Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
File size: 175,159 Bytes
08c8a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
Arithmetic 

Kenneth E. Iverson 

Copyright  © 2002 Jsoftware Inc. All rights reserved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Preface 

Arithmetic  is  the  basic  topic  of  mathematics.  According  to  the  American  Heritage 
Dictionary  [1],  it  concerns  “The  mathematics  of  integers  under  addition,  subtraction, 
multiplication, division, involution, and evolution.” 

The present text differs from other treatments of arithmetic in several respects: 

The  provision  of  simple  but  precise  definitions  of  the  counting  numbers  and  other 
notions introduced. 

The  use  of  simple  but  precise  notation  that  is  executable  on  a  computer,  allowing 
experimentation  and  providing  a  simple  and  meaningful  introduction  to  computer 
programming. 

The  introduction  and  significant  use  of  fundamental  mathematical  notions  (such  as 
vectors,  matrices,  Heaviside  operators,  and  duality)  in  simple  contexts  that  make 
them  easy  to  understand.  This  lays  a  firm  foundation  for  a  wealth  of  later  use  in 
mathematics. 

Emphasis is placed on the use of guesses by speculation and criticism in the spirit of 
Lakatos, as discussed in the treatment of proofs in Chapter 5. 

The  thrust  of  the  book  might  best  be  appreciated  by  comparing  it  with  Felix  Klein’s 
Elementary  Mathematics  from  an  Advanced  Standpoint  [2].  However,  I  shun  the 
corresponding title Arithmetic from an Advanced Standpoint because it would incorrectly 
suggest  that  the  treatment  is  intended  only  for  mature  mathematicians;  on  the  contrary, 
the  use  of  simple,  executable  notation  makes  it  accessible  to  any  serious  student 
possessing little more than a knowledge of the counting numbers. 

Like Klein, I do not digress to discuss the importance of the topics treated, but leave that 
matter to the knowledge of the mature reader and to the faith of the neophyte. 

  
 
  
Table of Contents 

Introduction ..............................................................................1 

A. Counting Numbers.......................................................................... 1 

B. Integers ........................................................................................... 2 

C. Inverses ........................................................................................... 2 

D. Domains.......................................................................................... 3 

E. Nouns and Verbs............................................................................. 3 

F. Pronouns and Proverbs.................................................................... 3 

G. Conjunctions................................................................................... 4 

H. Addition And Subtraction............................................................... 5 

I. Verb Tables ...................................................................................... 5 

J. Relations .......................................................................................... 6 

K. Lesser-Of and Greater-Of............................................................... 7 

L. List And Table Formation............................................................... 7 

M. Punctuation .................................................................................... 8 

N. Insertion.......................................................................................... 9 

O. Multiplication ................................................................................. 10 

P. Power............................................................................................... 10 

Q. Summary......................................................................................... 11 

R. On Language................................................................................... 12 

Properties of Verbs ..................................................................17 

A. Valence, Ambivalence, And Bonds................................................ 17 

B. Commutativity ................................................................................ 18 

C. Associativity ................................................................................... 18 

D. Distributivity................................................................................... 18 

E. Symmetry ........................................................................................ 19 

F. Display of Proverbs......................................................................... 20 

G. Inverses........................................................................................... 20 

H. Partitions......................................................................................... 20 

I. Identity Elements and Infinity.......................................................... 21 

J. Experimentation ............................................................................... 22 

K. Summary of Notation ..................................................................... 22 

L. On Language ................................................................................... 22 

Partitions and Selections.........................................................25 

A. Partition Adverbs............................................................................ 25 

B. Selection Verbs ............................................................................... 26 

  
 
C. Grade and Sort ................................................................................ 28 

D. Residue ........................................................................................... 28 

E. Characters........................................................................................ 29 

F. Box and Open.................................................................................. 30 

G. Summary of Notation ..................................................................... 31 

H. On Language .................................................................................. 31 

Representation of Integers ......................................................33 

A. Introduction .................................................................................... 33 

B. Addition .......................................................................................... 34 

C. Multiplication.................................................................................. 35 

D. Normalization ................................................................................. 37 

E. Mixed Bases.................................................................................... 39 

F. Experimentation .............................................................................. 40 

G. Summary of Notation ..................................................................... 41 

Proofs ........................................................................................43 

A. Introduction .................................................................................... 43 

B. Formal and Informal Proofs............................................................ 47 

C. Proofs and Refutations.................................................................... 48 

D. Proofs.............................................................................................. 50 

Logic..........................................................................................57 

A. Domain and Range ......................................................................... 57 

B. Propositions .................................................................................... 58 

C. Booleans ......................................................................................... 58 

D. Primitives........................................................................................ 60 

E. Boolean Dyads ................................................................................ 61 

F. Boolean Monads.............................................................................. 62 

G. Generators....................................................................................... 62 

H. Boolean Primitives.......................................................................... 63 

I. Summary of Notation ....................................................................... 63 

Permutations ............................................................................65 

A. Introduction .................................................................................... 65 

B. Arrangements.................................................................................. 67 

D. Products of Permutations................................................................ 69 

E. Cycles.............................................................................................. 70 

F. Reduced Representation .................................................................. 71 

G. Summary of Notation ..................................................................... 72 

Classification and Sets ............................................................75 

  
A. Introduction .................................................................................... 75 

B. Sets.................................................................................................. 78 

C. Nub Classification........................................................................... 80 

D. Interval Classification..................................................................... 80 

E. Membership Classification.............................................................. 81 

F. Summary of Notation ...................................................................... 83 

Polynomials ..............................................................................85 

A. Introduction .................................................................................... 85 

B. Sums and Products.......................................................................... 86 

C. Roots ............................................................................................... 87 

D. Expansion ....................................................................................... 88 

E. Graphs And Plots ............................................................................ 89 

F. Real And Complex Numbers .......................................................... 89 

G. General Expansion.......................................................................... 92 

H. Slopes And Derivatives .................................................................. 93 

I. Derivatives of Polynomials .............................................................. 96 

J. The Exponential Family................................................................... 96 

K. Summary Of Notation..................................................................... 99 

L. On Language ................................................................................... 99 

References ................................................................................107 

  
1 

Chapter 
1 

Introduction 

A. Counting Numbers 

The list 1 2 3 4 5 6 7 8 9 10 11 12 shows the first dozen counting numbers, and 
any reader of this book could extend the list to tedious lengths. Although this definition 
by example captures the basic idea, it fails to address related questions such as: 

1.  Do counting numbers continue forever? 

2.  Are there other numbers that precede the first counting number? 

3.  Are there other numbers between the counting numbers or elsewhere? 

These questions were addressed a century ago by Peano, who began by introducing the 
notion of a successor “operation” which, when applied to any counting number, produced 
its successor. For example, successor 3 would produce 4.  

We will denote the successor operation by the two-character word >:  . For example: 

  >: 3 
4 

  >: 999 
1000 

The  foregoing  is  an  example  of  dialogue  with  the  computer.  Because  the  notation used 
here  (and  throughout  the  book)  can  be  executed  by  a  computer  provided  with  the 
language J (available from website jsoftware.com), every expression used can be tested 
by executing it, as can related expressions that the reader may wish to experiment with. 
For example, one might apply the successor to lists of counting numbers as follows: 

   >: 1 2 3 4 5 6 7 8 9 10 11 12 
2 3 4 5 6 7 8 9 10 11 12 13 

   >: 2 4 6 8 10 
3 5 7 9 11 

  
 
 
 
 
 
 
2  Arithmetic 

Is there a  last or largest counting number? Peano answered this by asserting that every 
counting number has a distinct successor, thus introducing the idea of an unbounded or 
infinite list of counting numbers. 

B. Integers 

Since  7  is  the  successor  of  6,  we  may  also  say  that  6  is  the  predecessor  of  7,  and 
introduce a predecessor operation denoted by <:  . For example: 

   <:3 5 7 9 11 
2 4 6 8 10 

   >:2 4 6 8 10 
3 5 7 9 11 

It  would  be  convenient  if  the  predecessor  (like  the  successor)  applied  to  all  counting 
numbers,  but  since  1  is  the first counting number, its predecessor cannot be a counting 
number. We therefore introduce a wider class of numbers, in which every member has a 
predecessor as well as a successor. Thus: 

   <: 1 
0 
   <: 0 
_1 
   <: _1 
_2 

This  wider  class  of  numbers  is  called  the  integers,  and  includes  zero  (0),  as  well  as 
negative numbers (_1 _2 _3 etc.). 

