Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
File size: 110,200 Bytes
08c8a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
OpenCL  
Programming Guide 
for the CUDA 
Architecture 

Version 2.3

8/27/2009 

 
 
 
 
 
 
 
 
 
 
 Table of Contents 

Chapter 1. Introduction ..................................................................................... 5 

1.1 

1.2 

1.3 

1.4 

From Graphics Processing to General-Purpose Parallel Computing ................... 5 

CUDA™: a General-Purpose Parallel Computing Architecture ........................... 7 

CUDA’s Scalable Programming Model ............................................................. 8 

Document’s Structure ................................................................................... 9 

Chapter 2. OpenCL on the CUDA Architecture ................................................. 11 

2.1 

CUDA Architecture ...................................................................................... 11 

2.1.1 

Execution Model .................................................................................. 11 

2.1.2  Memory Model ..................................................................................... 14 

2.2 

Compilation ................................................................................................ 16 

2.2.1 

PTX..................................................................................................... 16 

2.2.2 

Volatile ................................................................................................ 17 

2.3 

Compute Capability .................................................................................... 17 

2.4  Mode Switches ........................................................................................... 18 

2.5  Matrix Multiplication Example ...................................................................... 18 

Chapter 3. Performance Guidelines ................................................................. 27 

3.1 

Instruction Performance ............................................................................. 27 

3.1.1 

Instruction Throughput ........................................................................ 27 

3.1.1.1 

Arithmetic Instructions .................................................................. 27 

3.1.1.2 

Control Flow Instructions ............................................................... 29 

3.1.1.3 

Memory Instructions ..................................................................... 30 

3.1.1.4 

Synchronization Instruction ........................................................... 30 

3.1.2  Memory Bandwidth .............................................................................. 30 

3.1.2.1 

Global Memory .............................................................................. 31 

3.1.2.2 

Local Memory ............................................................................... 38 

3.1.2.3 

Constant Memory .......................................................................... 38 

3.1.2.4 

Texture Memory ........................................................................... 38 

3.1.2.5 

Shared Memory ............................................................................ 39 

ii 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
3.1.2.6 

Registers ...................................................................................... 46 

3.2 

3.3 

NDRange ................................................................................................... 46 

Data Transfer between Host and Device ...................................................... 47 

3.4  Warp-Level Synchronization ........................................................................ 48 

3.5  Overall Performance Optimization Strategies ................................................ 49 

Appendix A. Technical Specifications .............................................................. 51 

A.1  General Specifications ................................................................................. 51 

A.1.1 

Specifications for Compute Capability 1.0 .............................................. 52 

A.1.2 

Specifications for Compute Capability 1.1 .............................................. 53 

A.1.3 

Specifications for Compute Capability 1.2 .............................................. 53 

A.1.4 

Specifications for Compute Capability 1.3 .............................................. 53 

A.2 

A.3 

Floating-Point Standard .............................................................................. 53 

Supported OpenCL Extensions ..................................................................... 54 

Appendix B. Mathematical Functions Accuracy ............................................... 55 

B.1 

Standard Functions ..................................................................................... 55 

B.1.1 

Single-Precision Floating-Point Functions ............................................... 55 

B.1.2 

Double-Precision Floating-Point Functions ............................................. 57 

B.2 

Native Functions ......................................................................................... 59 

NVIDIA OpenCL Programming Guide Version 2.3 

iii 

 
 
 
 
 
 
List of Figures 

Figure 1-1.  Floating-Point Operations per Second and Memory Bandwidth for the CPU 

and GPU 6 

Figure 1-2.  The GPU Devotes More Transistors to Data Processing ............................ 7 

Figure 1-3.  CUDA is Designed to Support Various Languages and Application 

Programming Interfaces ...................................................................................... 8 

Figure 2-1.  Grid of Thread Blocks ........................................................................... 12 

Figure 2-2.  Automatic Scalability ............................................................................ 13 

Figure 2-3.  CUDA Architecture ............................................................................... 16 

Figure 3-1.  Examples of Coalesced Global Memory Access Patterns .......................... 34 

Figure 3-2.  Examples of Global Memory Access Patterns That Are Non-Coalesced for 

Devices of Compute Capability 1.0 or 1.1 ........................................................... 35 

Figure 3-3.  Examples of Global Memory Access Patterns That Are Non-Coalesced for 

Devices of Compute Capability 1.0 or 1.1 ........................................................... 36 

Figure 3-4.  Examples of Global Memory Access by Devices with Compute Capability 

1.2 and Higher .................................................................................................. 37 

Figure 3-5.  Examples of Shared Memory Access Patterns  without Bank Conflicts ..... 42 

Figure 3-6.  Example of a Shared Memory Access Pattern  without Bank Conflicts ...... 43 

Figure 3-7.  Examples of Shared Memory Access Patterns with Bank Conflicts ........... 44 

Figure 3-8.  Example of Shared Memory Read Access Patterns with Broadcast ........... 45 

iv 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
 
Chapter 1. 
Introduction 

1.1 

From Graphics Processing to 
General-Purpose Parallel Computing 

Driven by the insatiable market demand for realtime, high-definition 3D graphics, 
the programmable Graphic Processor Unit or GPU has evolved into a highly 
parallel, multithreaded, manycore processor with tremendous computational 
horsepower and very high memory bandwidth, as illustrated by Figure 1-1. 

 
 
 
Chapter 1. 0BIntroduction 

GT200 

G92 

G80 
Ultra 

G80 

NV35 

NV40 

NV30 

G71 

G70 

3.0 GHz 
Core2 Duo 

3.2 GHz 
Harpertown 

Jan 

Jun 

Apr 

2003 

2004 

Jun 

2005 

Mar 

Nov 

May 

2006 

2007 

Jun 

2008 

GT200 = GeForce GTX 280 

G71 = GeForce 7900 GTX 

NV35 = GeForce FX 5950 Ultra 

G92 = GeForce 9800 GTX 

G70 = GeForce 7800 GTX 

NV30 = GeForce FX 5800 

G80 = GeForce 8800 GTX 

NV40 = GeForce 6800 Ultra 

G80 
Ultra 

G80 

G71 

NV40 

NV30 

Harpertown 

Woodcrest 

Prescott EE 

Northwood 

Figure 1-1. Floating-Point Operations per Second and Memory 

Bandwidth for the CPU and GPU 

The reason behind the discrepancy in floating-point capability between the CPU and 
the GPU is that the GPU is specialized for compute-intensive, highly parallel 
computation – exactly what graphics rendering is about – and therefore designed 
such that more transistors are devoted to data processing rather than data caching 
and flow control, as schematically illustrated by Figure 1-2. 

6 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
 
 
Chapter 1. 0BIntroduction 

Control 

Cache 

DRAM 

ALU 

ALU 

ALU 

ALU 

CPU 

DRAM 

GPU 

Figure 1-2. The GPU Devotes More Transistors to Data 

Processing 

More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations – the same program is executed on many 
data elements in parallel – with high arithmetic intensity – the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control; and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 

CUDA™: a General-Purpose Parallel 
Computing Architecture 

In November 2006, NVIDIA introduced CUDA™, a general purpose parallel 
computing architecture – with a new parallel programming model and instruction 
set architecture – that leverages the parallel compute engine in NVIDIA GPUs to 
solve many complex computational problems in a more efficient way than on a 
CPU. 

As illustrated by Figure 1-3, there are several languages and application 
programming interfaces that can be used to program the CUDA architecture. 

NVIDIA OpenCL Programming Guide Version 2.3 

7 

 
 
 
 
 
 
 
Chapter 1. 0BIntroduction 

Figure 1-3. CUDA is Designed to Support Various Languages 

and Application Programming Interfaces 

1.3 

CUDA’s Scalable Programming Model 

The advent of multicore CPUs and manycore GPUs means that mainstream 
processor chips are now parallel systems. Furthermore, their parallelism continues 
to scale with Moore’s law. The challenge is to develop application software that 
transparently scales its parallelism to leverage the increasing number of processor 
cores, much as 3D graphics applications transparently scale their parallelism to 
manycore GPUs with widely varying numbers of cores. 

CUDA’s parallel programming model is designed to overcome this challenge with 
three key abstractions: a hierarchy of thread groups, a hierarchy of shared memories, 
and barrier synchronization. 

These abstractions provide fine-grained data parallelism and thread parallelism, 
nested within coarse-grained data parallelism and task parallelism. They guide the 
programmer to partition the problem into coarse sub-problems that can be solved 
independently in parallel, and then into finer pieces that can be solved cooperatively 
in parallel. Such a decomposition preserves language expressivity by allowing 
threads to cooperate when solving each sub-problem, and at the same time enables 
transparent scalability since each sub-problem can be scheduled to be solved on any 
of the available processor cores: A compiled program can therefore execute on any 
number of processor cores, and only the runtime system needs to know the physical 
processor count. 

This scalable programming model allows the CUDA architecture to span a wide 
market range by simply scaling the number of processors and memory partitions: 
from the high-performance enthusiast GeForce GTX 280 GPU and professional 
Quadro and Tesla computing products to a variety of inexpensive, mainstream 
GeForce GPUs (see Appendix A for a list of all CUDA-enabled GPUs). 

8 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
Chapter 1. 0BIntroduction

1.4 

Document’s Structure 

This document is organized into the following chapters: 

(cid:137)  Chapter 1 is a general introduction to GPU computing and the CUDA 

architecture. 

(cid:137)  Chapter 2 describes how the OpenCL architecture maps to the CUDA 
architecture and the specifics of NVIDIA’s OpenCL implementation. 
(cid:137)  Chapter 3 gives some guidance on how to achieve maximum performance. 
(cid:137)  Appendix A lists the CUDA-enabled GPUs with their technical specifications. 
(cid:137)  Appendix B lists the accuracy of each mathematical function on the CUDA 

architecture. 

NVIDIA OpenCL Programming Guide Version 2.3 

9 

 
 
 
 
 
 
Chapter 2. 
OpenCL on the CUDA Architecture 

2.1 

CUDA Architecture 

2.1.1 

Execution Model 
The CUDA architecture is a close match to the OpenCL architecture. 

A CUDA device is built around a scalable array of multithreaded Streaming 
Multiprocessors (SMs). A multiprocessor corresponds to an OpenCL compute unit. 

A multiprocessor executes a CUDA thread for each OpenCL work-item and a thread 
block for each OpenCL work-group. A kernel is executed over an OpenCL 
NDRange by a grid of thread blocks. As illustrated in Figure 2-1, each of the thread 
blocks that execute a kernel is therefore uniquely identified by its work-group ID, 
and each thread by its global ID or by a combination of its local ID and work-group 
ID.  

 
 
 
Chapter 2. 1BOpenCL on the CUDA Architecture 

Grid 

Block (0, 0)

Block (1, 0)

Block (2, 0)

Block (0, 1)

Block (1, 1)

Block (2, 1)

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0) 

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1) 

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

A kernel is executed over an NDRange by a grid of thread blocks. 

Figure 2-1. Grid of Thread Blocks 

A thread is also given a unique thread ID within its block. The local ID of a thread 
and its thread ID relate to each other in a straightforward way: For a one-
dimensional block, they are the same; for a two-dimensional block of size (Dx, Dy), 
the thread ID of a thread of index (x, y) is (x + y Dx); for a three-dimensional block 
of size (Dx, Dy, Dz), the thread ID of a thread of index (x, y, z) is 
(x + y Dx + z Dx Dy). 

When an OpenCL program on the host invokes a kernel, the work-groups are 
enumerated and distributed as thread blocks to the multiprocessors with available 
execution capacity. The threads of a thread block execute concurrently on one 
multiprocessor. As thread blocks terminate, new blocks are launched on the vacated 
multiprocessors.  

Thread blocks are required to execute independently: It must be possible to execute 
them in any order, in parallel or in series. This independence requirement allows 
thread blocks to be scheduled in any order across any number of cores, enabling 

12 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
 
programmers to write code that scales with the number of cores, as illustrated in 
Figure 2-2. 

Chapter 1 

Kernel 

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5
Block 5

Block 6
Block 6

Block 7

Device with 2 SMs 

Device with 4 SMs 

SM 0 

SM 1 

SM 0 

SM 1 

SM 2 

SM 3 

 Block 0 

  Block 1

 Block 0

 Block 1

 Block 2 

 Block 3

 Block 4

 Block 5

 Block 6 

 Block 7

 Block 2 

  Block 3

 Block 4 

  Block 5

 Block 6 

  Block 7

A device with more multiprocessors will automatically execute a kernel in less time than a device with 
fewer multiprocessors. 

