed
-- then possibly update original.

end loop;

end Cached_Items;

-- the client code begins here:
declare

Cache : Cached_Items;
Item : Item_Type;

begin

Cache.Request(Item);
-- process.
Cache.PutBack(Item);

end;

It is the sequence of processing which is important here, Firstly the client task (remember, even if
the client is the main program it is still, logically, a task) creates the cache task which executes its
body. The first thing the cache (owner task) does is some procedural code, its initialisation, in this
case to open its log file. Next we have an accept statement, this is a rendezvous, and in this case
the two parties are the owner task, when it reaches the keyword accept and the client task that calls
Cache.Request(Item).

If the client task calls Request before the owner task has reached the accept then the client task
will wait for the owner task. However we would not expect the owner task to take very long to open
a log file, so it is more likely that it will reach the accept first and wait for a client task.

59

7.2. TASK SYNCHRONIZATION (RENDEZVOUZ)

7. CONCURRENCY

When both client and owner tasks are at the rendezvous then the owner task executes the accept
code while the client task waits. When the owner task reaches the end of the rendezvous both the
owner and the client are set off again on their own way.

7.2.2

select

If we look closely at our example above you might notice that if the client task calls Request
twice in a row then you have a deadly embrace, the owner task cannot get to Request before
executing PutBack and the client task cannot execute PutBack until it has satisfied the second
call to Request.

To get around this problem we use a select statement which allows the task to specify a number of
entry points which are valid at any time.

task body Cached_Items is

Log_File : Ada.Text_IO.File_Type;

begin

-- open the log file.
accept Request(Item : Item_Type) do
-- satisfy from cache or get new.

end Request;
loop

select

accept PutBack(Item : Item_Type) do

-- replace item in cache.

end PutBack;
-- if item put back has changed
-- then possibly update original.

or

accept Request(Item : Item_Type) do
-- satisfy from cache or get new.

end Request;
-- if had to get new, then quickly
-- check cache for overflow.

end select;

end loop;

end Cached_Items;

We have done two major things, first we have added the select construct which says that during
the loop a client may call either of the entry points. The second point is that we moved a copy of the
entry point into the initialisation section of the task so that we must call Request before anything
else. It is worth noting that we can have many entry points with the same name and they may be the
same or may do something different but we only need one entry in the task specification.

In effect the addition of the select statement means that the owner task now waits on the select
itself until one of the specified accepts are called.

Note: possibly more important is the fact that we have not changed the specification for the task at all
yet!.

60

7.2. TASK SYNCHRONIZATION (RENDEZVOUZ)

7. CONCURRENCY

7.2.3

guarded entries

Within a select statement it is possible to specify the conditions under which an accept may be
valid, so:

task body Cached_Items is

Log_File : Ada.Text_IO.File_Type;
Number_Requested : Integer := 0;
Cache_Size : constant Integer := 50;

begin

-- open the log file.
accept Request(Item : Item_Type) do
-- satisfy from cache or get new.

end Request;
loop

select

when Number_Requested > 0 =>
accept PutBack(Item : Item_Type) do

-- replace item in cache.

end PutBack;
-- if item put back has changed
-- then possibly update original.

or

accept Request(Item : Item_Type) do
-- satisfy from cache or get new.

end Request;
-- if had to get new, then quickly
-- check cache for overflow.

end select;

end loop;

end Cached_Items;

This (possibly erroneous) example adds two internal values, one to keep track of the number of items
in the cache, and the size of the cache. If no items have been read into the cache then you cannot
logicaly put anything back.

7.2.4 delays

It is possible to put a delay statement into a task, this statement has two modes, delay for a given
amount of time, or delay until a given time. So:

delay 5.0; -- delay for 5 seconds
delay Ada.Calendar.Clock; -- delay until it is ...
delay until A_Time; -- Ada-95 equivalent of above

The first line is simple, delay the task for a given number, or fraction of, seconds. This mode takes a
parameter of type Duration specified in the package System. The next two both wait until a time

61

7.2. TASK SYNCHRONIZATION (RENDEZVOUZ)

7. CONCURRENCY

is reached, the secodn line also takes a Duration, the third line takes a parameter of type Time
from package Ada.Calendar.

It is more interesting to note the effect of one of these when used in a select statement. For example,
if an accept is likely to take a long time you might use:

select

accept An_Entry do
end An_Entry;

or

delay 5.0;
Put("An_Entry: timeout");

end select;

This runs the delay and the accept concurrently and if the delay completes before the accept
then the accept is aborted and the task continues at the statement after the delay, in this case the
error message.

It is possible to protect procedural code in the same way, so we might amend our example by:

task body Cached_Items is

Log_File : Ada.Text_IO.File_Type;
Number_Requested : Integer := 0;
Cache_Size : constant Integer := 50;

begin

-- open the log file.
accept Request(Item : Item_Type) do
-- satisfy from cache or get new.

end Request;
loop

select

when Number_Requested > 0 =>
accept PutBack(Item : Item_Type) do

-- replace item in cache.

end PutBack;
select

-- if item put back has changed
-- then possibly update original.

or

delay 2.0;
-- abort the cache update code

end select;

or

accept Request(Item : Item_Type) do
-- satisfy from cache or get new.

end Request;
-- if had to get new, then quickly
-- check cache for overflow.

end select;

end loop;

end Cached_Items;

62

7.2. TASK SYNCHRONIZATION (RENDEZVOUZ)

7. CONCURRENCY

7.2.5

select else

The else clause allows us to execute a non-blocking select statement, so we could code a polling
task, such as:

select

accept Do_Something do
end DO_Something;

else

-- do something else.

end select;

So that if no one has called the entry points specified we continue rather than waiting for a client.