It is helpful to form the habit of looking up any new technical term in a good dictionary; 
even  if  the  term  is  already  familiar,  its  etymology  often  provides  useful  insight.  For 
example, in the American Heritage Dictionary (a dictionary to be recommended because 
of its method of treating etymology) the definition of integer refers to the Indo-European 
root tag that means “to touch; handle”. This with the prefix in- (meaning not) implies that 
an integer is untouched, or whole; in contrast to one that is “fractured”, like one of the 
fractions one-half, one-quarter, etc. 

Similarly, the word infinite introduced in Section A will be found to mean not (in) finite, 
or without finish. 

C. Inverses 

The predecessor operation (<:) is said to be the inverse of the successor (>:) because it 
“undoes”  its  work. For example,  <:>:  8 yields  8, and the same relation holds for any 
integer. Thus: 

   >:1 2 3 4 5 6 
2 3 4 5 6 7 

<:>:1 2 3 4 5 6 

1 2 3 4 5 6 

In the original definition the successor applied only to the counting numbers. We now re-
define it to apply to all integers by defining it as the inverse of predecessor. For example: 

  
 
 
 
 
 
 
Chapter 1  Introduction   3 

   >:<: _3 _2 _1 0 1 2 
_3 _2 _1 0 1 2 

D. Domains 

The successor >: defined in Section A applied only to counting numbers, and they would 
be said to be its domain (over which it “ruled”). In defining the predecessor in Section B 
it became necessary to extend its domain to the integers, that also included zero and the 
negative numbers. By re-defining the successor as the inverse of the predecessor, we also 
extended its domain to the integers. 

We  will  find  that  the  introduction  of  further  operations  (such  as  the  inverse  of 
“doubling”)  will  require  further  extensions  of  domains.  However,  to  keep  the 
development simple, we will restrict attention to simple domains as far as possible. 

E. Nouns and Verbs 

The  successor  operation  >:  can  be  said  to  “act  upon”  a  counting  number  to  produce  a 
result, and is therefore analogous to an “action word” or verb in English. Similarly, the 
numbers to which the verb >: applies are analogous to nouns in English. 

We will soon see that the terms verb and noun lead to further important analogies with 
adverbs,  conjunctions,  and  other  parts  of  speech  in  English.  We  will  therefore  adopt 
them,  even  though  other  terms  (function,  operator,  and  variable)  are  more  commonly 
used in mathematics. However, function will sometimes be used as a  synonym for verb. 

F. Pronouns and Proverbs 

Consider the following use of the pronoun it : 

   it=: 1 2 3 4 5 6 
   <: it 
0 1 2 3 4 5 

   >:<: it 
1 2 3 4 5 6 

The  copula  =:  behaves  like  the  copulas  is  and  are  in  English,  and  the  first  sentence 
would be read aloud as “it is the list of counting numbers 1 2 3 4 5 6” or as “it is 1 
2 3 4 5 6”. 

In English the names used for pronouns are restricted to a very few, such as it, he, and 
she; they are not so restricted here. For example: 

   zero=: 0    
   neg=: _1 _2 _3 
   list6=: it 
   list6,zero,neg 
1 2 3 4 5 6 0 _1 _2 _3 

  
 
 
 
 
 
 
4  Arithmetic 

A proverb is used to stand for a verb, just as a pronoun is used to stand for a noun. (The 
word proverb in this sense is found only in larger dictionaries.) For example: 

   increment=: >: decrement=: <: 
   increment list6,zero,neg 
2 3 4 5 6 7 1 0 _1 _2 

   inc=: increment 
   inc list6 
2 3 4 5 6 7 

G. Conjunctions 

The  phrase  Run  and  hide  expresses  an  action  performed  as  a  sequence  of  two  simpler 
actions,  and  in  it  the  word  and  is  said  to  be  a  copulative  conjunction.  We  will  use  the 
symbol @ to denote an analogous conjunction. For example: 

   add3=: >: @ >: @ >: 
   add3 1 2 3 4 5 6 
4 5 6 7 8 9 

   identity=: <: @ >: 
   identity 1 2 3 4 5 6 
1 2 3 4 5 6 

Although  the  verb  identity  defined  above  makes  no  change  to  its  argument,  it  is  an 
important verb, so important that it is given its own symbol. Thus: 

   ] 1 2 3 4 5 6 
1 2 3 4 5 6 

Although  a  verb  for  the  twelfth  successor  could  be  expressed  by  repeated  use  of  @,  it 
would be tedious, and we introduce a second conjunction illustrated below: 

   list=: 1 2 3 4 5 6 
   >:^:3 list 
4 5 6 7 8 9 

   >:^:12 list 
13 14 15 16 17 18 

   <:^:6 list 
_5 _4 _3 _2 _1 0 

The conjunction ^: is called the power conjunction; it applies its left argument (the verb 
to its left) the number of times specified by its noun right argument. 

  
 
 
 
 
 
 
 
 
 
 
 
H. Addition And Subtraction 

The examples of the preceding section illustrate the fact that if n is any counting number, 
then the verb >:^:n adds n  to its argument, and <:^:n subtracts n. 

Chapter 1  Introduction   5 

For example : 

   n=: 5 
   abc=: 10 11 12 13 14 15 
   >:^:n abc 
15 16 17 18 19 20 

   <:^:n abc 
5 6 7 8 9 10 

   abc+n 
15 16 17 18 19 20 

abc-n 
5 6 7 8 9 10 

The  last  two  examples  introduce  the  notation  commonly  used  for  addition  and 
subtraction,  and  the  whole  set  of  examples  essentially  defines  them  in  terms  of  the 
simpler successor and predecessor of Peano. 

I. Verb Tables 

Two lists can be added and subtracted as illustrated below: 

   a=: 0 1 2 3 4 5 
   b=: 2 3 5 7 11 13 
   a+b 
2 4 7 10 15 18 

a-b 

_2 _2 _3 _4 _7 _8 

   a+a 
0 2 4 6 8 10 
   a-a 
0 0 0 0 0 0 

   a +/ b 
2 3  5  7 11 13 
3 4  6  8 12 14 
4 5  7  9 13 15 
5 6  8 10 14 16 
6 7  9 11 15 17 
7 8 10 12 16 18 

   a +/ a 
0 1 2 3 4  5 
1 2 3 4 5  6 
2 3 4 5 6  7 
3 4 5 6 7  8 
4 5 6 7 8  9 
5 6 7 8 9 10 

  
 
 
 
 
 
 
 
6  Arithmetic 

The last two examples show addition tables that add each item of the first argument to 
each item of the second in a systematic manner. The verb +/ is formed by applying the 
adverb / to the verb + , and is usually referred to as the verb “plus table”. The adverb / 
applies  uniformly  to  other  verbs,  and  we  can  therefore  produce  subtraction  tables  as 
follows: 

  a-/a 
0 _1 _2 _3 _4 _5 
1  0 _1 _2 _3 _4 
2  1  0 _1 _2 _3 
3  2  1  0 _1 _2 
4  3  2  1  0 _1 
5  4  3  2  1  0 

b-/1 2 

 1  0 
 2  1 
 4  3 
 6  5 
10  9 
12 11 

To make clear the meaning of a verb table, draw a vertical line to its left and write the left 
argument vertically to the left of it; draw a horizontal line above the table, and enter the 
right argument horizontally above it. We can produce such an annotated display of a verb 
table by using the adverb table instead of /, as follows: 

   a +table b 
+-+---------------+ 
| |2 3  5  7 11 13| 
+-+---------------+ 
|0|2 3  5  7 11 13| 
|1|3 4  6  8 12 14| 
|2|4 5  7  9 13 15| 
|3|5 6  8 10 14 16| 
|4|6 7  9 11 15 17| 
|5|7 8 10 12 16 18| 
+-+---------------+ 

   a-table a 
+-+----------------+ 
| |0  1  2  3  4  5| 
+-+----------------+ 
|0|0 _1 _2 _3 _4 _5| 
|1|1  0 _1 _2 _3 _4| 
|2|2  1  0 _1 _2 _3| 
|3|3  2  1  0 _1 _2| 
|4|4  3  2  1  0 _1| 
|5|5  4  3  2  1  0| 
+-+----------------+  

J. Relations 

Any two integers a and b are related in certain simple ways: a precedes (or is less than) 
b; a equals b; or a follows (or is greater than) b. We introduce the verbs < and = and > 
whose  results  show  whether  the  particular  relation  holds  between  the  arguments.  For 
example: 

   1<3 
1 

1=3 

0  

1>3 

0 

   a=: 1 2 3 4 5 
   b=: 6-a 
   b 

  
 
 
 
 
 
 
Chapter 1  Introduction   7 

5 4 3 2 1 

   a<b 
1 1 0 0 0 

   a=b 
0 0 1 0 0 

   a</b 
1 1 1 1 0 
1 1 1 0 0 
1 1 0 0 0 
1 0 0 0 0 
0 0 0 0 0 

   a=/b 
0 0 0 0 1 
0 0 0 1 0 
0 0 1 0 0 
0 1 0 0 0 
1 0 0 0 0 

a>b 
0 0 0 1 1 

a>/b 
0 0 0 0 0 
0 0 0 0 1 
0 0 0 1 1 
0 0 1 1 1 
0 1 1 1 1 

A  result  of  1  indicates  that  the  relation  holds,  and  0  indicates  that  it  does  not;  it  is 
reasonable to read the ones and zeros aloud as “true” and “false”. The final example is a 
greater-than table. 