Figure 2-2. Automatic Scalability 

A multiprocessor consists of eight Scalar Processor (SP) cores, two special function 
units for transcendentals, a multithreaded instruction unit, and on-chip shared 
memory, which is used to implement OpenCL local memory. The multiprocessor 
creates, manages, and executes concurrent threads in hardware with zero scheduling 
overhead. It implements the work-group barrier function with a single instruction. 
Fast barrier synchronization together with lightweight thread creation and zero-
overhead thread scheduling efficiently support very fine-grained parallelism, 
allowing, for example, a low granularity decomposition of problems by assigning 
one thread to each data element (such as a pixel in an image, a voxel in a volume, a 
cell in a grid-based computation). 

To manage hundreds of threads running several different programs, the 
multiprocessor employs a new architecture we call SIMT (single-instruction, 
multiple-thread). The multiprocessor maps each thread to one SP, and each scalar 

NVIDIA OpenCL Programming Guide Version 2.3 

13 

 
 
 
 
 
 
 
 
 
 
 
 
Chapter 2. 1BOpenCL on the CUDA Architecture 

thread executes independently with its own instruction address and register state. 
The multiprocessor SIMT unit creates, manages, schedules, and executes threads in 
groups of 32 parallel threads called warps. (This term originates from weaving, the 
first parallel thread technology. A half-warp is either the first or second half of a 
warp.) Individual threads composing a SIMT warp start together at the same 
program address but are otherwise free to branch and execute independently. 

When a multiprocessor is given one or more thread blocks to execute, it splits them 
into warps that get scheduled by the SIMT unit. The way a block is split into warps 
is always the same; each warp contains threads of consecutive, increasing thread IDs 
with the first warp containing the thread of thread ID zero. 

Every instruction issue time, the SIMT unit selects a warp that is ready to execute 
and issues the next instruction to the active threads of the warp. A warp executes 
one common instruction at a time, so full efficiency is realized when all 32 threads 
of a warp agree on their execution path. If threads of a warp diverge via a data-
dependent conditional branch, the warp serially executes each branch path taken, 
disabling threads that are not on that path, and when all paths complete, the threads 
converge back to the same execution path. Branch divergence occurs only within a 
warp; different warps execute independently regardless of whether they are 
executing common or disjointed code paths. 

SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector 
organizations in that a single instruction controls multiple processing elements. A 
key difference is that SIMD vector organizations expose the SIMD width to the 
software, whereas SIMT instructions specify the execution and branching behavior 
of a single thread. In contrast with SIMD vector machines, SIMT enables 
programmers to write thread-level parallel code for independent, scalar threads, as 
well as data-parallel code for coordinated threads. For the purposes of correctness, 
the programmer can essentially ignore the SIMT behavior; however, substantial 
performance improvements can be realized by taking care that the code seldom 
requires threads in a warp to diverge. In practice, this is analogous to the role of 
cache lines in traditional code: Cache line size can be safely ignored when designing 
for correctness but must be considered in the code structure when designing for 
peak performance. Vector architectures, on the other hand, require the software to 
coalesce loads into vectors and manage divergence manually. 

2.1.2 

Memory Model 
As illustrated by Figure 2-3, each multiprocessor has on-chip memory of the four 
following types: 

(cid:137)  One set of local 32-bit registers per processor, 
(cid:137)  A parallel data cache or shared memory that is shared by all scalar processor cores 

and is where OpenCL local memory resides, 

(cid:137)  A read-only constant cache that is shared by all scalar processor cores and speeds 

up reads from OpenCL constant memory, 

(cid:137)  A read-only texture cache that is shared by all scalar processor cores and speeds up 
reads from OpenCL image objects; each multiprocessor accesses the texture 
cache via a texture unit that implements the various addressing modes and data 
filtering specified by OpenCL sampler objects; the region of device memory 
addressed by image objects is referred to a texture memory. 

14 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
Chapter 1 

There is also a global memory address space that is used for OpenCL global 
memory and a local memory address space that is private to each thread (and should 
not be confused with OpenCL local memory). Both memory spaces are read-write 
regions of device memory and are not cached. 

A variable in OpenCL private memory generally resides in a register. However in 
some cases the compiler might choose to place it in CUDA local memory, which 
can have adverse performance consequences because of local memory high latency 
and bandwidth (see Section 3.1.2.2). Variables that are likely to be placed in CUDA 
local memory are large structures or arrays that would consume too much register 
space, and arrays for which the compiler cannot determine that they are indexed 
with constant quantities.  

The number of blocks a multiprocessor can process at once – referred to as the 
number of active blocks per multiprocessor – depends on how many registers per 
thread and how much shared memory per block are required for a given kernel since 
the multiprocessor’s registers and shared memory are split among all the threads of 
the active blocks. If there are not enough registers or shared memory available per 
multiprocessor to process at least one block, the kernel will fail to launch. The 
maximum number of active blocks per multiprocessor, as well as the maximum 
number of active warps and maximum number of active threads are given in 
Appendix A. 

If a non-atomic instruction executed by a warp writes to the same location in global 
or shared memory for more than one of the threads of the warp, the number of 
serialized writes that occur to that location and the order in which they occur is 
undefined, but one of the writes is guaranteed to succeed. If an atomic instruction 
executed by a warp reads, modifies, and writes to the same location in global 
memory for more than one of the threads of the warp, each read, modify, write to 
that location occurs and they are all serialized, but the order in which they occur is 
undefined. 

NVIDIA OpenCL Programming Guide Version 2.3 

15 

 
 
 
 
Chapter 2. 1BOpenCL on the CUDA Architecture 

Device 

Multiprocessor N 

Multiprocessor 2 

Multiprocessor 1 

Shared Memory 

Registers 

Registers

Registers

Processor 1 

Processor 2

…

Processor M

Instruction 
Unit 

Constant 
Cache 

Texture 
Cache 

Device Memory 

A set of SIMT multiprocessors with on-chip shared memory. 

Figure 2-3. CUDA Architecture 

2.2 

Compilation 

2.2.1 

PTX 
Kernels written in OpenCL C are compiled into PTX, which is CUDA’s instruction 
set architecture and is described in a separate document. 

Currently, the PTX intermediate representation can be obtained by calling 
clGetProgramInfo() with CL_PROGRAM_BINARIES and can be passed to 

16 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
2.2.2 

Chapter 1 

clCreateProgramWithBinary() to create a program object, but this will likely 
not be supported in future versions. 

Volatile 
Only after the execution of barrier(), mem_fence(), read_mem_fence(), or 
write_mem_fence() are prior writes to global or shared memory of a given 
thread guaranteed to be visible by other threads. As long as this requirement is met, 
the compiler is free to optimize reads and writes to global or shared memory. For 
example, in the code sample below, the first reference to myArray[tid] compiles 
into a global or shared memory read instruction, but the second reference does not 
as the compiler simply reuses the result of the first read. 

// myArray is an array of non-zero integers 
// located in global or shared memory 
__kernel void myKernel(__global int* result) { 
    int tid = get_local_id(0); 
    int ref1 = myArray[tid] * 1; 
    myArray[tid + 1] = 2; 
    int ref2 = myArray[tid] * 1; 
    result[tid] = ref1 * ref2; 
} 
Therefore, ref2 cannot possibly be equal to 2 in thread tid as a result of thread 
tid-1 overwriting myArray[tid] by 2. 

This behavior can be changed using the volatile keyword: If a variable located in 
global or shared memory is declared as volatile, the compiler assumes that its value 
can be changed at any time by another thread and therefore any reference to this 
variable compiles to an actual memory read instruction. 

Note that even if myArray is declared as volatile in the code sample above, there is 
no guarantee, in general, that ref2 will be equal to 2 in thread tid since thread 
tid might read myArray[tid] into ref2 before thread tid-1 overwrites its 
value by 2. Synchronization is required as mentioned in Section 3.4. 

2.3 

Compute Capability 

The compute capability of a CUDA device is defined by a major revision number and a 
minor revision number. 

Devices with the same major revision number are of the same core architecture. The 
devices listed in Appendix A are all of compute capability 1.x (Their major revision 
number is 1). 

The minor revision number corresponds to an incremental improvement to the core 
architecture, possibly including new features. 

The technical specifications of the various compute capabilities are given in 
Appendix A. 

NVIDIA OpenCL Programming Guide Version 2.3 

17 

 
 
 
 
Chapter 2. 1BOpenCL on the CUDA Architecture 

2.4 

Mode Switches 

GPUs dedicate some DRAM memory to the so-called primary surface, which is used 
to refresh the display device whose output is viewed by the user. When users initiate 
a mode switch of the display by changing the resolution or bit depth of the display 
(using NVIDIA control panel or the Display control panel on Windows), the 
amount of memory needed for the primary surface changes. For example, if the user 
changes the display resolution from 1280x1024x32-bit to 1600x1200x32-bit, the 
system must dedicate 7.68 MB to the primary surface rather than 5.24 MB. (Full-
screen graphics applications running with anti-aliasing enabled may require much 
more display memory for the primary surface.) On Windows, other events that may 
initiate display mode switches include launching a full-screen DirectX application, 
hitting Alt+Tab to task switch away from a full-screen DirectX application, or 
hitting Ctrl+Alt+Del to lock the computer. 

If a mode switch increases the amount of memory needed for the primary surface, 
the system may have to cannibalize memory allocations dedicated to OpenCL 
applications. Therefore, a mode switch results in any call to the OpenCL runtime to 
fail and return an invalid context error. 

2.5 

Matrix Multiplication Example 

The following matrix multiplication example illustrates the typical data-parallel 
approach used by OpenCL applications to achieve good performance on GPUs. It 
also illustrates the use of OpenCL local memory that maps to shared memory on 
the CUDA architecture. Shared memory is much faster than global memory as 
mentioned in Section 2.1.2 and detailed in Section 3.1.2.5, so any opportunity to 
replace global memory accesses by shared memory accesses should be exploited. 

The following code sample is a straightforward implementation of matrix 
multiplication that does not take advantage of shared memory. Each thread reads 
one row of A and one column of B and computes the corresponding element of C 
as illustrated in Figure 2-4. A is therefore read B.width times from global memory 
and B is read A.height times. 

// Host code 

// Matrices are stored in row-major order: 
// M(row, col) = *(M.elements + row * M.width + col) 
typedef struct { 
    int width; 
    int height; 
    cl_mem elements; 
} Matrix; 

// Thread block size 
#define BLOCK_SIZE 16 

// Matrix multiplication - Host code 
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE 
void MatMulHost(const Matrix A, const Matrix B, Matrix C, 

18 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
 
 
Chapter 1 

                const cl_context context, 
                const cl_kernel matMulKernel, 
                const cl_command_queue queue) 
{ 
    // Load A and B to device memory 
    Matrix d_A; 
    d_A.width = A.width; d_A.height = A.height; 
    size_t size = A.width * A.height * sizeof(float); 
    d_A.elements = clCreateBuffer(context, 
                         CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
                         size, A.elements, 0); 
    Matrix d_B; 
    d_B.width = B.width; d_B.height = B.height; 
    size = B.width * B.height * sizeof(float); 
    d_B.elements = clCreateBuffer(context, 
                         CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
                         size, B.elements, 0); 

    // Allocate C in device memory 
    Matrix d_C; 
    d_C.width = C.width; d_C.height = C.height; 
    size = C.width * C.height * sizeof(float); 
    d_C.elements = clCreateBuffer(context, 
                         CL_MEM_WRITE_ONLY, size, 0, 0); 

    // Invoke kernel 
    cl_uint i = 0;  
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_A.width),    (void*)&d_A.width); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_A.height),   (void*)&d_A.height); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_A.elements), (void*)&d_A.elements); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_B.width),    (void*)&d_B.width); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_B.height),   (void*)&d_B.height); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_B.elements), (void*)&d_B.elements); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_C.width),    (void*)&d_C.width); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_C.height),   (void*)&d_C.height); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_C.elements), (void*)&d_C.elements); 
    size_t localWorkSize[] = { BLOCK_SIZE, BLOCK_SIZE }; 
    size_t globalWorkSize[] = 
                 { B.width / dimBlock.x, A.height / dimBlock.y }; 
    clEnqueueNDRangeKernel(queue, matMulKernel, 2, 0, 
                           globalWorkSize, localWorkSize, 
                           0, 0, 0); 

    // Read C from device memory 
    clEnqueueReadBuffer(queue, d_C.elements, CL_TRUE, 0, size,  
                        C.elements, 0, 0, 0); 

    // Free device memory 

NVIDIA OpenCL Programming Guide Version 2.3 

19 

 
 
 
 
 
 
 
     
Chapter 2. 1BOpenCL on the CUDA Architecture 

    clReleaseMemObject(d_A.elements); 
    clReleaseMemObject(d_C.elements); 
    clReleaseMemObject(d_B.elements); 
} 

// Kernel code 

// Matrices are stored in row-major order: 
// M(row, col) = *(M.elements + row * M.width + col) 
typedef struct { 
    int width; 
    int height; 
    __global float* elements; 
} Matrix; 

// Thread block size 
#define BLOCK_SIZE 16 

// Matrix multiplication function called by MatMulKernel() 
void MatMul(Matrix A, Matrix B, Matrix C) 
{ 
    float Cvalue = 0; 
    int row = get_global_id(1); 
    int col = get_global_id(0); 
    for (int e = 0; e < A.width; ++e) 
        Cvalue += A.elements[row * A.width + e] 
                * B.elements[e * B.width + col]; 
    C.elements[row * C.width + col] = Cvalue; 
} 

// Matrix multiplication kernel called by MatMulHost() 
__kernel void MatMulKernel( 
       int Awidth, int Aheight, __global float* Aelements,  
       int Bwidth, int Bheight, __global float* Belements, 
       int Cwidth, int Cheight, __global float* Celements)  
{ 
    Matrix A = { Awidth, Aheight, Aelements };  
    Matrix B = { Bwidth, Bheight, Belements }; 
    Matrix C = { Cwidth, Cheight, Celements };  
    matrixMul(A, B, C); 
} 

20 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
 
 
 
 
Chapter 1 

1
-
h
t
d
w
B

.

i

col 

0

B 

C 

t
h
g
i
e
h
B

.

t
h
g
i
e
h
A

.