7.2.6

termination

The example we have been working on does not end, it simply loops forever. We can terminate a task
by using the keyword terminate which executes a nice orderly cleanup of the task. (We can also
kill a task in a more immediate way using the abort command, this is NOT recommended).

The terminate alternative is used for a task to specify that the run time environment can terminate
the task if all its actions are complete and no clients are waiting.

loop

select

accept Do_Something do
end Do_Something;

or

terminate;
end select;

end loop;

The abort command is used by a client to terminate a task, possibly if it is not behaving correctly.
The command takes a task identifer as an argument, so using our example above we might say:

if Task_In_Error(Cache) then

abort Cache;

end if;

The then abort clause is very similar to the delay example above, the code between then
abort and end select is aborted if the delay clause finishes first.

select

delay 5.0;
Put("An_Entry: timeout");

then abort

accept An_Entry do
end An_Entry;

end select;

63

7.3. PROTECTED TYPES

7. CONCURRENCY

7.2.7

conditional entry calls

In addition to direct calls to entry points clients may rendezvous with a task with three conditional
forms of a select statement:

• Timed entry call

• Conditional entry call

• Asynchronous select

7.3 Protected types

Protected types are a new feature added to the Ada-95 language standard. These act like the monitor
constructs found in other languages, which means that they monitor access to their internal data and
ensure that no two tasks can access the object at the same time. In effect every entry point is mutually
exclusive. Basically a protected type looks like:

protected type Cached_Items is

function Request return Item_Type;
procedure PutBack(Item : in Item_Type);

private

Log_File : Ada.Text_IO.File_Type;
Number_Requested : Integer := 0;
Cache_Size : constant Integer := 50;

end Cached_Items;

protected body Cached_Items is

function Request return Item_Type is
begin

-- initialise, if required
-- satisfy from cache or get new.
-- if had to get new, then quickly
-- check cache for overflow.

end Request;
procedure PutBack(Item : in Item_Type) is
begin

-- initialise, if required
-- replace item in cache.
-- if item put back has changed
-- then possibly update original.

end Request;

end Cached_Items;

This is an implementation of our cache from the task discussion above. Note now that the names
Request and PutBack are now simply calls like any other. This does show some of the differences
between tasks and protected types, for example the protected type above, because it is a passive
object cannot completly initialise itself, so each procedure and/or function must check if it has been
initialised. Also we must do all processing within the stated procedures.

64

References

[1] Ada Language Reference Manual http://www.adahome/rm95

[2] Ada Rationale

http://www.adahome.com/LRM/95/Rationale/rat95html/

rat95-contents.html

[3] Ada Quality and Style: Guidelines for professional programmers

[4] Programming in Ada (3rd Edition), J.G.P.Barnes, Addison Wesley.

[5] Ada Programmers FAQ http://www.adahome.com/FAQ/programming.html#

title.

[6] Abstract Data Types Are Under Full Control with Ada9X (TRI-Ada ’94) http://www.

adahome.com/Resources/Papers.html

[7] Working With Ada9X Classes (TRI-Ada ’94) http://www.adahome.com/Resources/

Papers.html

[8] Lovelace

on-line
lovelace.htm.

tutorial http://www.adahome.com/Tutorials/Lovelace/

[9] Design and evolution of C++, Bjarne Stroustrup, Addison Wesley.

[10] The annotated C++ reference manual, Margaret Ellis and Bjarne Stroustrup, Addison Wesley.

Acknowledgements

My thanks must go to the following people for help, pointers, proof-reading, suggestions and encour-
agement.

S. Tucker Taft (Intermetrics), Magnus Kempe and Robb Nebbe (EPFL), Michael Bartz (University of
Memphis), David Weller, Kevin Nash (Bournemouth University), Laurent Guerby, Jono Powell, Bill
Wagner (Hazeltine).

Once again, thank you.

For comments, additions, corrections, gripes, kudos, etc. e-mail to:

Simon Johnston (Team Ada) – [email protected]

ICL Retail Systems

65

Index

accept, 58
access types, 16
Ada.Direct_IO, package, 53
Ada.Sequential_IO, package, 53
Ada.Text_IO, package, 52
aggregates, 15
arrays, 13
attribute

First, 13
Last, 13
Length, 13
Pos, 12
Pred, 12
Range, 13
Succ, 12
Val, 12

case statement (switch in C), 25
casting, 18
Character, 9
compound statement, 24
concurrency, 57
constant, 8

declare, see compound statement
default parameters, 32
delay, 61
discriminats, 19

entry, task, 58
enumerations, 11
exception handling, 29
exceptions, 20
exit statement, 27

First, see attribute First
Fixed, 11
Float, type, 10
for loop, 26

generic

package, 50
procedure, 49
types, 51
generics, 49
goto statement, 29
guarded entries, 61

hierarchical package, 40

if statement, 24
inheritance, 45
Integer, 9

Last, see attribute Last
Length, see attribute Length

modes, parameter passing modes, 32

Object Oriented Programming, 43
overloading, 31

package, 37
pointers, see access types
Pos, see attribute Pos
Pred, see attribute Pred
predefined exceptions, 34
protected type, 64

Range, see attribute Range
records, 15
renaming, 41
rendezvouz, 58
representation of types, 20
return statement, 28

safety, 33
select, 60

else, 63
slicing, arrays, 15
streams, 55
String, type, 10
subprograms (procedures and functions), 30

66

INDEX

INDEX

subtype, 9
Succ, see attribute Succ

tagged type, 44
task type, 58
tasks, 57
termination, 63
type, 8

Unchecked_Conversion, 35
Unchecked_Deallocation, 36

Val, see attribute Val
variant records, 19

while loop, 26

67