K. Lesser-Of and Greater-Of  

The lesser of (or minimum of) two arguments is the one that precedes (or perhaps equals) 
the other; the verb <. yields the lesser of its arguments. For example: 

b 

5 4 3 2 1 

a>.b 
5 4 3 4 5 

   a 
1 2 3 4 5 

   a<.b 
1 2 3 2 1 

   a<./b 
1 1 1 1 1 
2 2 2 2 1 
3 3 3 2 1 
4 4 3 2 1 
5 4 3 2 1 

L. List And Table Formation 

Although  any  list  can  be  specified  by  listing  its  members,  certain  lists  can  be  specified 
more conveniently. The  integers verb  i. produces lists or tables of integers (beginning 
with zero) that are convenient in producing verb tables. For example : 

  ] a=:i. 5 
0 1 2 3 4 

   a<./a 

  
 
 
 
 
 
 
 
 
 
 
8  Arithmetic 

0 0 0 0 0 
0 1 1 1 1 
0 1 2 2 2 
0 1 2 3 3 
0 1 2 3 4 

   4-a 
4 3 2 1 0 

   1+a 
1 2 3 4 5 
   i. _5 
4 3 2 1 0 
   i.3 4 
0 1  2  3 
4 5  6  7 
8 9 10 11 

The verb # replicates its right argument the number of times specified by the left: 

   3#5 
5 5 5 

   5#3 
3 3 3 3 3 

   2 3 4 # 6 7 8 
6 6 7 7 7 8 8 8 8 

   b=: _2 + i. 5 
   b 
_2 _1 0 1 2 

   c=:b>0 
   c 
0 0 0 1 1 
   c#b 
1 2 

The verb $ “shapes” its right argument, using cyclic repetition of its items as needed: 

   8$2 3 5 
2 3 5 2 3 5 2 3 

3 4$2 3 5 

2 3 5 2 
3 5 2 3 
5 2 3 5 

M. Punctuation 

Although the two sentences: 

The teacher said he was stupid 

The teacher, said he, was stupid 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
differ only in punctuation, they differ greatly in meaning. 

Arithmetic sentences may also be punctuated (by paired parentheses) as illustrated below: 

Chapter 1  Introduction   9 

   (8-3)+4 
9 
   8-(3+4) 
1 
   8-3+4 
1 

The  last  sentence  illustrates  the  behaviour  in  the  absence  of  parentheses:  in  effect,  the 
sentence is evaluated from right to left or, equivalently, the right argument of each verb is 
the value of the entire phrase to its right. 

Punctuation makes possible many useful expressions. For example: 

   c=: 2 7 1 8 2 8 
   (c=2)#c 
2 2 

   ((c=2)>.(c=8))#c 
2 8 2 8 

   (c<2)>.(c=2) 
1 0 1 0 1 0 

The last sentence can be read as “c is less than or equal to 2”. It is equivalent to the verb 
<: in the expression c<:2. 

The  beginner  is  advised  to  use  fully-parenthesized  sentences  even  though  some  of  the 
parentheses  are  redundant.  Thus,  write  (c<2)>.(c=2)  even  though  (c<2)>.c=2  is 
equivalent. 

N. Insertion 

   a=: 2 7 1 8 2  
   2+7+1+8+2 
20 
   +/a 
20 

The foregoing sentences illustrate the fact that the adverb / produces a verb that “inserts” 
its verb left argument between the items of the argument of the resulting verb +/ . Insert 
applies equally to other verbs. For example:  

2>.7>.1>.8>.2 

8 

   >./a 
8 

   sum=:+/ 

   max=:>./ 

  
 
 
 
 
 
 
 
 
 
 
10  Arithmetic 

   min=:<./ 

   sum a 
20 

   spread=: (max a)-(min a) 
    range=: (min a)+i. >:spread 
   range 
1 2 3 4 5 6 7 8 

O. Multiplication 

   m=:3 
   n=:5 
   n#m 
3 3 3 3 3 

   +/n#m 
15 

The  final  result  above  is  clearly  the  product  of  m  and  n,  and  the  sentences  essentially 
define  multiplication  in  terms  of  repeated  addition.  In  mathematics  the  product  verb  is 
denoted in a variety of ways; we will use * as in: 

   m*n 
15 

   dig=: 1+i. 6 
   dig 
1 2 3 4 5 6 

odds=: 1+2*i. k=: 6 
odds 

1 3 5 7 9 11 

   */dig 
720 
   !#dig 
720 

+/odds 

36 

 k*k 

36 

The  last  two  sentences  on  the  left  illustrate  the  definition  of  a  new  verb,    factorial, 
denoted by ! . 

P. Power 
   m=: 3 
   n#m  
3 3 3 3 3 

n=: 5 
   */n#m 
243 

The final result above is called the nth power of m, or m to the power n. Comparison with 
Section O will show that power is defined in terms of multiplication in the same way that 
multiplication is defined in terms of addition. 

  
 
 
 
 
 
 
 
 
 
 
 
In most math texts there is no symbol for power, it being denoted by showing the second 
argument  as  a  superscript.  We  will  adopt  the  symbol  ^  used  by  de  Morgan  [3]  about  a 
century ago. For example: 

Chapter 1  Introduction   11 

   m^n  
243 

3^5 

243 

   (3^5)*(3^2) 
2187 

3^(5+2) 

2187 

As suggested by the equivalence of the last two sentences, (a^b)*(a^c) is equivalent to 
a^(b+c). The reason for this can be seen by substituting the definition of power given 
above:       

   (3^5)*(3^2) 
2187 

(*/5#3)*(*/2#3) 

2187 

   (5+2)#3 
3 3 3 3 3 3 3 

*/(5+2)#3 

2187 

Q. Summary 

The main results of this chapter may be summarized as follows: 

1.  The  idea  of  the  counting  numbers  is  formalized  and  extended  to  infinity  by 
introducing the notion that every counting number has a successor; it is extended 
to include zero and negative numbers by introducing the notion of predecessor, 
inverse to successor. 

2.  Symbols  are  introduced  to  denote  successor  and  predecessor  (>:  and  <:); 
because they specify actions they are called verbs, and the integers they act upon 
are called nouns. 

3.  The copula =: is introduced to assign a name (called a pronoun) to a noun or list 

of nouns and to assign a name (called a proverb) to a verb. 

4.  Conjunctions  (@  and  ^:)  are  introduced  to  define  verbs  that  are  specified  by  a 

sequence of simpler verbs. 

5.  Addition is defined in terms of a sequence of successors; subtraction is defined in 

terms of predecessors. 

6.  Verb tables are introduced to display the behaviour of addition, subtraction, and 
other verbs that apply to two arguments, such as relations (< = >) and minimum 
and maximum (<. >.). 

7.  Parentheses are introduced as punctuation, that is, to specify the order in which 

phrases in a sentence are to be interpreted. 

8        An  adverb  called  insert  (denoted  by  /)  is  introduced  to  insert  a  verb  between 
items  of  a  list  argument,  and  +/  is  used  with  replication  (#)  to  define 
multiplication  in  terms  of  repeated  addition;  power  is  defined  in  terms  of 
repeated multiplication. 

We  will  now  summarize  all  of  the  notation  used.  This  summary  may  be  useful  for 
reference, but because related symbols are used for related ideas, it should also be studied 

  
 
 
 
 
12  Arithmetic 

for  mnemonic  aids.  Succeeding  chapters  conclude  with  similar  summaries  of  notation, 
and all notation is available from the J Dictionary discussed in Book 1. 

The  table  shows  the  verbs  in  three  columns,  each  headed  by  the  final  character  (dot  or 
colon) of the verbs in that column: the first row shows Less than (<) in the first column, 
Lesser of (<.) in the second, and Predecessor (<:) in the third: 

Verbs And Copula 

. 

: 

<  Less than 

Lesser of (Min) 

Predecessor 

>  Greater than 

Greater of (Max) 

Successor 

Copula 

=  Equals 

+  Add 

- 

Subtract 

*  Multiply 

^ 

! 