A.width 

B.width 

0 

A 

row 

A.height-1 

Figure 2-4. Matrix Multipliation without Shared Memory 

The following code sample is an implementation of matrix multiplication that does 
take advantage of shared memory. In this implementation, each thread block is 
responsible for computing one square sub-matrix Csub of C and each thread within 
the block is responsible for computing one element of Csub. As illustrated in Figure 
2-5, Csub is equal to the product of two rectangular matrices: the sub-matrix of A of 
dimension (A.width, block_size) that has the same line indices as Csub, and the sub-
matrix of B of dimension (block_size, A.width) that has the same column indices as 
Csub. In order to fit into the device’s resources, these two rectangular matrices are 
divided into as many square matrices of dimension block_size as necessary and Csub is 
computed as the sum of the products of these square matrices. Each of these 
products is performed by first loading the two corresponding square matrices from 
global memory to shared memory with one thread loading one element of each 
matrix, and then by having each thread compute one element of the product. Each 
thread accumulates the result of each of these products into a register and once 
done writes the result to global memory. 

NVIDIA OpenCL Programming Guide Version 2.3 

21 

 
 
 
 
 
Chapter 2. 1BOpenCL on the CUDA Architecture 

By blocking the computation this way, we take advantage of fast shared memory 
and save a lot of global memory bandwidth since A is only read (B.width / block_size) 
times from global memory and B is read (A.height / block_size) times. 

The Matrix type from the previous code sample is augmented with a stride field, so 
that sub-matrices can be efficiently represented with the same type. 

// Host code 

// Matrices are stored in row-major order: 
// M(row, col) = *(M.elements + row * M.stride + col) 
typedef struct { 
    int width; 
    int height; 
    int stride; 
    cl_mem elements; 
} Matrix; 

// Thread block size 
#define BLOCK_SIZE 16 

// Matrix multiplication - Host code 
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE 
void MatMulHost(const Matrix A, const Matrix B, Matrix C, 
                const cl_context context, 
                const cl_kernel matMulKernel, 
                const cl_command_queue queue) 
{ 
    // Load A and B to device memory 
    Matrix d_A; 
    d_A.width = d_A.stride = A.width; d_A.height = A.height; 
    size_t size = A.width * A.height * sizeof(float); 
    d_A.elements = clCreateBuffer(context, 
                         CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
                         size, A.elements, 0); 
    Matrix d_B; 
    d_B.width = d_B.stride = B.width; d_B.height = B.height; 
    size = B.width * B.height * sizeof(float); 
    d_B.elements = clCreateBuffer(context, 
                         CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
                         size, B.elements, 0); 

    // Allocate C in device memory 
    Matrix d_C; 
    d_C.width = d_C.stride = C.width; d_C.height = C.height; 
    size = C.width * C.height * sizeof(float); 
    d_C.elements = clCreateBuffer(context, 
                         CL_MEM_WRITE_ONLY, size, 0, 0); 

    // Invoke kernel 
    cl_uint i = 0;  
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_A.width),    (void*)&d_A.width); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_A.height),   (void*)&d_A.height); 
    clSetKernelArg(matMulKernel, i++, 

22 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
 
 
 
 
Chapter 1 

                   sizeof(d_A.stride),   (void*)&d_A.stride); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_A.elements), (void*)&d_A.elements); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_B.width),    (void*)&d_B.width); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_B.height),   (void*)&d_B.height); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_B. stride),  (void*)&d_B.stride); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_B.elements), (void*)&d_B.elements); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_C.width),    (void*)&d_C.width); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_C.height),   (void*)&d_C.height); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_C.stride),   (void*)&d_C.stride); 
    clSetKernelArg(matMulKernel, i++, 
                   sizeof(d_C.elements), (void*)&d_C.elements); 
    size_t localWorkSize[] = { BLOCK_SIZE, BLOCK_SIZE }; 
    size_t globalWorkSize[] = 
                 { B.width / dimBlock.x, A.height / dimBlock.y }; 
    clEnqueueNDRangeKernel(queue, matMulKernel, 2, 0, 
                           globalWorkSize, localWorkSize, 
                           0, 0, 0); 

    // Read C from device memory 
    clEnqueueReadBuffer(queue, d_C.elements, CL_TRUE, 0, size,  
                        C.elements, 0, 0, 0); 

    // Free device memory 
    clReleaseMemObject(d_A.elements); 
    clReleaseMemObject(d_C.elements); 
    clReleaseMemObject(d_B.elements); 
} 

// Kernel code 

// Matrices are stored in row-major order: 
// M(row, col) = *(M.elements + row * M.stride + col) 
typedef struct { 
    int width; 
    int height; 
    int stride;  
    __global float* elements; 
} Matrix; 

// Thread block size 
#define BLOCK_SIZE 16 

// Get a matrix element 
float GetElement(const Matrix A, int row, int col) 
{ 
    return A.elements[row * A.stride + col]; 
} 

NVIDIA OpenCL Programming Guide Version 2.3 

23 

 
 
 
 
 
     
 
 
 
 
 
Chapter 2. 1BOpenCL on the CUDA Architecture 

// Set a matrix element 
void SetElement(Matrix A, int row, int col, float value) 
{ 
    A.elements[row * A.stride + col] = value; 
} 

// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is 
// located col sub-matrices to the right and row sub-matrices down 
// from the upper-left corner of A 
Matrix GetSubMatrix(Matrix A, int row, int col) 
{ 
    Matrix Asub; 
    Asub.width = BLOCK_SIZE; 
    Asub.height = BLOCK_SIZE; 
    Asub.stride = A.stride; 
    Asub.elements = 
      &A.elements[A.stride * BLOCK_SIZE * row + BLOCK_SIZE * col]; 
    return Asub; 
} 

// Matrix multiplication function called by MatMulKernel() 
void MatMul(Matrix C, Matrix A, Matrix B,  

     __local float As[BLOCK_SIZE][BLOCK_SIZE], 
            __local float Bs[BLOCK_SIZE][BLOCK_SIZE]) 
{ 
    // Block row and column 
    int blockRow = get_group_id(1); 
    int blockCol = get_group_id(0); 

    // Each thread block computes one sub-matrix Csub of C 
    Matrix Csub = GetSubMatrix(C, blockRow, blockCol); 

    // Each thread computes one element of Csub 
    // by accumulating results into Cvalue 
    float Cvalue = 0; 

    // Thread row and column within Csub 
    int row = get_local_id(1); 
    int col = get_local_id(0); 

    // Loop over all the sub-matrices of A and B that are 
    // required to compute Csub 
    // Multiply each pair of sub-matrices together 
    // and accumulate the results 
    for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) { 

        // Get sub-matrix Asub of A 
        Matrix Asub = GetSubMatrix(A, blockRow, m); 

        // Get sub-matrix Bsub of B 
        Matrix Bsub = GetSubMatrix(B, m, blockCol); 

        // Load Asub and Bsub from device memory to shared memory 
        // Each thread loads one element of each sub-matrix 
        As[row][col] = GetElement(Asub, row, col); 
        Bs[row][col] = GetElement(Bsub, row, col); 

24 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 1 

        // Synchronize to make sure the sub-matrices are loaded 
        // before starting the computation 
        barrier(CLK_LOCAL_MEM_FENCE); 

        // Multiply Asub and Bsub together 
        for (int e = 0; e < BLOCK_SIZE; ++e) 
            Cvalue += As[row][e] * Bs[e][col]; 

            // Synchronize to make sure that the preceding 
            // computation is done before loading two new 
            // sub-matrices of A and B in the next iteration 
            barrier(CLK_LOCAL_MEM_FENCE); 
        } 

        // Write Csub to device memory 
        // Each thread writes one element 
        SetElement(Csub, row, col, Cvalue); 
} 

// Matrix multiplication kernel called by MatMulHost() 
__kernel void matrixMulKernel( 
  int Cwidth, int Cheight, int Cstride, __global float* Celements,  
  int Awidth, int Aheight, int Astride, __global float* Aelements,  
  int Bwidth, int Bheight, int Bstride, __global float* Belements, 
  __local float As[BLOCK_SIZE][BLOCK_SIZE], 
  __local float Bs[BLOCK_SIZE][BLOCK_SIZE]) 
{ 
    Matrix C = { Cwidth, Cheight, Cstride, Celements };  
    Matrix A = { Awidth, Aheight, Astride, Aelements };  
    Matrix B = { Bwidth, Bheight, Bstride, Belements }; 
    MatMul(A, B, C, As, Bs); 
} 

NVIDIA OpenCL Programming Guide Version 2.3 

25 

 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 2. 1BOpenCL on the CUDA Architecture

B 

C 

blockCol 

1
-
E
Z
I
S
_
K
C
O
L
B

0

col 

0

Csub 

row

BLOCK_SIZE-1

E
Z
I
S
_
K
C
O
L
B

E
Z
I
S
_
K
C
O
L
B

E
Z
I
S
_
K
C
O
L
B

t
h
g
i
e
h
B

.

t
h
g
i
e
h
A

.

A 

w
o
R
k
c
o
b

l

BLOCK_SIZE

BLOCK_SIZE

BLOCK_SIZE 

A.width

B.width 

Figure 2-5. Matrix Multipliation with Shared Memory 

26 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
 
 
 
 
 
Chapter 3. 
Performance Guidelines 

3.1 

Instruction Performance 

To process an instruction for a warp of threads, a multiprocessor must: 

(cid:137)  Read the instruction operands for each thread of the warp, 
(cid:137)  Execute the instruction, 
(cid:137)  Write the result for each thread of the warp. 
Therefore, the effective instruction throughput depends on the nominal instruction 
throughput as well as the memory latency and bandwidth. It is maximized by: 

(cid:137)  Minimizing the use of instructions with low throughput (see Section 3.1.1), 
(cid:137)  Maximizing the use of the available memory bandwidth for each category of 

memory (see Section 3.1.2), 

(cid:137)  Allowing the thread scheduler to overlap memory transactions with 

mathematical computations as much as possible, which requires that: 
(cid:190)  The program executed by the threads is of high arithmetic intensity, that is, 

has a high number of arithmetic operations per memory operation; 

(cid:190)  There are many active threads per multiprocessor, as detailed in Section 3.2. 

3.1.1 

3.1.1.1 

Instruction Throughput 
In this section, throughputs are given in number of operations per clock cycle per 
multiprocessor. For a warp size of 32, an instruction is made of 32 operations. 
Therefore, if T is the number of operations per clock cycle, the instruction 
throughput is one instruction every 32/T clock cycles. 

All throughputs are for one multiprocessor. They must be multiplied by the number 
of multiprocessors in the device to get throughput for the whole device. 

Arithmetic Instructions 
For single-precision floating-point code, we highly recommend use of the float 
type and the single-precision floating-point mathematical functions. When 
compiling for devices without native double-precision floating-point support, such 
as devices of compute capability 1.2 and lower, each double variable gets 
converted to single-precision floating-point format (but retains its size of 64 bits) 

 
 
 
Chapter 3. Performance Guidelines 

and double-precision floating-point arithmetic gets demoted to single-precision 
floating-point arithmetic. 