Power 

Factorial 

]  

Identity 

Replicate 

Shape 

Catenate 

# 

$ 

, 

i 

Integers 

Adverbs 

/  Insert (when used with one noun argument, as in +/b)  

  Table (when used with two noun arguments, as in a+/b) 

Conjunctions 

@  Atop (defines a verb by a sequence, as in >:@>:@>:) 

^: Power (>:^:3 is >:@>:@>:) 

In conventional math, the symbol - denotes subtraction when used with two arguments 
(a-b) and negation when used with one (-b). We will adopt this usage, defining -b by 
0-b. 

The thoughtful reader may have noticed such usage in this chapter: the verbs produced by 
the  adverb  /  (as  shown  above),  and  the  <:  used  for  predecessor  throughout,  but  used 
dyadically (that is, with two arguments) for Less or equal in Section M. This ambivalent 
use of verbs is discussed fully in Chapter 2. 

R. On Language 

Notation, the term normally used to refer to the mode of expression in math, is defined 
(in  the  AHD)  as  “A  system  of  figures  or  symbols  used  in  specialized  fields  ...  ”.  An 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 1  Introduction   13 

executable notation such as that used here is normally called a programming language; 
we will use the terms notation and language interchangeably.  

Programming languages are commonly taught in specific courses, prerequisite to courses 
in  topics  that  employ  them.  In  mathematics,  on  the  contrary,  notation  is  not  taught  as 
such,  but  is  introduced  in  passing  as  required  by  the  subject.  The  same  approach  is 
adopted in this text. 

Any reader interested in using the notation in topics other than those treated here should 
consult Section 9 L. 

In  a  math  course  there  is  little  reason  for  a  student  to  be  curious  or  concerned  about 
notation  that  has  not  yet  been  used.  In  using  a  programming  language  the  situation  is 
somewhat  different;  a  student  who  already  knows  something  of  the  possibilities  of 
computer  programming  may  feel  frustrated  at  not  knowing  what  symbols  to  use  for 
operations that she knows must be available in the language. 

There  are  several  avenues  open  to  the  student  who  may  be  more  interested  in  the 
language than in the treatment of arithmetic: 

1.  Press key F1 in the top row to display the vocabulary of J. Then click the mouse 
on  any  desired  entry  in  the  vocabulary  to  display  its  definition.  Press  Esc  to 
remove the display. 

2.  Use the computer to experiment with various facilities, and therefore to explore 

their definitions. 

3.  Range ahead to the On Language sections that conclude Chapters 2 and 9. 

Exercises 

In exercises first write (or at least sketch out) the result of each sentence without using 
the computer; then enter the sentence on the computer to check your answer. 

In  using  the  computer,  it  will  be  more  efficient  if  you  familiarize  yourself  with  the 
available editing facilities. In particular, these allow you to revise entries being prepared, 
and to recall earlier entries for re-entry. Also learn to use expressions such as: 

   names 0 

To display the names used for pronouns 

   names 1 

To display the names used for adverbs 

   names 2 

To display the names used for conjunctions 

   names 3 

To display the names used for proverbs 

   erase <'abc' 

To erase the name abc 

Letters such as A and B in the labels below indicate the sections to which the associated 
experiments are relevant. Refer back to these sections for any needed help: 

A1  >:12345 

>:1 2 3 4 5 

>:>:>:>:1 2 3 4 5 

  
 
 
 
 
 
 
 
 
 
14  Arithmetic 

B1  <: _12345 

<:_1 _2 _3 _4 _5 

<:<:<:<:1 2 3 4 5 

<:<:>:>:1 2 3 4 5 

>:<:>:<:1 2 3 4 5 

F1  a=:1 2 3 

b=:4 5 

>:a 

a,b 

>:a,b 

F2  z=:0 

n=:_5 _4 _3 _2 _1 

n,z,a,b 

b,a,z,n 

F3 

wax=: >: 

wane=:<: 

wax wax wane n,z,a,b 

G1  list=:1 2 3 4 5 

right=:>:@>: 

left=:<:@<: 

right list 

left list  

left right list 

] list 

G2  decade=:>:^:10 

decade list 

century=:decade^:10 

century list 

>:^:10^:10 list 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
G3  First  review  the  discussion  of  inverses  in  Section  C.  Then  enter  the  following 
sentences  on  the  computer,  observe  their  results,  and  try  to  state  the  effect  of the 
power conjunction with negative right arguments: 

Chapter 1  Introduction   15 

>:^:_1 list 

<:^:_1 list 

>:^:_3 list 

decade^:_1 list 

decade^:2 decade^:_2 list 

 I1 

Reproduce on the computer the last two tables of Section I. 

J1 

The  verbs  over  and  by  used  in  the  following  sentences  were  defined  and 
illustrated  in  Section  I.  As  usual,  first  sketch  the  result  of  each  sentence  by  hand 
before entering it on the computer: 

d=: 0 1 2 3 4 

d by d over d</d 

d by d over d=/d 

d by d over d+/d 

d by d over d-/d 

J2  Repeat Exercise J1 using the list e=:_3 _2 _1 0 1 2 3 instead of the list d. 

K1  Repeat Exercises J1 and J2 for the verbs >. and <., that is, for tables of maximum 

and minimum. 

M1  An integer such as 14 that can be written as the sum of some integer with itself is 
called  an  even  number;  a  number  such  as  7  that  cannot  is  called  odd.  Write  an 
expression using the verb i. to produce the first twenty even numbers. Do not look 
at the answer below until you have tested your answer on the  computer. 

Answer:   (i.20)+(i.20)  

M2  Write an expression for the first 20 odds.  

N1  Review  Section  M  and  note  that  the  unparenthesized  sentence  2-7-1-8-2  is 
equivalent to 2-(7-(1-(8-2))) . Then evaluate the sentence and verify that your 
result agrees with -/2 7 1 8 2. 

Evaluate and compare the results of the following sentences: 

-/2 7 1 8 2  

(+/2 1 2)-(+/7 8) 

Then state in simple terms what the verb -/ produces, and test your statement on 
other lists (including lists with both odd and even numbers of items). 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
16  Arithmetic 

Answer:  -/  list produces the  alternating sum, the sum of every other item of 
the list diminished by the sum of the remaining items.  

O1  Construct the multiplication table produced by the sentence  (2+i.9)*/(2+i.9) 
and  observe  that  its  largest  item  is  100.  Note  that  the  table  cannot  contain  prime 
numbers (which cannot be products of positive integers other than themselves and 
1). Examine the table to determine all of the primes up to 9. 

P1  b=:i.7 

b by b over b^/b 

a=:b-3 

     a by b over a^/b 

  
  
 
 
 
 
17 

Chapter 
2 

 Properties of Verbs 

A. Valence, Ambivalence, And Bonds 

In the phrases a-b and a<:b and a+/b the verbs “bond to” two arguments and (adopting 
an analogous term from chemistry) we say that in this context the verbs have valence 2; 
in the expressions -b and <:b and +/b the same verbs have valence 1. 

From  these  examples  it  is  clear  that  the  verbs  are  ambivalent,  the  valence  being 
determined  by  the  context  in  which  they  are  used.  We  also  say  that  a  verb  used  with 
valence 1 is used  monadically, or is a  monad; a verb used with valence 2 is a dyad. 

In the phrase 3&* the conjunction & bonds the noun 3 to the verb * to produce a monad. 
Thus: 

   triple=: 3&* 
   triple a=: 1 2 3 4 
3 6 9 12 
   square=: ^&2 
   square a 
1 4 9 16 

   ^&3 a 
1 8 27 64 

Although a is the list 1 2 3 4, it should be noted that the phrase ^&3 1 2 3 4 is not 
equivalent to ^&3 a, because the sequence 3 1 2 3 4 is treated as a single list that is 
bonded to ^ to form a verb. However, ^&3 (1 2 3 4) and ^&3 a are equivalent. 

The bond conjunction is extremely prolific because its use with any dyad d generates two 
families of monads, one using left bonding (n&d) and one using right bonding (d&n). For 
example,  with  right  bonding  the  verb  ^  produces  the  square,  cube,  and  higher  powers; 
with left bonding it produces exponential verbs. 

The conjunction @ introduced in Section 1 G composes two verbs, as in i.@- 3 to yield 
2 1 0; the verb i.@- also has a dyadic meaning, as in 8 i.@- 3 to yield 0 1 2 3 4. 
In general, v1@v2 b is equivalent to v1 v2 b, and a v1@v2 b is equivalent to v1 (a 
v2 b). In effect, the monad v1 is applied “atop” the dyad v2, and the conjunction @ 
(denoted by the commercial at symbol) is called atop.  

  
 
18  Arithmetic 

B. Commutativity 

The  dyads  +  and  *  yield  the  same  results  if  their  arguments  are  interchanged  or 
“commuted”, and they are therefore said to be commutative. For example: 

   3+5 
8   

5+3 

8 

(3*5)=(5*3) 

1 

The dyad produced by the commute or cross  adverb ~ “crosses” the bonds of the verb to 
which it is applied. Moreover, the monad produced by ~ duplicates its single argument. 
For example:  

5-3 

2 

^~3 

27 

   3-~5 
2 

  +~3 
6 

   */~i.5 
0 0 0  0  0 
0 1 2  3  4 
0 2 4  6  8 
0 3 6  9 12 
0 4 8 12 16 

C. Associativity 

Compare  the  results  of  the  following  pairs  of  sentences,  which  differ  only  in  the 
“associations” produced by different punctuations: 

   (4+3)+(2+1) 
10 
   (4-3)-(2-1) 
0 
  (4>.3)>.(2>.1) 
4 

4+((3+2)+1) 

10 

4-((3-2)-1) 

4 

4 

4>.((3>.2)>.1) 

  (4*3)*(2*1) 
24  

4*((3*2)*1) 

24 

  (4^3)^(2^1) 
4096 

4^((3^2)^1) 

262144 

Those verbs (+ >. and *) that yield the same results are examples of associative verbs; 
the others are non-associative. 

D. Distributivity 

The monad >: is said to distribute over the dyad <. because a sentence such as (>:7) 
<.  (>:4)  has  the  same  result  as  the  corresponding  sentence  >:(7<.4)  in  which  the 

  
 
 
 
 
 
 
 
 
 
monad  >:  is  “distributed  over”  the  result  of  the  dyad  <.  .  Observe  the  further  tests  of 
distributivity: 

Chapter 2 Properties of Verbs  19 

   a=:7 
   b=:4 
   triple=: *&3 
   (triple a) + (triple b) 
33 

   (triple a) - (triple b) 
9 

   (*&3 a) <. (*&3 b) 
12 

   (-&3 a) <. (-&3 b) 
1    

   (3&- a) <. (3&- b) 
_4 

triple (a+b) 

triple (a-b)  

*&3 (a<.b)  

-&3 (a<.b)  

3&- (a<.b)  

33 

9 

12 

1 

_1 

In the last two pairs of sentences it appears that although the monad -&3 (which subtracts 
3  from  its  argument)  distributes  over  minimum,  the  monad  3&-  (which  subtracts  its 
argument from 3) does not. 

This  point  is  made  to  show the pitfall in a common practice in math, where it is stated 
that  the  dyad  *  distributes  over  addition,  rather  than  stating  (as  we  do  here)  that  the 
family *&n of right bonds of * distributes over addition. 

Because  *  is  commutative,  the  left  bond  c&*  is  equivalent  to  the  right  bond  *&c,  and 
both  distribute  over  addition.  However,  in  the  case  of  a  non-commutative  verb  such  as 
subtraction,  it  is  possible  that  a  right  bond  with  a  given  dyad  distributes  while  the 
corresponding left bond does not. In such a case it is clearly incorrect to say that the dyad 
distributes,  and  one  is  led  to  statements  such  as  “-  distributes  to  the  right  over 
minimum”. 

A linear verb (to be discussed further in Chapter 9) is one that distributes over addition. 

E. Symmetry 

If a dyad d (such as + or * or >.) is both associative and commutative, then the monad 
d/  produced  by  insertion  is  said  to  be  symmetric,  because  it  produces  the  same  result 
when the argument list to which it applies is re-ordered or permuted. For example: 

   a=: 1 2 3 4 5 
   b=: 3 1 5 2 4 
   +/a 
15  

   */a 
120 

+/b 

15 

*/b 

120 

   >./a 

>./b 

 
  
 
 
 
 
 
 
 
 
20  Arithmetic 

3 

  -/a 
3 

3 

9 

-/b 

F. Display of Proverbs 

If a proverb is entered alone (that is, without arguments), its representation is displayed. 
For example, if the proverbs of Sections F and G of Chapter 1 are already defined, then: 

   increment 
>: 

   add3 
>:@>:@>: 

   identity 
<:@>: 

G. Inverses 

Review  the  discussion  of  inverses  in  Section  C  and  Exercise  G3  of  Chapter  1.  Then 
observe the results of the following uses of inversion: 

   a=:0 1 2 3 4 5 
   >:^:_1 a 
_1 0 1 2 3 4 

   >:^:_1 
< 
   +&3^:_1 a 
_3 _2 _1 0 1 2 

   +&3^:_1 
-&3 

   -&3^:_1 a 
3 4 5 6 7 8 

   3&-^:_1 a 
3 2 1 0 _1 _2 

   3&- 3&-^:3 a 
0 1 2 3 4 5 

   3&-^:_1 
3&- 

H. Partitions 

The sum of a list (+/list) is equal to the sum of sums over parts of the list, and a similar 
relation holds for some other verbs such as */ and >./ . For example: 

  
 
 
 
 
 
 
 
 
 
 
 
Chapter 2 Properties of Verbs  21 

   +/3 1 4 1 5 9 
23 

(+/3 1)+(+/4 1 5 9) 

23 

   */3 1 4 1 5 9 
540 

(*/3 1)*(*/4 1 5 9) 

540 

   >./3 1 4 1 5 9 
9 

9 

(>./3 1)>.(>./4 1 5 9) 

These relations can be expressed more clearly in terms of the truncation verbs take ({.) 
and drop (}.). Thus: 

   a=:3 1 4 1 5 9 
   2{.a 
3 1 

   2}.a 
4 1 5 9 

   (+/2{.a)+(+/2}.a) 
23 

+/a 

23 

   (*/2{.a)*(*/2}.a) 
540 

*/a 

540 

   (+/6{.a)+(+/6}.a) 
23 

   (*/6{.a)*(*/6}.a) 
540 

The last two examples are interesting because the list 6}.a is empty, yet the results of +/ 
and */ upon it are such as to maintain the identities seen for the other cases. Thus: 

  +/6}.a  */6}.a 
0  1 

This matter is explored further in the succeeding section. 

I. Identity Elements and Infinity 

It is easy to verify that the monads 0&+ and 1&* and -&0 are identity verbs that produce 
no change in their arguments. A noun that bonds with a dyad to form an identity verb is 
said to be an identity element of that dyad. Thus, 1 is the identity element of *, and 0 is 
the identity element of + and of - . 

Although -&0 is an identity, 0&- is not. We may therefore say more precisely that 0 is a 
right identity of - . The same is true for other non-commutative verbs. Thus, 1 is a right 
identity of ^ (power). 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
22  Arithmetic 

To  ensure  that  identities  of  the  form  (+/a)=(+/k{.a)+(+/k}.a)  remain  true  when 
one of the lists is empty, we define the result of d/b to be the identity element of d if the 
list b is empty. 

Does the dyad <. (minimum) possess an identity element? If h were a huge number (such 
as  10^9)  then  it  would  serve  for  all  practical  purposes  as  the  identity  element  of 
minimum. However, since there is no largest number among the integers, we must again 
extend the domain by adding a new element, denoted by _ and called infinity. To provide 
an identity for maximum we also add a negative infinity denoted by __ . We will refer to 
the resulting domain as integers+. Thus: 

   <./0#0 
_ 

>./i.0 

__ 

J. Experimentation 

In  experimenting  with  expressions  on  the  computer  you  will  find  that  many  verbs, 
adverbs, and conjunctions have meanings that are more general than the definitions given 
in the text.  For example: 

   halve=: 2&*^:_1 
   halve 2 4 6 8 10 
1 2 3 4 5 

   sqr=:*~ 
   sqrt=: sqr^:_1 
   sqrt 1 4 9 16 25 
1 2 3 4 5 

 halve 1 2 3 4 5 

0.5 1 1.5 2 2.5 

sqrt 1 2 3 4 5   

1 1.41421 1.73205 2 2.23607 

   sqrt - 1 2 3 4 5 
0j1 0j1.41421 0j1.73205 0j2 0j2.23607 

Some  of  the  results  of  these  experiments  are  fractions  and  complex  numbers  that  lie 
outside the domain of integers treated thus far. There is no harm in experimenting further 
with any that interest you, but do not spend too much time on baffling matters that will be 
treated later in the text. 

K. Summary of Notation 

The notation introduced in this chapter comprises two nouns (_ and __) for the identity 
elements of minimum and maximum; two verbs take and drop ({. }.) for truncating a 
list;  the  commute  adverb  ~  ;    the  conjunction  &  to  bond  nouns  to  dyads;  and  verbs 
produced by the atop conjunction @ have dyadic as well as monadic cases.  