We also recommend using native_* functions wherever possible and the 
-cl-mad-enable build option, both of them can lead to large performance gains. 

Single-Precision Floating-Point Basic Arithmetic 

Throughput of single-precision floating-point add, multiply, and multiply-add is 8 
operations per clock cycle. 

Throughput of reciprocal is 2 operations per clock cycle. 

Throughput of single-precision floating-point division is 0.88 operations per clock 
cycle, but native_divide(x, y) provides a faster version with a throughput of 
1.6 operations per clock cycle. 

Single-Precision Floating-Point Square Root and Reciprocal Square 
Root 

Throughput of reciprocal square root is 2 operations per clock cycle. 

Single-precision floating-point square root is implemented as a reciprocal square 
root followed by a reciprocal instead of a reciprocal square root followed by a 
multiplication, so that it gives correct results for 0 and infinity. Therefore, its 
throughput is 1 operation per clock cycle. 

Single-Precision Floating-Point Logarithm 

Throughput of native_log(x) (see Section B.2) is 2 operations per clock cycle. 

Sine and Cosine 

Throughput of native_sin(x), native_cos(x), native_exp(x) is 1 
operation per clock cycle. 

sin(x), cos(x), tan(x), sincos(x) are much more expensive and even more 
so if the absolute value of x needs to be reduced. 

More precisely, the argument reduction code comprises two code paths referred to 
as the fast path and the slow path, respectively. 

The fast path is used for arguments sufficiently small in magnitude and essentially 
consists of a few multiply-add operations. The slow path is used for arguments large 
in magnitude, and consists of lengthy computations required to achieve correct 
results over the entire argument range. 

At present, the argument reduction code for the trigonometric functions selects the 
fast path for arguments whose magnitude is less than 48039.0f for the single-
precision functions, and less than 2147483648.0 for the double-precision functions. 

As the slow path requires more registers than the fast path, an attempt has been 
made to reduce register pressure in the slow path by storing some intermediate 
variables in CUDA local memory, which may affect performance because of local 
memory high latency and bandwidth (see Section 3.1.2.2). At present, 28 bytes of 
CUDA local memory are used by single-precision functions, and 44 bytes are used 
by double-precision functions. However, the exact amount is subject to change. 

28 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
Chapter 3. Performance Guidelines 

Due to the lengthy computations and use of CUDA local memory in the slow path, 
the trigonometric functions throughput is lower by one order of magnitude when 
the slow path reduction is used as opposed to the fast path reduction. 

Integer Arithmetic 

Throughput of integer add is 8 operations per clock cycle. 

Throughput of 32-bit integer multiplication is 2 operations per clock cycle, but 
mul24 provide 24-bit integer multiplication with a troughput of 8 operations per 
clock cycle. On future architectures however, mul24 will be slower than 32-bit 
integer multiplication, so we recommend to provide two kernels, one using mul24 
and the other using generic 32-bit integer multiplication, to be called appropriately 
by the application. 

Integer division and modulo operation are particularly costly and should be avoided 
if possible or replaced with bitwise operations whenever possible: If n is a power of 
2, (i/n) is equivalent to (i>>log2(n)) and (i%n) is equivalent to (i&(n-1)); 
the compiler will perform these conversions if n is literal. 

Comparison 

Throughput of compare, min, max is 8 operations per clock cycle. 

Bitwise Operations 

Throughput of any bitwise operation is 8 operations per clock cycle. 

Type Conversion 

Throughput of type conversion operations is 8 operations per clock cycle. 

Sometimes, the compiler must insert conversion instructions, introducing additional 
execution cycles. This is the case for: 

(cid:137)  Functions operating on char or short whose operands generally need to be 

converted to int, 

(cid:137)  Double-precision floating-point constants (defined without any type suffix) used 

as input to single-precision floating-point computations. 

This last case can be avoided by using single-precision floating-point constants, 
defined with an f suffix such as 3.141592653589793f, 1.0f, 0.5f. 

Control Flow Instructions 
Any flow control instruction (if, switch, do, for, while) can significantly 
impact the effective instruction throughput by causing threads of the same warp to 
diverge, that is, to follow different execution paths. If this happens, the different 
executions paths have to be serialized, increasing the total number of instructions 
executed for this warp. When all the different execution paths have completed, the 
threads converge back to the same execution path. 

To obtain best performance in cases where the control flow depends on the thread 
ID, the controlling condition should be written so as to minimize the number of 
divergent warps. This is possible because the distribution of the warps across the 
block is deterministic as mentioned in Section 2.1.1. A trivial example is when the 
controlling condition only depends on (get_local_id(0) / WSIZE) where 
WSIZE is the warp size. In this case, no warp diverges since the controlling 
condition is perfectly aligned with the warps. 

3.1.1.2 

NVIDIA OpenCL Programming Guide Version 2.3 

29 

 
 
 
 
 
 
Chapter 3. Performance Guidelines 

Sometimes, the compiler may unroll loops or it may optimize out if or switch 
statements by using branch predication instead, as detailed below. In these cases, no 
warp can ever diverge. 

When using branch predication none of the instructions whose execution depends 
on the controlling condition gets skipped. Instead, each of them is associated with a 
per-thread condition code or predicate that is set to true or false based on the 
controlling condition and although each of these instructions gets scheduled for 
execution, only the instructions with a true predicate are actually executed. 
Instructions with a false predicate do not write results, and also do not evaluate 
addresses or read operands. 

The compiler replaces a branch instruction with predicated instructions only if the 
number of instructions controlled by the branch condition is less or equal to a 
certain threshold: If the compiler determines that the condition is likely to produce 
many divergent warps, this threshold is 7, otherwise it is 4. 

3.1.1.3 

Memory Instructions 
Memory instructions include any instruction that reads from or writes to CUDA 
shared, local, or global memory. 

Throughput of memory operations is 8 operations per clock cycle. When accessing 
CUDA local or global memory, there are, in addition, 400 to 600 clock cycles of 
memory latency. 

As an example, the throughput for the assignment operator in the following sample 
code: 

__local float shared[32]; 
__global float device[32]; 
shared[threadIdx.x] = device[threadIdx.x]; 
is 8 operations per clock cycle for the read from global memory, 8 operations per 
clock cycle for the write to shared memory, but above all, there is a latency of 400 to 
600 clock cycles to read data from global memory. 

Much of this global memory latency can be hidden by the thread scheduler if there 
are sufficient independent arithmetic instructions that can be issued while waiting 
for the global memory access to complete. 

3.1.1.4 

Synchronization Instruction 
Throughput for the barrier function is 8 operations per clock cycle in the case 
where no thread has to wait for any other threads. 

3.1.2 

Memory Bandwidth 
The effective bandwidth of each memory space depends significantly on the 
memory access pattern as detailed in the following sub-sections. 

Since device memory is of much higher latency and lower bandwidth than on-chip 
memory, device memory accesses should be minimized. A typical programming                
pattern is to stage data coming from device memory into shared memory; in other 
words, to have each thread of a block: 

(cid:137)  Load data from device memory to shared memory, 

30 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
Chapter 3. Performance Guidelines 

(cid:137)  Synchronize with all the other threads of the block so that each thread can safely 

read shared memory locations that were written by different threads, 

(cid:137)  Process the data in shared memory, 
(cid:137)  Synchronize again if necessary to make sure that shared memory has been 

updated with the results, 

(cid:137)  Write the results back to device memory. 

3.1.2.1 

Global Memory 
Global memory is not cached, so it is all the more important to follow the right 
access pattern to get maximum memory bandwidth, especially given how costly 
accesses to device memory are. 

First, the device is capable of reading 4-byte, 8-byte, or 16-byte words from global 
memory into registers in a single instruction. To have assignments such as: 

__global type device[32]; 
type data = device[tid]; 
compile to a single load instruction, type must be such that sizeof(type) is 
equal to 4, 8, or 16 and variables of type type must be aligned to sizeof(type) 
bytes (that is, have their address be a multiple of sizeof(type)). 

The alignment requirement is automatically fulfilled for built-in types. 

For structures, the size and alignment requirements can be enforced by the compiler 
using the alignment specifiers __attribute__ ((aligned(8))) or 
__attribute__ ((aligned(16))), such as 

struct { 
    float a; 
    float b; 
} __attribute__ ((aligned(8))); 
or 

struct { 
    float a; 
    float b; 
    float c; 
} __attribute__ ((aligned(16))); 
For structures larger than 16 bytes, the compiler generates several load instructions. 
To ensure that it generates the minimum number of instructions, such structures 
should be defined with __attribute__ ((aligned(16))) , such as 

struct { 
    float a; 
    float b; 
    float c; 
    float d; 
    float e; 
} __attribute__ ((aligned(16))); 
which is compiled into two 16-byte load instructions instead of five 4-byte load 
instructions. 

Any address of a variable residing in global memory or returned by one of the 
memory allocation routines from the driver or runtime API is always aligned to at 
least 256 bytes. 

NVIDIA OpenCL Programming Guide Version 2.3 

31 

 
 
 
 
 
 
Chapter 3. Performance Guidelines 

Second, global memory bandwidth is used most efficiently when the simultaneous 
memory accesses by threads in a half-warp (during the execution of a single read or 
write instruction) can be coalesced into a single memory transaction of 32, 64, or 128 
bytes. 

The rest of this section describes the various requirements for memory accesses to 
coalesce based on the compute capability of the device. If a half-warp fulfills these 
requirements, coalescing is achieved even if the warp is divergent and some threads 
of the half-warp do not actually access memory. 

For the purpose of the following discussion, global memory is considered to be 
partitioned into segments of size equal to 32, 64, or 128 bytes and aligned to this 
size. 

Coalescing on Devices with Compute Capability 1.0 and 1.1  

The global memory access by all threads of a half-warp is coalesced into one or two 
memory transactions if it satisfies the following three conditions: 

(cid:137)  Threads must access 

(cid:137)  Either 4-byte words, resulting in one 64-byte memory transaction, 
(cid:137)  Or 8-byte words, resulting in one 128-byte memory transaction, 
(cid:137)  Or 16-byte words, resulting in two 128-byte memory transactions; 
(cid:137)  All 16 words must lie in the same segment of size equal to the memory 

transaction size (or twice the memory transaction size when accessing 16-byte 
words); 

(cid:137)  Threads must access the words in sequence: The kth thread in the half-warp must 

access the kth word. 

If a half-warp does not fulfill all the requirements above, a separate memory 
transaction is issued for each thread and throughput is significantly reduced. 

Figure 3-1 shows some examples of coalesced memory accesses, while Figure 3-2 
and Figure 3-3 show some examples of memory accesses that are non-coalesced for 
devices of compute capability 1.0 or 1.1. 

Coalesced 8-byte accesses deliver a little lower bandwidth than coalesced 4-byte 
accesses and coalesced 16-byte accesses deliver a noticeably lower bandwidth than 
coalesced 4-byte accesses. But, while bandwidth for non-coalesced accesses is 
around an order of magnitude lower than for coalesced accesses when these 
accesses are 4-byte, it is only around four times lower when they are 8-byte and 
around two times when they are 16-byte. 

Coalescing on Devices with Compute Capability 1.2 and Higher 

The global memory access by all threads of a half-warp is coalesced into a single 
memory transaction as soon as the words accessed by all threads lie in the same 
segment of size equal to: 

(cid:137)  32 bytes if all threads access 1-byte words, 
(cid:137)  64 bytes if all threads access 2-byte words, 
(cid:137)  128 bytes if all threads access 4-byte or 8-byte words. 
Coalescing is achieved for any pattern of addresses requested by the half-warp, 
including patterns where multiple threads access the same address. This is in 

32 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
Chapter 3. Performance Guidelines 

contrast with devices of lower compute capabilities where threads need to access 
words in sequence. 

If a half-warp addresses words in n different segments, n memory transactions are 
issued (one for each segment), whereas devices with lower compute capabilities 
would issue 16 transactions as soon as n is greater than 1. In particular, if threads 
access 16-byte words, at least two memory transactions are issued. 

Unused words in a memory transaction are still read, so they waste bandwidth. To 
reduce waste, hardware will automatically issue the smallest memory transaction that 
contains the requested words. For example, if all the requested words lie in one half 
of a 128-byte segment, a 64-byte transaction will be issued. 

More precisely, the following protocol is used to issue a memory transaction for a 
half-warp: 

(cid:137)  Find the memory segment that contains the address requested by the lowest 

numbered active thread. Segment size is 32 bytes for 1-byte data, 64 bytes for 
2-byte data, 128 bytes for 4-, 8- and 16-byte data. 

(cid:137)  Find all other active threads whose requested address lies in the same segment. 
(cid:137)  Reduce the transaction size, if possible: 

(cid:137)  If the transaction size is 128 bytes and only the lower or upper half is used, 

reduce the transaction size to 64 bytes; 

(cid:137)  If the transaction size is 64 bytes and only the lower or upper half is used, 

reduce the transaction sizez to 32 bytes. 

(cid:137)  Carry out the transaction and mark the serviced threads as inactive. 
(cid:137)  Repeat until all threads in the half-warp are serviced. 

Figure 3-4 shows some examples of global memory accesses for devices of compute 
capability 1.2 and higher. 

NVIDIA OpenCL Programming Guide Version 2.3 

33 

 
 
 
 
 
 
 
Chapter 3. Performance Guidelines 

Thread 0 

Address 128 

Thread 0 

Address 128 

Thread 1 

Address 132 

Thread 1 

Address 132 

Thread 2 

Address 136 

Thread 2 

Address 136 

Thread 3 

Address 140 

Thread 3 

Address 140 

Thread 4 

Address 144 

Thread 4 

Address 144 

Thread 5 

Address 148 

Thread 5 

Address 148 

Thread 6 

Address 152 

Thread 6 

Address 152 

Thread 7 

Address 156 

Thread 7 

Address 156 

Thread 8 

Address 160 

Thread 8 

Address 160 

Thread 9 

Address 164 

Thread 9 

Address 164 

Thread 10 

Address 168 

Thread 10 

Address 168 

Thread 11 

Address 172 

Thread 11 

Address 172 

Thread 12 

Address 176 

Thread 12 

Address 176 

Thread 13 

Address 180 

Thread 13 

Address 180 

Thread 14 

Address 184 

Thread 14 

Address 184 

Thread 15 

Address 188 

Thread 15 

Address 188 

Left: coalesced float memory access, resulting in a single memory transaction. 
Right: coalesced float memory access (divergent warp), resulting in a single memory transaction. 

Figure 3-1. Examples of Coalesced Global Memory Access 

Patterns 

34 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 3. Performance Guidelines 

Thread 0 

Address 128 

Thread 0 

Address 128 

Thread 1 

Address 132 

Thread 1 

Address 132 

Thread 2 

Address 136 

Thread 2 

Address 136 

Thread 3 

Address 140 

Thread 3 

Address 140 

Thread 4 

Address 144 

Thread 4 

Address 144 

Thread 5 

Address 148 

Thread 5 

Address 148 

Thread 6 

Address 152 

Thread 6 

Address 152 

Thread 7 

Address 156 

Thread 7 

Address 156 

Thread 8 

Address 160 

Thread 8 

Address 160 

Thread 9 

Address 164 

Thread 9 

Address 164 

Thread 10 

Address 168 

Thread 10 

Address 168 

Thread 11 

Address 172 

Thread 11 

Address 172 

Thread 12 

Address 176 

Thread 12 

Address 176 

Thread 13 

Address 180 

Thread 13 

Address 180 

Thread 14 

Address 184 

Thread 14 

Address 184 

Thread 15 

Address 188 

Thread 15 

Address 188 

Left: non-sequential float memory access, resulting in 16 memory transactions. 
Right: access with a misaligned starting address, resulting in 16 memory transactions. 

Figure 3-2. Examples of Global Memory Access Patterns That 

Are Non-Coalesced for Devices of Compute 
Capability 1.0 or 1.1 

NVIDIA OpenCL Programming Guide Version 2.3 

35 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 3. Performance Guidelines 

Thread 0 

Address 128 

Thread 0 

Address 128 

Thread 1 

Address 132 

Thread 2 

Address 136 

Thread 3 

Address 140 

Thread 1 

Address 140 

Thread 4 

Address 144 

Thread 5 

Address 148 

Thread 6 

Address 152 

Thread 2 

Address 152 

Thread 7 

Address 156 

Thread 8 

Address 160 

Thread 9 

Address 164 

Thread 3 

Address 164 

Thread 10 

Address 168 

Thread 11 

Address 172 

Thread 12 

Address 176 

Thread 4 

Address 176 

Thread 13 

Address 180 

Thread 14 

Address 184 

Thread 15 

Address 188 

Thread 5 

Address 188 

Left: non-contiguous float memory access, resulting in 16 memory transactions. 
Right: non-coalesced float3 memory access, resulting in 16 memory transactions. 

Figure 3-3. Examples of Global Memory Access Patterns That 

Are Non-Coalesced for Devices of Compute 
Capability 1.0 or 1.1 

36 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 3. Performance Guidelines 

6
4
B
s
e
g
m
e
n
t

Thread 
0 

Thread 
1 

Thread 
2 

Thread 
3 

Thread 
4 

Thread 
5 

Thread 
6 

Thread 
7 

Thread 
8 

Thread 
9 

Thread 
10 

Thread 
11 

Thread 
12 

Thread 
13 

Thread 
14 

Thread 
15 

Thread 
0 

Thread 
1 

Thread 
2 

Thread 
3 

Thread 
4 

Thread 
5 

Thread 
6 

Thread 
7 

Thread 
8 

Thread 
9 

Thread 
10 

Thread 
11 

Thread 
12 

Thread 
13 

Thread 
14 

Thread 
15 

Address 
120 

Address 
124 

Address 
128 

Address 
132 

Address 
136 

Address 
140 

Address 
144 

Address 
148 

Address 
152 

Address 
156 

Address 
160 

Address 
164 

Address 
168 

Address 
172 

Address 
176 

Address 
180 

Address 
184 

Address 
188 

Address 
192 

Address 
196 

Address 
200 

Address 
204 

Address 
208 

Address 

212 

Address 
120 

Address 
124 

Address 
128 

Address 
132 

Address 
136 

Address 
140 

Address 
144 

Address 
148 

Address 
152 

Address 
156 

Address 
160 

Address 
164 

Address 
168 

Address 
172 

Address 
176 

Address 
180 

Address 
184 

Address 
188 

Address 
192 

Address 
19  6

… 

Address 
204 

Address 
252 

Address 

256 

1
2
8
B
s
e
g
m
e
n
t

Thread 
0 

Thread 
1 

Thread 
2 

Thread 
3 

Thread 
4 

Thread 
5 

Thread 
6 

Thread 
7 

Thread 
8 

Thread 
9 

Thread 
10 

Thread 
11 

Thread 
12 

Thread 
13 

Thread 
14 

Thread 
15 

3
2
B
s
e
g
m
e
n
t

6
4
B
s
e
g
m
e
n
t

Address 
96 

Address 
100 

Address 
104 

Address 
108 

Address 
112 

Address 
116 

Address 
120 

Address 
124 

Address 
128 

Address 
132 

Address 
136 

Address 
140 

Address 
144 

Address 
148 

Address 
152 

Address 
156 

Address 
160 

Address 
164 

Address 
168 

Address 
172 

Address 
176 

Address 
180 

Address 
184 

Address 

188 

Left: random float memory access within a 64B segment, resulting in one memory transaction. 
Center: misaligned float memory access, resulting in one transaction. 
Right: misaligned float memory access, resulting in two transactions. 

Figure 3-4. Examples of Global Memory Access by Devices 

with Compute Capability 1.2 and Higher 

NVIDIA OpenCL Programming Guide Version 2.3 

37 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 3. Performance Guidelines 

Common Access Patterns 

Array of Structures 

A common global memory access pattern is when each thread of thread ID tid 
accesses one element of an array located at address BaseAddress of type type* 
using the following address: 

    BaseAddress + tid 
To get memory coalescing, type must meet the size and alignment requirements 
discussed above. In particular, this means that if type is a structure larger than 16 
bytes, it should be split into several structures that meet these requirements and the 
data should be laid out in memory as a list of several arrays of these structures 
instead of a single array of type type*. 

Two-Dimensional Array 

Another common global memory access pattern is when each thread of index 
(tx,ty) accesses one element of a 2D array located at address BaseAddress of 
type type* and of width width using the following address: 

    BaseAddress + width * ty + tx 
In such a case, one gets memory coalescing for all half-warps of the thread block 
only if: 

(cid:137)  The width of the thread block is a multiple of half the warp size; 
(cid:137)  width is a multiple of 16. 
In particular, this means that an array whose width is not a multiple of 16 will be 
accessed much more efficiently if it is actually allocated with a width rounded up to 
the closest multiple of 16 and its rows padded accordingly. 

Local Memory 
Like global memory, CUDA local memory is not cached, so accesses to local 
memory are as expensive as accesses to global memory. Local memory accesses are 
always coalesced though since they are per-thread by definition. 

Constant Memory 
Constant memory is cached so a read from constant memory costs one memory 
read from device memory only on a cache miss, otherwise it just costs one read 
from the constant cache. 

For all threads of a half-warp, reading from the constant cache is as fast as reading 
from a register as long as all threads read the same address. The cost scales linearly 
with the number of different addresses read by all threads. We recommend having 
all threads of the entire warp read the same address as opposed to all threads within 
each of its halves only, as future devices will require it for full speed read. 

Texture Memory 
Texture memory is cached so an image read costs one memory read from device 
memory only on a cache miss, otherwise it just costs one read from the texture 
cache. The texture cache is optimized for 2D spatial locality, so threads of the same 
warp that read image addresses that are close together will achieve best 
performance. Also, it is designed for streaming reads with a constant latency, i.e. a 
cache hit reduces DRAM bandwidth demand, but not read latency. 

3.1.2.2 

3.1.2.3 

3.1.2.4 

38 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
Chapter 3. Performance Guidelines 

Reading device memory through image objects present some benefits that can make 
it an advantageous alternative to reading device memory from global or constant 
memory: 

(cid:137)  If the memory reads do not follow the access patterns that global or constant 
memory reads must respect to get good performance (see Sections 3.1.2.1 and 
3.1.2.3), higher bandwidth can be achieved providing that there is locality in the 
image reads; 

(cid:137)  The latency of addressing calculations is hidden better, possibly improving 
performance for applications that perform random accesses to the data; 
(cid:137)  Packed data may be broadcast to separate variables in a single operation; 
(cid:137)  8-bit and 16-bit integer input data may be optionally converted to 32-bit floating-

point values in the range [0.0, 1.0] or [-1.0, 1.0]. 

However, within the same kernel call, the texture cache is not kept coherent with 
respect to image writes, so that any image read to an address that has been written 
to via an image write in the same kernel call returns undefined data. In other words, 
a thread can safely read via an image object some memory location only if this 
memory location has been updated by a previous kernel call or memory copy, but 
not if it has been previously updated by the same thread or another thread from the 
same kernel call. 

3.1.2.5 

Shared Memory 
Shared memory is where OpenCL local memory resides. 

Because it is on-chip, shared memory is much faster than local and global memory. 
In fact, for all threads of a warp, accessing shared memory is as fast as accessing a 
register as long as there are no bank conflicts between the threads, as detailed below. 

To achieve high memory bandwidth, shared memory is divided into equally-sized 
memory modules, called banks, which can be accessed simultaneously. So, any 
memory read or write request made of n addresses that fall in n distinct memory 
banks can be serviced simultaneously, yielding an effective bandwidth that is n times 
as high as the bandwidth of a single module. 

However, if two addresses of a memory request fall in the same memory bank, there 
is a bank conflict and the access has to be serialized. The hardware splits a memory 
request with bank conflicts into as many separate conflict-free requests as necessary, 
decreasing the effective bandwidth by a factor equal to the number of separate 
memory requests. If the number of separate memory requests is n, the initial 
memory request is said to cause n-way bank conflicts. 

To get maximum performance, it is therefore important to understand how memory 
addresses map to memory banks in order to schedule the memory requests so as to 
minimize bank conflicts. 

In the case of shared memory, the banks are organized such that successive 32-bit 
words are assigned to successive banks and each bank has a bandwidth of 32 bits 
per two clock cycles. 

For devices of compute capability 1.x, the warp size is 32 and the number of banks 
is 16 (see Section 5.1); a shared memory request for a warp is split into one request 
for the first half of the warp and one request for the second half of the warp. As a 
consequence, there can be no bank conflict between a thread belonging to the first 
half of a warp and a thread belonging to the second half of the same warp. 