L. On Language 

Use the computer to test the following assertions: 

1.  The monad | yields the magnitude or absolute value. 

2.  The monad |. reverses its argument, and 3&|. rotates it by three places. 

  
 
 
 
 
 
3.  The monad -&| is equivalent to -@|, but the dyad -&| applies the dyad - to the 

result of applying the monad | to each argument. 

Chapter 2 Properties of Verbs  23 

4.  %&4 is division by 4, and is equivalent to 4&*^:_1 . 

5.  The monads +: and -: are double and halve. 

6.  The monads *: and %: are square and square root. 

7.   'abcde' is the list of the first five letters of the alphabet, and monads such as |. 

and 3&|. and 3 4&$ apply to it. 

Exercises 

A1  Define a verb sump that sums the positive elements of a list. 

Define dsq and sqd to double the square and square the double. 

Answer:  sump=:+/@(0&>.)  dsq=:(2&*)@(^&2) sqd=:^&2@(2&*) 

B1 Define the following verbs: 

from 

That subtracts its left argument from the right 

square 

Without using ^ 

double 

Without using * 

zero 

A monad that yields zero 

Answer:     from=: -~     square=:*~     double=:+~    zero=:-~  

C1  Test all the dyads defined thus far for associativity. 

D1  Which of the monads defined in preceding exercises are linear? 

E1  Use the arguments a=: 1 2 3 4 5 and b=: 3 1 5 2 4 to test 

all dyads (including -~ and ^~) for symmetry. 

E2  The expression ?~ n produces a random permutation of the  

integers i. n. Use it for further tests of symmetry. 

G1  Experiment with inverses of the monads defined in preceding 

exercises. 

H1  Test the dyad <. to see if (<./k{.a)<.(<./k}.a) agrees with 

<./a for various values of k and a . 

H2  Repeat Exercise H1 for the dyads - and ^  

H3  Characterize those dyads that satisfy the test of Exercise H1. 

Answer:    They are associative  

I1 

J1 

Experiment with various dyads to determine their identity elements. 

Experiment with the dyad % 

 
  
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
25 

Chapter 
3 

 Partitions and Selections 

A. Partition Adverbs 

The  partition  adverb  \  (called  prefix)  applies  to  monads  to  produce  many  useful  verbs. 
For example: 

   a=: 1 2 3 4 5 
   sum=: +/ 
   sum a 
15 

   sum\ a 
1 3 6 10 15 

Subtotals or “running” sums 

   (+/1),(+/1 2),(+/1 2 3),(+/1 2 3 4),(+/1 2 3 4 5) 
1 3 6 10 15 
   +/\a 
1 3 6 10 15 

Running products 

   */\a 
1 2 6 24 120 

   !a 
1 2 6 24 120 

   >./\ 3 1 4 1 5 9 
3 3 4 4 5 9 

Running maxima 

The partition adverb \. behaves similarly to produce a verb that applies to suffixes: 

   sum \.a 
15 14 12 9 5 

   */\.a 
120 120 60 20 5 

   <./\.3 1 4 1 5 9 

  
 
 
 
 
 
 
 
 
 
 
26  Arithmetic 

1 1 1 1 5 9 

   (*/\.a)*(*/\a) 
120 240 360 480 600 

  (+/\.a)+(+/\a) 
16 17 18 19 20 

   (-/\.a)-(-/\a) 
2 _1 2 1 2 

The diagonal adverb /. applies to (forward sloping) diagonals of tables. It will later be 
seen to be useful in multiplying polynomials and integers expressed in decimal. It is also 
useful in treating correlations and convolutions: 

   t=:1 2 1*/1 2 1 
   t 
1 2 1 
2 4 2 
1 2 1 

   sum/. t 
1 4 6 4 1 

   (sum/. t)*(10^i.-5) 
10000 4000 600 40 1 

   +/(sum/. t)*(10^i.-5) 
14641 

  121*121 
14641 

   +//.1 2 1*/1 3 3 1 
1 5 10 10 5 1 

   +//.1 3 3 1*/1 4 6 4 1 
1 7 21 35 35 21 7 1  

B. Selection Verbs 

The take and drop ({. and  }.) used in Section 2 H are examples of selection verbs. A 
more general selection is provided by the verb { (called from). For example: 

   primes=:2 3 5 7 11 13 
   2{primes 
5 

   0 2 4{primes 
2 5 11 

   3{.primes 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 3  Partitions And Selections  27 

2 3 5 
   (i.3){primes 
2 3 5 

   (i.-#primes){primes 
13 11 7 5 3 2 

   i.3 5 
 0  1  2  3  4 
 5  6  7  8  9 
10 11 12 13 14 

   0 2{i.3 5 
 0  1  2  3  4 
10 11 12 13 14 

   2 1 3 5 0 4{primes 
5 3 7 13 2 11 

The last sentence above is an example of a permutation that reorders the items of the list 
primes; a list such as 2 1 3 5 0 4 that produces a permutation is called a permutation 
list, or permutation vector, or simply a permutation. 

If the items of a list a are distinct, then the selection b=: i{a has an inverse in the sense 
that for a given b, an index can be found that selects it. The dyad i. fulfills this purpose, 
and is called indexing. For example: 

   a=:2 3 5 7 11 13 
   ]b=:3{a 
7 

   a i. b 
3 

   a i. 11 2 5 
4 0 2 

More precisely, the monads {&a and a&i. are mutually inverse. For example: 

   psel=: {&2 3 5 7 11 13 
   pind=: 2 3 5 7 11 13&i. 
   pind 7 2 
3 0 

   psel pind 7 2 
7 2 

A list such as a specifies a set of intervals, and an integer may be classified according to 
the interval in which it falls. More precisely, we will determine the index of the largest 
element  in  the  list  that  equals  or  precedes  it.  Thus,  5  and  6  both  lie  in  interval  2  of  a 
because they are greater than or equal to 2{a and less than 3{a. 

Indexing can be used to perform the classification as follows: 

 
  
 
 
 
 
 
 
 
 
 
 
 
28  Arithmetic 

   a 
2 3 5 7 11 13 

   x=: 6 
   x<a 
0 0 0 1 1 1 

   (x<a) i. 1 
3 

   ]i=: <:(x<a)i.1 
2 

   i{a 
5 

C. Grade and Sort 

The monad /: grades its argument. For example: 

   p=: 5 3 7 13 2 11 
   /:p 
4 1 0 2 5 3 

   (/:p){p 
2 3 5 7 11 13 

More precisely, the monad /: produces a permutation vector that can be used to sort its 
argument to ascending order. 

D. Residue 

Just  as  the  introduction  of  the  predecessor  as  the  inverse  of  the  successor  led  to  a  new 
class  of  numbers  outside  the  class  of  counting  numbers,  so  an  attempt  to  introduce  an 
inverse to a multiplication such as 5&* leads to new numbers when applied to an integer 
such as 17 that is not an integer multiple of 5. In other words, 17 is not in the (integer) 
domain of the inverse 5&*^:_1 . Similar remarks apply to an arbitrary multiple m&*. 

An  approximate  inverse  in  integers  can  be  obtained  by  locating  the  argument  in  the 
intervals specified by the multiples 5*i.n . For example: 

   x=: 17 
   m5=: 5*i.6 
   m5 
0 5 10 15 20 25 

   d=: <:(x<m5)i. 1 
   d 
3 

  5*d 
15 

   r=: x-5*d 

  
 
 
 
 
 
 
 
 
 
 
 
Chapter 3  Partitions And Selections  29 

   r 
2 
   5|x 
2 

The result r is the difference between the original argument and the nearest multiple of 5 
that does not exceed it; it is called the residue of x modulo 5, or the 5-residue of x . 