NVIDIA OpenCL Programming Guide Version 2.3 

39 

 
 
 
 
 
 
Chapter 3. Performance Guidelines 

A common case is for each thread to access a 32-bit word from an array indexed by 
the thread ID tid and with some stride s: 

__local float shared[32]; 
float data = shared[BaseIndex + s * tid]; 
In this case, the threads tid and tid+n access the same bank whenever s*n is a 
multiple of the number of banks m or equivalently, whenever n is a multiple of m/d 
where d is the greatest common divisor of m and s. As a consequence, there will be 
no bank conflict only if half the warp size is less than or equal to m/d. For devices 
of compute capability 1.x, this translates to no bank conflict only if d is equal to 1, 
or in other words, only if s is odd since m is a power of two. 

Figure 3-5 and Figure 3-6 show some examples of conflict-free memory accesses 
while Figure 3-7 shows some examples of memory accesses that cause bank 
conflicts. 

Other cases worth mentioning are when each thread accesses an element that is 
smaller or larger than 32 bits in size. For example, there are bank conflicts if an array 
of char is accessed the following way: 

__local char shared[32]; 
char data = shared[BaseIndex + tid]; 
because shared[0], shared[1], shared[2], and shared[3], for example, 
belong to the same bank. There are no bank conflicts however, if the same array is 
accessed the following way: 

char data = shared[BaseIndex + 4 * tid]; 
There are also 2-way bank conflicts for arrays of double: 

__local double shared[32]; 
double data = shared[BaseIndex + tid]; 
since the memory request is compiled into two separate 32-bit requests. One way to 
avoid bank conflicts in this case is two split the double operands like in the 
following sample code: 

__local int shared_lo[32]; 
__local int shared_hi[32]; 

double dataIn; 
shared_lo[BaseIndex + tid] = __double2loint(dataIn); 
shared_hi[BaseIndex + tid] = __double2hiint(dataIn); 

double dataOut = 
            __hiloint2double(shared_hi[BaseIndex + tid], 
                             shared_lo[BaseIndex + tid]); 
It might not always improve performance though and will perform worse on future 
architectures. 

A structure assignment is compiled into as many memory requests as necessary for 
each member in the structure, so the following code, for example: 

__local struct type shared[32]; 
struct type data = shared[BaseIndex + tid]; 
results in: 

(cid:137)  Three separate memory reads without bank conflicts if type is defined as 
struct type { 

40 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
 
Chapter 3. Performance Guidelines 

float x, y, z; 

}; 

since each member is accessed with a stride of three 32-bit words; 

(cid:137)  Two separate memory reads with bank conflicts if type is defined as 
struct type { 

float x, y; 

}; 

since each member is accessed with a stride of two 32-bit words; 

(cid:137)  Two separate memory reads with bank conflicts if type is defined as 
struct type { 

float f; 
char  c; 

}; 

since each member is accessed with a stride of five bytes. 

Finally, shared memory also features a broadcast mechanism whereby a 32-bit word 
can be read and broadcast to several threads simultaneously when servicing one 
memory read request. This reduces the number of bank conflicts when several 
threads of a half-warp read from an address within the same 32-bit word. More 
precisely, a memory read request made of several addresses is serviced in several 
steps over time – one step every two clock cycles – by servicing one conflict-free 
subset of these addresses per step until all addresses have been serviced; at each 
step, the subset is built from the remaining addresses that have yet to be serviced 
using the following procedure: 

(cid:137)  Select one of the words pointed to by the remaining addresses as the broadcast 

word, 

(cid:137)  Include in the subset: 

(cid:137)  All addresses that are within the broadcast word, 
(cid:137)  One address for each bank pointed to by the remaining addresses. 

Which word is selected as the broadcast word and which address is picked up for 
each bank at each cycle are unspecified. 

A common conflict-free case is when all threads of a half-warp read from an address 
within the same 32-bit word. 

Figure 3-8 shows some examples of memory read accesses that involve the 
broadcast mechanism. 

NVIDIA OpenCL Programming Guide Version 2.3 

41 

 
 
 
 
 
 
 
 
 
 
Chapter 3. Performance Guidelines 

Thread 0 

Bank 0 

Thread 0 

Bank 0 

Thread 1 

Bank 1 

Thread 1 

Bank 1 

Thread 2 

Bank 2 

Thread 2 

Bank 2 

Thread 3 

Bank 3 

Thread 3 

Bank 3 

Thread 4 

Bank 4 

Thread 4 

Bank 4 

Thread 5 

Bank 5 

Thread 5 

Bank 5 

Thread 6 

Bank 6 

Thread 6 

Bank 6 

Thread 7 

Bank 7 

Thread 7 

Bank 7 

Thread 8 

Bank 8 

Thread 8 

Bank 8 

Thread 9 

Bank 9 

Thread 9 

Bank 9 

Thread 10 

Bank 10 

Thread 10 

Bank 10 

Thread 11 

Bank 11 

Thread 11 

Bank 11 

Thread 12 

Bank 12 

Thread 12 

Bank 12 

Thread 13 

Bank 13 

Thread 13 

Bank 13 

Thread 14 

Bank 14 

Thread 14 

Bank 14 

Thread 15 

Bank 15 

Thread 15 

Bank 15 

Left: linear addressing with a stride of one 32-bit word. 
Right: random permutation. 

Figure 3-5. Examples of Shared Memory Access Patterns  

without Bank Conflicts 

42 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
 
Chapter 3. Performance Guidelines 

Thread 0 

Bank 0 

Thread 1 

Bank 1 

Thread 2 

Bank 2 

Thread 3 

Bank 3 

Thread 4 

Bank 4 

Thread 5 

Bank 5 

Thread 6 

Bank 6 

Thread 7 

Bank 7 

Thread 8 

Bank 8 

Thread 9 

Bank 9 

Thread 10 

Bank 10 

Thread 11 

Bank 11 

Thread 12 

Bank 12 

Thread 13 

Bank 13 

Thread 14 

Bank 14 

Thread 15 

Bank 15 

Linear addressing with a stride of three 32-bit words. 

Figure 3-6. Example of a Shared Memory Access Pattern  

without Bank Conflicts 

NVIDIA OpenCL Programming Guide Version 2.3 

43 

 
 
 
 
 
 
 
 
 
Chapter 3. Performance Guidelines 

Thread 0 

Bank 0 

Thread 0 

Bank 0 

Thread 1 

Bank 1 

Thread 1 

Bank 1 

Thread 2 

Bank 2 

Thread 2 

Bank 2 

Thread 3 

Bank 3 

Thread 3 

Bank 3 

Thread 4 

Bank 4 

Thread 4 

Bank 4 

Thread 5 

Bank 5 

Thread 5 

Bank 5 

Thread 6 

Bank 6 

Thread 6 

Bank 6 

Thread 7 

Bank 7 

Thread 7 

Bank 7 

Thread 8 

Bank 8 

Thread 8 

Bank 8 

Thread 9 

Bank 9 

Thread 9 

Bank 9 

Thread 10 

Bank 10 

Thread 10 

Bank 10 

Thread 11 

Bank 11 

Thread 11 

Bank 11 

Thread 12 

Bank 12 

Thread 12 

Bank 12 

Thread 13 

Bank 13 

Thread 13 

Bank 13 

Thread 14 

Bank 14 

Thread 14 

Bank 14 

Thread 15 

Bank 15 

Thread 15 

Bank 15 

Left: Linear addressing with a stride of two 32-bit words causes 2-way bank conflicts. 
Right: Linear addressing with a stride of eight 32-bit words causes 8-way bank conflicts. 

Figure 3-7. Examples of Shared Memory Access Patterns with 

Bank Conflicts 

44 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
 
Chapter 3. Performance Guidelines 

Thread 0 

Bank 0 

Thread 0 

Bank 0 

Thread 1 

Bank 1 

Thread 1 

Bank 1 

Thread 2 

Bank 2 

Thread 2 

Bank 2 

Thread 3 

Bank 3 

Thread 3 

Bank 3 

Thread 4 

Bank 4 

Thread 4 

Bank 4 

Thread 5 

Bank 5 

Thread 5 

Bank 5 

Thread 6 

Bank 6 

Thread 6 

Bank 6 

Thread 7 

Bank 7 

Thread 7 

Bank 7 

Thread 8 

Bank 8 

Thread 8 

Bank 8 

Thread 9 

Bank 9 

Thread 9 

Bank 9 

Thread 10 

Bank 10 

Thread 10 

Bank 10 

Thread 11 

Bank 11 

Thread 11 

Bank 11 

Thread 12 

Bank 12 

Thread 12 

Bank 12 

Thread 13 

Bank 13 

Thread 13 

Bank 13 

Thread 14 

Bank 14 

Thread 14 

Bank 14 

Thread 15 

Bank 15 

Thread 15 

Bank 15 

Left: This access pattern is conflict-free since all threads read from an address within the same 32-bit 
word. 
Right: This access pattern causes either no bank conflicts if the word from bank 5 is chosen as the 
broadcast word during the first step or 2-way bank conflicts, otherwise. 

Figure 3-8. Example of Shared Memory Read Access Patterns 

with Broadcast 

NVIDIA OpenCL Programming Guide Version 2.3 

45 

 
 
 
 
 
 
 
Chapter 3. Performance Guidelines 

3.1.2.6 

Registers 
Generally, accessing a register is zero extra clock cycles per instruction, but delays 
may occur due to register read-after-write dependencies and register memory bank 
conflicts. 

The delays introduced by read-after-write dependencies can be ignored as soon as 
there are at least 192 active threads per multiprocessor to hide them. 

The compiler and thread scheduler schedule the instructions as optimally as possible 
to avoid register memory bank conflicts. They achieve best results when the number 
of threads per block is a multiple of 64. Other than following this rule, an 
application has no direct control over these bank conflicts. In particular, there is no 
need to pack data into float4 or int4 types. 

3.2 

NDRange 

How the NDRange affects the execution time of a kernel launch generally depends 
on the kernel code. Experimentation is therefore recommended and applications 
should set the work-group size explicitly as opposed to rely on the OpenCL 
implementation to determine the right size (by setting local_work_size to NULL in 
clEnqueueNDRangeKernel()). There are however general guidelines, described 
in this section. 

For a start, the kernel will simply fail to launch if the number of threads per block 
either is above the maximum number of threads per block as specified in   
Appendix A, or requires too many registers or shared memory than available per 
multiprocessor as mentioned in Section 2.1.2. The total number of registers required 
for a block is equal to 

ceil

(

R

×

ceil

),32,(
T

maxR
32

)

)

R

ceil

yx
,(

maxR

 is the number of registers required for the kernel,

is equal to x rounded up to the nearest multiple of 

where
is the number of 
registers per multiprocessor given in Appendix A,  T  is the number of threads per 
. The total 
block, and 
amount of shared memory required for a block is equal to the sum of the amount of 
statically allocated shared memory, the amount of dynamically allocated shared 
memory, and the amount of shared memory used to pass the kernel’s arguments. 
Note that each double or long long variable uses two registers. However, 
devices of compute capability 1.2 and higher have twice as many registers per 
multiprocessor as devices with lower compute capability. 

y

Then, given a total number of threads per grid, the number of threads per block 
might be dictated by the need to have enough blocks in the grid to maximize the 
utilization of the available computing resources. First, there should be at least as 
many blocks as there are multiprocessors in the device. Then, running only one 
block per multiprocessor will force the multiprocessor to idle during thread 
synchronization and also during device memory reads if there are not enough 
threads per block to cover the load latency. It is therefore usually better to allow for 
two or more blocks to be active on each multiprocessor to allow overlap between 
blocks that wait and blocks that can run. For this to happen, not only should there 
be at least twice as many blocks as there are multiprocessors in the device, but also 

46 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
Chapter 3. Performance Guidelines 

the amount of registers and shared memory required per block must be low enough 
to allow for more than one active block (see Section 2.1.2). More thread blocks 
stream in pipeline fashion through the device and amortize overhead even more. 
The number of blocks per grid should be at least 100 if one wants it to scale to 
future devices; 1000 blocks will scale across several generations. 

With a high enough number of blocks, the number of threads per block should be 
chosen as a multiple of the warp size to avoid swasting computing resources with 
under-populated warps, or better, a multiple of 64 for the reason invoked in 
Section 3.1.2.6. Allocating more threads per block is better for efficient time slicing, 
but the more threads per block, the fewer registers are available per thread, which 
might prevent the kernel invocation from succeeding. 

Usually, 64 threads per block is minimal and makes sense only if there are multiple 
active blocks per multiprocessor; 192 or 256 threads per block is better and usually 
allows for enough registers to compile. 

The ratio of the number of active warps per multiprocessor to the maximum 
number of active warps (given in Appendix A) is called the multiprocessor occupancy. 
In order to maximize occupancy, the compiler attempts to minimize register usage 
while keeping the number of instructions and CUDA local memory usage to a 
minimum. The CUDA Software Development Kit provides a spreadsheet to assist 
programmers in choosing thread block size based on shared memory and register 
requirements. 

3.3 

Data Transfer between Host and Device 

The bandwidth between device memory and the device is much higher than the 
bandwidth between device memory and host memory. Therefore, one should strive 
to minimize data transfer between the host and the device, for example, by moving 
more code from the host to the device, even if that means running kernels with low 
parallelism computations. Intermediate data structures may be created in device 
memory, operated on by the device, and destroyed without ever being mapped by 
the host or copied to host memory. 

Also, because of the overhead associated with each transfer, batching many small 
transfers into a big one always performs much better than making each transfer 
separately. 

Finally, higher performance for data transfers between host and device is achieved 
for memory objects allocated in page-locked (also known as pinned) host memory (as 
opposed to regular pageable host memory allocated by malloc()), which has 
several benefits: 

(cid:137)  Bandwidth between host memory and device memory is higher if host memory 

is allocated as page-locked. 

(cid:137)  For some devices, copies between page-locked host memory and device memory 

can be performed concurrently with kernel execution. 

(cid:137)  For some devices, page-locked host memory can be mapped into the device’s 

address space. In this case, there is no need to allocate any device memory and to 
explicitly copy data between device and host memory. Data transfers are 
implicitly performed each time the kernel accesses the mapped memory. For 
maximum performance, these memory accesses must be coalesced like if they 

NVIDIA OpenCL Programming Guide Version 2.3 

47 

 
 
 
 
 
 
Chapter 3. Performance Guidelines 

were accesses to global memory (see Section 3.1.2.1). Assuming that they are an
that the mapped memory is read or written only once, avoiding explicit copies 
between device and host memory can be a win performance-wise. It is always a
win on integrated systems where device memory and host memory are physically
the same and therefore any copy between host and device memory is 
superfluous. 
enCL applicat

ions do not have direct control over whether memory objects are 

Op
allocated in page-locked memory or not, but they can create objects using the 
CL_MEM_ALLOC_HOST_PTR flag and such objects are likely to be allocated in
locked memory by the driver for best performance. 

 page-

d 

3.4 

Warp-Level Synchronization 

Because a warp executes one common instruction at a time, threads within a warp 
are implicitly synchronized and this can be used to omit calls to the barrier() 
function for better performance. 

example, both calls to barrier() are required to 

In the following code sample, for 
get the expected result (i.e. result[i] = 2 * myArray[i] for i > 0). 
Without synchronization, any of the two references to myArray[tid] could
return either 2 or the value initially stored in myArray, depending on whether t
memory read occurs before or after the memory write from 
myArray[tid + 1] = 2. 

he 

// myArray is an array of integers located in global or shared 
// memory 
__kernel void myKernel(__global int* result) { 
    int tid = get_local_id(0); 
    ... 
    int ref1 = myArray[tid] * 1; 
    barrier(CLK_LOCAL_MEM_FENCE|CLK_GLOBAL_MEM_FENCE); 
    myArray[tid + 1] = 2; 
    barrier(CLK_LOCAL_MEM_FENCE|CLK_GLOBAL_MEM_FENCE); 
    int ref2 = myArray[tid] * 1; 
    result[tid] = ref1 * ref2; 
    ... 
} 
However, in the following slightly modified code sample, threads are guaranteed to 
belong to the same warp, so that there is no need for any barrier() call. 

// myArray is an array of integers located in global or shared 
// memory 
__kernel void myKernel(__global int* result) { 
    int tid = get_local_id(0); 
    ... 
    if (tid < warpSize) { 
        int ref1 = myArray[tid] * 1; 
        myArray[tid + 1] = 2; 
        int ref2 = myArray[tid] * 1; 
        result[tid] = ref1 * ref2; 
    } 
    ... 
} 

48 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
 
 
Chapter 3. Performance Guidelines

Simply removing the call to barrier() is not enough however; myArray also 
needs to be declared as volatile as described in Section 2.2.2. 

3.5 

Overall Performance Optimization Strategies 

Performance optimization revolves around three basic strategies: 

(cid:137)  Maximizing parallel execution; 
(cid:137)  Optimizing memory usage to achieve maximum memory bandwidth; 
(cid:137)  Optimizing instruction usage to achieve maximum instruction throughput. 
Maximizing parallel execution starts with structuring the algorithm in a way that 
exposes as much data parallelism as possible. At points in the algorithm where 
parallelism is broken because some threads need to synchronize in order to share 
data between each other, there are two cases: Either these threads belong to the 
same block, in which case they should use the barrier() function and share data 
through shared memory within the same kernel call, or they belong to different 
blocks, in which case they must share data through global memory using two 
separate kernel invocations, one for writing to and one for reading from global 
memory. 

Once the parallelism of the algorithm has been exposed it needs to be mapped to 
the hardware as efficiently as possible. This is done by carefully choosing the 
NDRange of each kernel invocation as detailed in Section 3.2. 

The application should also maximize parallel execution at a higher level by 
explicitly exposing concurrent execution on the device through queues, as well as 
maximizing concurrent execution between host and device. 

Optimizing memory usage starts with minimizing data transfers with low-
bandwidth. That means minimizing data transfers between the host and the device, 
as detailed in Section 3.3, since these have much lower bandwidth than data 
transfers between device and global memory. That also means minimizing data 
transfers between device and global memory by maximizing use of shared memory 
on the device, as mentioned in Section 3.1.2. Sometimes, the best optimization 
might even be to avoid any data transfer in the first place by simply recomputing the 
data instead whenever it is needed. 

As detailed in Sections 3.1.2.1, 3.1.2.3, 3.1.2.4, and 3.1.2.5, the effective bandwidth 
can vary by an order of magnitude depending on access pattern for each type of 
memory. The next step in optimizing memory usage is therefore to organize 
memory accesses as optimally as possible based on the optimal memory access 
patterns. This optimization is especially important for global memory accesses as 
global memory bandwidth is low and its latency is hundreds of clock cycles (see 
Section 3.1.1.3). Shared memory accesses, on the other hand, are usually worth 
optimizing only in case they have a high degree of bank conflicts. 

As for optimizing instruction usage, the use of arithmetic instructions with low 
throughput (see Section 3.1.1.1) should be minimized. This includes trading 
precision for speed when it does not affect the end result, such as using intrinsic 
instead of regular functions (intrinsic functions are listed in Section B.2) or single-
precision instead of double-precision. Particular attention must be paid to control 
flow instructions due to the SIMT nature of the device as detailed in Section 3.1.1.2. 

NVIDIA OpenCL Programming Guide Version 2.3 

49 

 
 
 
 
 
 
 
Appendix A. 
Technical Specifications 

A.1 

General Specifications 

The general specifications and features of a compute device depend on its compute 
capability (see Section 2.3). 

The following sections describe the technical specifications and features associated 
to each compute capability. The specifications for a given compute capability are the 
same as for the compute capability just below unless otherwise mentioned. Similarly, 
any feature supported for a given compute capability is supported for any higher 
compute capability. 

The compute capability and number of multiprocessors of all CUDA-enabled 
devices are given in the following table: 

Number of 
Multiprocessors 

Compute 
Capability 

GeForce GTX 295 

GeForce GTX 285, GTX 280 

GeForce GTX 260 

GeForce 9800 GX2 

GeForce GTS 250, GTS 150, 9800 GTX, 
9800 GTX+, 8800 GTS 512 

GeForce 8800 Ultra, 8800 GTX 

GeForce 9800 GT, 8800 GT, 9800M GTX 

GeForce GT 130, 9600 GSO, 8800 GS, 
8800M GTX, 9800M GT 

GeForce 8800 GTS 

GeForce 9600 GT, 8800M GTS, 9800M GTS 

GeForce 9700M GT 

GeForce GT 120, 9500 GT, 8600 GTS, 8600 GT, 
9700M GT, 9650M GS, 9600M GT, 9600M GS, 
9500M GS, 8700M GT, 8600M GT, 8600M GS 

GeForce G100, 8500 GT, 8400 GS, 8400M GT, 
9500M G, 9300M G, 8400M GS, 9400 mGPU, 
9300 mGPU, 8300 mGPU, 8200 mGPU, 

 (1 Multiprocessor 
= 8 Processors) 
2x30 

30 

24 

2x16 

16 

16 

14 

12 

12 

8 

6 

4 

2 

1.3 

1.3 

1.3 

1.1 

1.1 

1.0 

1.1 

1.1 

1.0 

1.1 

1.1 

1.1 

1.1 

 
 
 
 
 
 
 
 
Appendix A. Technical Specifications 

8100 mGPU 

GeForce 9300M GS, 9200M GS, 9100M G, 
8400M G 

Tesla S1070 

Tesla C1060 

Tesla S870 

Tesla D870 

Tesla C870 

Quadro Plex 2200 D2 

Quadro Plex 2100 D4 

Quadro Plex 2100 Model S4 

Quadro Plex 1000 Model IV 

Quadro FX 5800 

Quadro FX 4800 

Quadro FX 4700 X2 

Quadro FX 3700M 

Quadro FX 5600 

Quadro FX 3700 

Quadro FX 3600M 

Quadro FX 4600 

Quadro FX 2700M 

Quadro FX 1700, FX 570, NVS 320M, FX 1700M, 
FX 1600M, FX 770M, FX 570M 

Quadro FX 370, NVS 290, NVS 140M, NVS 135M, 
FX 360M 

Quadro FX 370M, NVS 130M 

1 

4x30 

30 

4x16 

2x16 

16 

2x30 

4x14 

4x16 

2x16 

30 

24 

2x14 

16 

16 

14 

12 

12 

6 

4 

2 

1 

1.1 

1.3 

1.3 

1.0 

1.0 

1.0 

1.3 

1.1 

1.0 

1.0 

1.3 

1.3 

1.1 

1.1 

1.0 

1.1 

1.1 

1.0 

1.1 

1.1 

1.1 

1.1 

The number of multiprocessors, the clock frequency and the total amount of device 
memory can be queried using the runtime. 

A.1.1 

Specifications for Compute Capability 1.0 
(cid:137)  The maximum number of threads per block is 512; 
(cid:137)  The maximum sizes of the x-, y-, and z-dimension of a thread block are 512, 512, 

and 64, respectively; 

(cid:137)  The maximum size of each dimension of a grid of thread blocks is 65535; 
(cid:137)  The warp size is 32 threads; 
(cid:137)  The number of 32-bit registers per multiprocessor is 8192; 
(cid:137)  The amount of shared memory available per multiprocessor is 16 KB organized 

into 16 banks (see Section 3.1.2.5); 

(cid:137)  The total amount of constant memory is 64 KB; 
(cid:137)  The total amount of local memory per thread is 16 KB; 
(cid:137)  The cache working set for constant memory is 8 KB per multiprocessor; 
(cid:137)  The cache working set for texture memory varies between 6 and 8 KB per 

multiprocessor; 

52 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
Appendix A. Technical Specifications 

(cid:137)  The maximum number of active blocks per multiprocessor is 8; 
(cid:137)  The maximum number of active warps per multiprocessor is 24; 
(cid:137)  The maximum number of active threads per multiprocessor is 768; 
(cid:137)  The limit on kernel size is 2 million PTX instructions; 

A.1.2 

A.1.3 

Specifications for Compute Capability 1.1 
(cid:137)  Support for atomic functions operating on 32-bit words in global memory. 

Specifications for Compute Capability 1.2 
(cid:137)  Support for atomic functions operating in shared memory and atomic functions 

operating on 64-bit words in global memory; 

(cid:137)  Support for warp vote functions; 
(cid:137)  The number of registers per multiprocessor is 16384; 
(cid:137)  The maximum number of active warps per multiprocessor is 32; 
(cid:137)  The maximum number of active threads per multiprocessor is 1024. 

A.1.4 

Specifications for Compute Capability 1.3 
(cid:137)  Support for double-precision floating-point numbers. 