The dyad | is called residue, and x-m|x is an integer multiple of m. Consequently it is in 
the domain of the inverse m&*^:_1. Thus: 

   a=: i. 21 
   a 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
   8|a 
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 
   a-8|a 
0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 16 16 16 16 16 

   8&*^:_1 a-8|a 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 

   10&*^:_1 a-10|a 
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 

E. Characters 

In English, the word Milk refers to a white liquid, whereas ‘Milk’ refers to the list of four 
literal characters ‘M’ and ‘i’ and ‘l’ and ‘k’. We will use quotes in a similar manner, as 
illustrated below: 

   alph=: ' ABCDEFGHIJKLMNOPQRSTUVWXYZ' 
   9 0 9 9 0 9 9 9 0 9 22 0 22 0 22 9 0 22 9 9 { alph 
I II III IV V VI VII 

t { ' *' 

   t=: 4>*/~ 3 2 1 0 1 2 3 
   t 
0 0 1 1 1 0 0 
0 0 1 1 1 0 0 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
0 0 1 1 1 0 0 
0 0 1 1 1 0 0 

*** 
*** 
******* 
******* 
******* 
*** 
*** 

   sentence=: '1 2 3^4' 
   reverse=: (i.-#sentence){sentence 
   reverse 
4^3 2 1    
   do=:". 
   do sentence 
1 16 81 
   do reverse 

 
  
 
 
 
 
 
 
30  Arithmetic 

64 16 4 

   ;: sentence 
+-----+-+-+ 
|1 2 3|^|4| 
+-----+-+-+ 
F. Box and Open 

The word-formation verb ;: can be applied to a character list that represents a sentence 
to break it into its individual words. Thus: 

   letters=: 'abc=:i.3 4+2' 
   words=: ;: letters 
   words 
+---+--+--+---+-+-+ 
|abc|=:|i.|3 4|+|2| 
+---+--+--+---+-+-+ 

   #words 
6 
   (i.-#words){words 
+-+-+---+--+--+---+ 
|2|+|3 4|i.|=:|abc| 
+-+-+---+--+--+---+ 

As illustrated, the result of the word-formation is a list of six items, each of which is a 
boxed list representing the corresponding word. 

A single box can also be formed by the box monad < as follows: 

   <'abcd' 
+----+ 
|abcd| 
+----+ 

   <2 3 5 
+-----+ 
|2 3 5| 
+-----+ 

   (<(<'abcd'),<2 3 5),<2 3$(<'abcd'),<2 3 5 
+------------+-------------------+ 
|            |+-----+-----+-----+| 
|+----+-----+||abcd |2 3 5|abcd || 
||abcd|2 3 5||+-----+-----+-----+| 
|+----+-----+||2 3 5|abcd |2 3 5|| 
|            |+-----+-----+-----+| 
+------------+-------------------+ 

The  box  verb    can  also  be  very  helpful  in  clarifying  the  behaviour  of  the  partition 
adverbs. For example:    

   <\a=:1 2 3 4 5 
+-+---+-----+-------+---------+ 
|1|1 2|1 2 3|1 2 3 4|1 2 3 4 5| 
+-+---+-----+-------+---------+ 

   <\.a 
+---------+-------+-----+---+-+ 

  
 
 
 
 
 
 
 
 
Chapter 3  Partitions And Selections  31 

|1 2 3 4 5|2 3 4 5|3 4 5|4 5|5| 
+---------+-------+-----+---+-+ 

   i. 3 4 
0 1  2  3 
4 5  6  7 
8 9 10 11 
   </.i.3 4 
+-+---+-----+-----+----+--+ 
|0|1 4|2 5 8|3 6 9|7 10|11| 
+-+---+-----+-----+----+--+ 

The monad > is the inverse of box; where necessary it “pads” the result with appropriate 
zeros or spaces. For example: 

   ]a=: ;: 'Gaily into Ruislip gardens' 
+-----+----+-------+-------+ 
|Gaily|into|Ruislip|gardens| 
+-----+----+-------+-------+ 
   >a 
Gaily   
into    
Ruislip 
gardens 

   b=:</.i.3 4 
   b 
+-+---+-----+-----+----+--+ 
|0|1 4|2 5 8|3 6 9|7 10|11| 
+-+---+-----+-----+----+--+ 

   >b 
 0  0 0 
 1  4 0 
 2  5 8 
 3  6 9 
 7 10 0 
11  0 0 

G. Summary of Notation 

The  notation  introduced  in  this  chapter  comprises  three  partition  adverbs,  prefix,  suffix, 
and oblique (\ \. /.); the dyads from and residue ({ |); and the monads box, open, 
grade, and word-formation (< > /: ;:). Section E also introduced the use of quotes to 
distinguish literals and other characters. 

H. On Language 

Review Section R of Chapter 1, and pursue one or more of the options suggested. 

In exercises first write (or at least sketch out) the result of each sentence without using 
the computer; then enter the sentence on the computer to check your answer. 

Exercises 

A1  q=:1 1&(*/) 

   q 1 2 1 

 
  
 
 
 
 
32  Arithmetic 

   r=:+//.@q 
   r 1 2 1 
   r 1 
   r r 1 
   r^:(5) 1 
   r^:(i.6 )  

A2     Experiment with the dyad ! for various cases, such as 3!5 and 4!5 and (i.6)!5. 

A3  (i.6)!5 

!/~i.6 

!~/~i.6 

   (!~/~i.6)=(r^:(i.6) 1) 

B1  (2*i.3){2 3 5 7 11 13 17 

   0 2 3 1{i.4 4 

   2{0 2 3 1{i.4 4 

B2  cl=:i.&1@< 

   6 cl 2 3 5 7 11 13 

   5 cl 2 3 5 7 11 13 

   4 cl 2 3 5 7 11 13 

B3  Experiment with negative left arguments to {. and }. and { 

D1  3|7 

   7|3 

   3|i.10 

   |/~i.7 

E1  text=:'i sing of olaf glad and big' 

   /: text 

   (/:text){text 

   text{~/:text 

   text/:text 

F1 

<\'abcdefg' 

   <\.'abcdefg' 

   a=:3 4$'abcde' 

   <\a 

<\.a 

  
 
33 

Chapter 
4 

 Representation of Integers 

A. Introduction 

Because  we  are  so  familiar  with  the  decimal  number  system  (which  extends 
systematically  to  larger  and  larger  numbers),  the  matter  of  distinct  representations  of 
successive  counting  numbers  did  not  pose  an  obvious  problem.  However,  in  a  system 
such  as  Roman  numerals,  the  sequence  I  II  III  IV  V  VI  VII  has  no  clear  pattern  of 
continuation beyond a few thousand. 

Although the decimal system is familiar, a careful examination of it is fruitful because it 
leads  to  simple  procedures  for  determining  the  results  of  verbs  such  as  addition, 
multiplication,  and  power.  We  begin  by  expressing  the  relationship  of  a  single  number 
(such as the number of days in a year) to the list of decimal digits that represent it: 

   n=:365 
   10^e 
100 10 1 
   d*10^e 
300 60 5 

d=:3 6 5 

e=:2 1 0 

+/d*10^e 

365 

The name e was chosen for the list 2 1 0 because the right argument of the power verb 
is often called an exponent. It could have been expressed using the verb i. as follows: 

   i. -3 
2 1 0 
   +/d*10^i.-3 
365 

The foregoing expression is, of course, suitable only for a list d of three items. To write a 
more general expression for any list d it is necessary to use a verb that yields the number 
of items of its list argument. Thus: 

   #d   
3 
   d=:1 7 7 6 
   +/d*10^i.-#d  

    +/d*10^i.-#d 

365 

  
 
 
 
 
 
34  Arithmetic 

1776 

The  foregoing  is  an  example  of  determining  the  base-10  value  of  a  list  of  digits,  and 
similar expressions apply for other number bases or radices. Thus: 

   +/d*8^i.-#d 
245 

   b=:1 1 0 1 
   +/b*2^i.-#b 
13 

   10#.d 
365 

   8#.d 
245 

   2#.b 
13 

The  last  three  sentences  show  the  use  of  the  dyad  #.  (called  base-value)  for  the  same 
evaluations. 

B. Addition 

Two lists representing numbers in decimal may be added to produce a representation of 
their sum, as illustrated below: 

   year=:3 6 5 
   agnes=: 3 0 4 
   base10=:10&#. 
   year + agnes 
6 6 9 

   base10 (year + agnes) 
669 

   (base10 year) + (base10 agnes) 
669 

   year+year 
6 12 10 

   base10 (year+year) 
730 

   (base10 year)+(base10 year) 
730 

Although  the  sum  year+year  yields  the  correct  sum  when  evaluated  by  base10,  it  is 
not in the usual normal form with each item in the list lying in the interval from 0 to 9. It 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 4  Representation of Integers  35 

can  be  brought  to  normal  form  by  subtracting  10  from  each  of  the  last  two  items  and 
“carrying” ones to the preceding items to obtain the result 7 3 0 in normal form. 