A.2 

Floating-Point Standard 

All compute devices follow the IEEE-754 standard for binary floating-point 
arithmetic with the following deviations: 

(cid:137)  There is no dynamically configurable rounding mode; however, most of the 
operations support IEEE rounding modes, exposed via device functions; 

(cid:137)  There is no mechanism for detecting that a floating-point exception has occurred 
and all operations behave as if the IEEE-754 exceptions are always masked, and 
deliver the masked response as defined by IEEE-754 if there is an exceptional 
event; for the same reason, while SNaN encodings are supported, they are not 
signaling; 

(cid:137)  Absolute value and negation are not compliant with IEEE-754 with respect to 

NaNs; these are passed through unchanged; 
(cid:137)  For single-precision floating-point numbers only: 

(cid:137)  Denormalized numbers are not supported; floating-point arithmetic and 

comparison instructions convert denormalized operands to zero prior to the 
floating-point operation; 

(cid:137)  Underflowed results are flushed to zero; 
(cid:137)  The result of an operation involving one or more input NaNs is the quiet 

NaN of bit pattern 0x7fffffff; note that; 
(cid:137)  Some instructions are not IEEE-compliant: 

NVIDIA OpenCL Programming Guide Version 2.3 

53 

 
 
 
 
 
 
Appendix A. Technical Specifications

(cid:137)  Addition and multiplication are often combined into a single multiply-add 

instruction (FMAD), which truncates the intermediate result of the 
multiplication; 

(cid:137)  Division is implemented via the reciprocal in a non-standard-compliant 

way; 

(cid:137)  Square root is implemented via the reciprocal square root in a non-

standard-compliant way; 

(cid:137)  For addition and multiplication, only round-to-nearest-even and 

round-towards-zero are supported via static rounding modes; directed 
rounding towards +/- infinity is not supported; 

But, IEEE-compliant software (and therefore slower) implementations are 
provided through the following intrinsics from Appendix B: 
(cid:137)  fma(float, float, float): single-precision fused multiply-add 

with IEEE rounding modes, 

(cid:137)  native_recip(float): single-precision reciprocal with IEEE 

rounding modes, 

(cid:137)  native_divide(float, float): single-precision division with 

IEEE rounding modes, 

(cid:137)  native_sqrt(float): single-precision square root with IEEE 

rounding modes; 

(cid:137)  For double-precision floating-point numbers only: 

(cid:137)  Round-to-nearest-even is the only supported IEEE rounding mode for 

reciprocal, division, and square root. 

In accordance to the IEEE-754R standard, if one of the input parameters to 
fmin() or fmax() is NaN, but not the other, the result is the non-NaN 
parameter. 

(cid:137)  The conversion of a floating-point value to an integer value in the case where the 
floating-point value falls outside the range of the integer format is left undefined 
by IEEE-754. For compute devices, the behavior is to clamp to the end of the 
supported range. This is unlike the x86 architecture behaves.  

A.3 

Supported OpenCL Extensions 

All compute devices supports the cl_khr_byte_addressable_store extension. 

Devices of compute capability 1.1 and higher support the 
cl_khr_global_int32_base_atomics, cl_khr_global_int32_extended_atomics, 
cl_khr_local_int32_base_atomics, and cl_khr_local_int32_extended_atomics 
extensions. 

54 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
 
 
Appendix B. 
Mathematical Functions Accuracy 

B.1 

Standard Functions 

Error bounds in this section are generated from extensive but not exhaustive tests, 
so they are not guaranteed bounds. 

B.1.1 

Single-Precision Floating-Point Functions 
Table C-1 lists errors for the standard single-precision floating-point functions. 

The recommended way to round a single-precision floating-point operand to an 
integer, with the result being a single-precision floating-point number is rint(), 
not round(). The reason is that round() maps to an 8-instruction sequence on 
the device, whereas rint() maps to a single instruction. trunc(), ceil(), and 
floor() each map to a single instruction as well. 

Table C-1. Mathematical Standard Library Functions with 

Maximum ULP Error 

The maximum error is stated as the absolute value of the difference 
in ulps between a correctly rounded single-precision result and the 
result returned by the CUDA library function. 

Function 
x+y 

x*y 

x/y 

1/x 

1/sqrt(x) 
rsqrt(x) 

sqrt(x) 

cbrt(x) 

hypot(x,y) 

exp(x) 

Maximum ulp error 
0 (IEEE-754 round-to-nearest-even) 
(except when merged into an FMAD) 

0 (IEEE-754 round-to-nearest-even) 
(except when merged into an FMAD) 

2 (full range) 

1 (full range) 

2 (full range) 

3 (full range) 

1 (full range) 

3 (full range) 

2 (full range) 

 
 
 
 
 
 
 
Appendix B. Mathematical Functions Accuracy 

Function 
exp2(x) 

exp10(x) 

expm1(x) 

log(x) 

log2(x) 

log10(x) 

log1p(x) 

sin(x) 

cos(x) 

tan(x) 

sincos(x,cptr) 

asin(x) 

acos(x) 

atan(x) 

atan2(y,x) 

sinh(x) 

cosh(x) 

tanh(x) 

asinh(x) 

acosh(x) 

atanh(x) 

pow(x,y) 

erf(x) 

erfc(x) 

erfinv(x) 

erfcinv(x) 

lgamma(x) 

tgamma(x) 

fma(x,y,z) 

frexp(x,exp) 

ldexp(x,exp) 

scalbn(x,n) 

scalbln(x,l) 

logb(x) 

ilogb(x) 

fmod(x,y) 

remainder(x,y) 

remquo(x,y,iptr) 

modf(x,iptr) 

fdim(x,y) 

trunc(x) 

round(x) 

Maximum ulp error 
2 (full range) 

2 (full range) 

1 (full range) 

1 (full range) 

3 (full range) 

3 (full range) 

2 (full range) 

2 (full range) 

2 (full range) 

4 (full range) 

2 (full range) 

4 (full range) 

3 (full range) 

2 (full range) 

3 (full range) 

3 (full range) 

2 (full range) 

2 (full range) 

3 (full range) 

4 (full range) 

3 (full range) 

8 (full range) 

3 (full range) 

8 (full range) 

5 (full range) 

7 (full range) 

6 (outside interval -10.001 ... -2.264; larger inside) 

11 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

56 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
Appendix B. Mathematical Functions Accuracy 

Function 
rint(x) 

nearbyint(x) 

ceil(x) 

floor(x) 

lrint(x) 

lround(x) 

llrint(x) 

llround(x) 

Maximum ulp error 
0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

B.1.2 

Double-Precision Floating-Point Functions 
Table C-2 lists errors for the standard double-precision floating-point functions. 

These errors only apply when compiling for devices with native double-precision 
support. When compiling for devices without such support, such as devices of 
compute capability 1.2 and lower, the double type gets demoted to float by 
default and the double-precision math functions are mapped to their single-
precision equivalents. 

The recommended way to round a double-precision floating-point operand to an 
integer, with the result being a double-precision floating-point number is rint(), 
not round(). The reason is that round() maps to an 8-instruction sequence on 
the device, whereas rint() maps to a single instruction. trunc(), ceil(), and 
floor() each map to a single instruction as well. 

Table C-2. Mathematical Standard Library Functions with 

Maximum ULP Error 

The maximum error is stated as the absolute value of the difference 
in ulps between a correctly rounded double-precision result and the 
result returned by the CUDA library function. 

Function 
x+y 

x*y 

x/y 

1/x 

sqrt(x) 

rsqrt(x) 

cbrt(x) 

hypot(x,y) 

exp(x) 

exp2(x) 

exp10(x) 

expm1(x) 

log(x) 

log2(x) 

Maximum ulp error 
0 (IEEE-754 round-to-nearest-even) 

0 (IEEE-754 round-to-nearest-even) 

0 (IEEE-754 round-to-nearest-even) 

0 (IEEE-754 round-to-nearest-even) 

0 (IEEE-754 round-to-nearest-even) 

1 (full range) 

1 (full range) 

2 (full range) 

1 (full range) 

1 (full range) 

1 (full range) 

1 (full range) 

1 (full range) 

1 (full range) 

NVIDIA OpenCL Programming Guide Version 2.3 

57 

 
 
 
 
 
 
Appendix B. Mathematical Functions Accuracy 

Function 
log10(x) 

log1p(x) 

sin(x) 

cos(x) 

tan(x) 

sincos(x,sptr,cptr) 

asin(x) 

acos(x) 

atan(x) 

atan2(y,x) 

sinh(x) 

cosh(x) 

tanh(x) 

asinh(x) 

acosh(x) 

atanh(x) 

pow(x,y) 

erf(x) 

erfc(x) 

erfinv(x) 

erfcinv(x) 

lgamma(x) 

tgamma(x) 

fma(x,y,z) 

frexp(x,exp) 

ldexp(x,exp) 

scalbn(x,n) 

scalbln(x,l) 

logb(x) 

ilogb(x) 

fmod(x,y) 

remainder(x,y) 

remquo(x,y,iptr) 

modf(x,iptr) 

fdim(x,y) 

trunc(x) 

round(x) 

rint(x) 

nearbyint(x) 

ceil(x) 

floor(x) 

lrint(x) 

Maximum ulp error 
1 (full range) 

1 (full range) 

2 (full range) 

2 (full range) 

2 (full range) 

2 (full range) 

2 (full range) 

2 (full range) 

2 (full range) 

2 (full range) 

1 (full range) 

1 (full range) 

1 (full range) 

2 (full range) 

2 (full range) 

2 (full range) 

2 (full range) 

2 (full range) 

7 (full range) 

8 (full range) 

8 (full range) 

4 (outside interval -11.0001 ... -2.2637; larger inside) 

8 (full range) 

0 (IEEE-754 round-to-nearest-even) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

0 (full range) 

58 

NVIDIA OpenCL Programming Guide Version 2.3 

 
 
 
 
Appendix B. Mathematical Functions Accuracy

Function 
lround(x) 

llrint(x) 

llround(x) 

Maximum ulp error 
0 (full range) 

0 (full range) 

0 (full range) 

B.2 

Native Functions 

Table C-3 lists the native single-precision floating-point functions supported on the 
CUDA architecture. 

Both the regular floating-point division and native_divide(x,y) have the same 
accuracy, but for 2126 < y < 2128, native_divide(x,y) delivers a result of zero, 
whereas the regular division delivers the correct result to within the accuracy stated 
in Table C-3. Also, for 2126 < y < 2128, if x is infinity, native_divide(x,y) 
delivers a NaN (as a result of multiplying infinity by zero), while the regular division 
returns infinity. 

Table C-3. Single-Precision Floating-Point Native Functions 

with Respective Error Bounds 

Function 
native_recip(x) 

native_sqrt(x) 

Error bounds 
IEEE-compliant. 

IEEE-compliant. 

native_divide(x,y) 

For y in [2-126, 2126], the maximum ulp error is 2. 

native_exp(x) 

native_exp10(x) 

native_log(x) 

native_log2(x) 

native_log10(x) 

native_sin(x) 

native_cos(x) 

native_tan(x) 

native_pow(x,y) 

The maximum ulp error is 
2 + floor(abs(1.16 * x)). 

The maximum ulp error is 
2 + floor(abs(2.95 * x)). 
For x in [0.5, 2], the maximum absolute error is 2-
21.41, otherwise, the maximum ulp error is 3. 
For x in [0.5, 2], the maximum absolute error is 2-22, 
otherwise, the maximum ulp error is 2. 
For x in [0.5, 2], the maximum absolute error is 2-24, 
otherwise, the maximum ulp error is 3. 

For x in [-π, π], the maximum absolute error is 2-21.41, 
and larger otherwise. 
For x in [-π, π], the maximum absolute error is 2-21.19, 
and larger otherwise. 

Derived from its implementation as 
native_sin(x) * (1 / native_cos(x)). 

Derived from its implementation as 
exp2(y * native_log2(x)). 

NVIDIA OpenCL Programming Guide Version 2.3 

59 

 
 
 
 
 
 
 
 
Notice 

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND 
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA 
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE 
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, 
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. 

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no 
responsibility for the consequences of use of such information or for any infringement of patents or other 
rights of third parties that may result from its use. No license is granted by implication or otherwise under any 
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to 
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA 
Corporation products are not authorized for use as critical components in life support devices or systems 
without express written approval of NVIDIA Corporation. 

Trademarks 

NVIDIA, the NVIDIA logo, GeForce, Tesla, and Quadro are trademarks or registered trademarks of NVIDIA 
Corporation. Other company and product names may be trademarks of the respective companies with which 
they are associated.  

Copyright 

© 2007-2008 NVIDIA Corporation. All rights reserved. 

This work incorporates portions of on an earlier work: Scalable Parallel Programming with CUDA, in ACM 
Queue, VOL 6, No. 2 (March/April 2008), © ACM, 2008. http://mags.acm.org/queue/20080304/?u1=texterity" 

NVIDIA Corporation 
2701 San Tomas Expressway 
Santa Clara, CA 95050 
www.nvidia.com