Since  a  zero  can  be  appended  to  the  beginning  of  a  list  without  changing  its  decimal 
value, lists of different lengths can be added by appending leading zeros to the shorter. 
For example: 

   dozen=:1 2 
   base10 0,dozen 
12 

   year+0,dozen 
3 7 7 

C. Multiplication 

A procedure for multiplication will first be stated, and its validity will then be examined: 

   a1=:3 6 5 
   b1=: 1 7 7 6 
   (base10 a1)*(base10 b1) 
648240 

   over=: ({.;}.)@":@, 
     by=: ' '&;@,.@[,.] 
   a1 by b1 over a1*/b1 
+-+----------+ 
| |1  7  7  6| 
+-+----------+ 
|3|3 21 21 18| 
|6|6 42 42 36| 
|5|5 35 35 30| 
+-+----------+ 

   a1*/b1 
3 21 21 18 
6 42 42 36 
5 35 35 30 

   ]p=:+//.a1*/b1 
3 27 68 95 71 30 

    base10 p 
648240 

Normalization of p by carries gives 6 4 8 2 4 0 and: 

   base10 6 4 8 2 4 0 
648240 

The foregoing procedure for multiplication comprises three steps: 

1. Form the multiplication table of the lists of digits. 

2. Sum the diagonals of the table. 

3. Normalize the sums. 

  
 
 
 
 
 
 
 
 
 
 
36  Arithmetic 

The  method  is  less  error-prone  than  the  one  commonly  taught,  which  distributes  the 
normalization  process  through  both  the  multiplication  and  summation  phases.  The 
validity of the process may be discerned from the following examples:  

   b1=:1 7 7 6 
   b2=:10^3 2 1 0 
   b=:b1*b2 
   b 
1000 700 70 6 

   a1=:3 6 5 
   a2=:10^2 1 0 
   a=:a1*a2 
   a 
300 60 5 

    (+/a)*(+/b) 
648240 

   a*/b 
300000 210000 21000 1800 
 60000  42000  4200  360 
  5000   3500   350   30 

   +/a*/b 
365000 255500 25550 2190 

   +/+/a*/b 
648240 

The  fact  that  the  product  of  the  sums  +/a  and  +/b  can  be  expressed  as  the  sum  of 
products arises from two properties: 

1. Multiplication distributes over addition. 

2. Summation (+/) is symmetric. 

In  the  expression  a*/b,  the  arguments  are  themselves  products  and,  because 
multiplication  is  both  associative  and  commutative,  a*/b  can  also  be  expressed  as  the 
product of two tables as follows: 

   a1*/b1 
3 21 21 18 
6 42 42 36 
5 35 35 30 

   a2*/b2 
100000 10000 1000 100 
 10000  1000  100  10 
  1000   100   10   1 

   (a1*/b1)*(a2*/b2) 
300000 210000 21000 1800 
 60000  42000  4200  360 
  5000   3500   350   30 

a*/b 

300000 210000 21000 1800 
 60000  42000  4200  360 
5000   3500   350   30 

Each element of the table  a1*/b1 is multiplied by the corresponding element from the 
“powers  of  ten”  table  a2*/b2,  and  those  elements  of  a1*/b1  multiplied  by  the  same 
power  of  ten  can  be  first  summed  and  then  multiplied  by  it.  Since  equal  powers  lie  on 

  
 
 
 
 
 
 
 
 
 
 
 
Chapter 4  Representation of Integers  37 

diagonals, 
p=:+//.a1*/b1 used in describing the multiplication procedure. 

the  sums  are  made  along 

these  diagonals,  as 

in 

the  expression 

The reason that equal powers lie on diagonals can be made clear by noting that a2 equals 
10^e=:2 1 0, that b2 equals 10^f=:3 2 1 0, and that a2*/b2 equals 10^e+/f : 

   e+/f 
5 4 3 2 
4 3 2 1 
3 2 1 0 

10^e+/f 

100000 10000 1000 100 
10000  1000  100  10 
1000   100   10   1 

D. Normalization 

The  normalization  process  used  in  Section  B  can  be  expressed  more  formally.  We  first 
define the main verbs to be used, and illustrate their use: 

   base10=:10&#. 
   residue=: 10&| 
   tithe=: 10&*^:_1 
   n=: 98 45 19 24 
   base10 n 
102714 

   remainder=: residue n 
   remainder 
8 5 9 4 

   n-remainder 
90 40 10 20 

   carry=: tithe n-remainder 
   carry 
9 4 1 2 

   carry ,: remainder    (,: laminates lists to form a table) 
9 4 1 2 
8 5 9 4 

   +//. carry ,: remainder 
9 12 6 11 4 

   base10 +//. carry ,: remainder 
102714 

We begin by specifying a “temporary” name t, and repeatedly re-assign to it the result of 
the process illustrated above: 

   t=: n 
   t=:+//. (tithe t-residue t) ,: residue t 

   t 
9 12 6 11 4 

   base10 t 
102714 

  
 
 
 
 
 
 
 
 
 
 
38  Arithmetic 

   t=:+//. (tithe t-residue t) ,: residue t 
   t   
0 10 2 7 1 4 

base10 t 

102714 

   t=:+//. (tithe t-residue t) ,: residue t 
   base10 t 
102714 

We will now use trains of isolated verbs (to be discussed below) to capture the foregoing 
process in a single verb, as follows: 

   reduce=: +//.@ ((tithe @ (] - residue)) ,: residue) 
   reduce n 
9 12 6 11 4 

   reduce ^:3 n 
0 1 0 2 7 1 4 

   reduce^:4 n 
0 0 1 0 2 7 1 4 

Because further repetitions of reduce continue to append leading zeros, we will instead 
use trim@reduce, where trim is defined to trim off a leading zero: 

   trim=:0&=@(0&{) }. ] 
   (trim @ reduce)^:3 n 
1 0 2 7 1 4 

  norm=: trim@reduce^:_ 

Three  repetitions  suffice  for  the  argument  n,  but  in  general  the  number  required  is 
unknown.  However,  since  the  process  v^:k  stops  when  the  successive  results  stop 
changing, it suffices to use a sufficiently large value of k, preferably infinity. 

We now consider the trains used in the definitions of reduce and trim. The phrase ] - 
residue occurring in the former has an obvious meaning, as illustrated below: 

   ] - residue n 
_8 _5 _9 _4 

However,  the  same  sequence  of  three  verbs  isolated  by  parentheses  (as  they  are  in  the 
definition of reduce) is called a train, and has the meaning illustrated below: 

   (] - residue) n 
90 40 10 20 
   (]n) - (residue n) 
90 40 10 20 

   (3&< <. 9&>) i. 15 
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 4  Representation of Integers  39 

   (3&< i.15) <. (9&> i.15) 
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 

Thus,  the  middle  verb  in  a  train  of  three  applies  dyadically  to  the  results  of  the  outer 
verbs. Such a train also has a dyadic meaning defined similarly. For example: 

   3 (+*-) 7 
_40 

   (3+7)*(3-7) 
_40 

   3 (< >. =) 2 3 4 5 
0 1 1 1 

  3<:2 3 4 5 
0 1 1 1 

E. Mixed Bases 

The base-value dyad #. used in Section A with the simple bases 10 and 8 and 2 can also 
be used with a mixed base defined by a list. For example: 

   base=: 7 24 60 60 
   base #. 0 1 2 3 

3723 

# of seconds in 0 days, 1 hour, 2 minutes, 3 seconds 

   a=:i. 2 4 
   a 
0 1 2 3 
4 5 6 7 
   base #. a 
3723 363967 

   base #: 3723 
0 1 2 3 

   base#: base #. a 
0 1 2 3 
4 5 6 7 

The last results illustrate the fact that the dyad #: provides an inverse to the base value, 
and can be used to produce the list representations of integers in any base. For example: 
   2 2 2 #: i. 8 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 

  
 
 
 
 
 
 
 
 
 
 
 
40  Arithmetic 

1 1 0 
1 1 1 

   10 10 10 #: 24 60 365 
0 2 4 
0 6 0 
3 6 5 

   fbase=: 3-i. 3 
   fbase 
3 2 1 
   fbase #: i.!3 
0 0 0 
0 1 0 
1 0 0 
1 1 0 
2 0 0 
2 1 0 

The final example employs an unusual “factorial” base, that will be used in the discussion 
of permutations in Chapter 7. 

F. Experimentation 

The verb mag=: ] >. - yields the magnitude of its argument; for example, mag 9 _9 
yields 9 9. However, the monad | does the same. 

Although  it  is  probably  unwise  to  spend  time  memorizing  bits  of  notation    before  they 
arise in context, it is worthwhile to experiment with the monadic cases of dyads already 
encountered  (and  conversely),  and  to  adopt  those  that  appear  useful.  The  language 
summary  at  the  back  of  the  book  can  be  used  to  suggest  further  experiments.  It  is  also 
worthwhile to experiment with the use of tables and other higher-rank arrays such as the 
rank-3 array i. 2 3 4 and the rank-4 array i. 2 3 4 5. Three matters merit attention: 

1.  Just  as  the  insertion  +/  inserts  the  verb  +  between  items  of  a  list,  so  does  it 
between items of a higher rank array: between the rows of a table, and between the 
planes  of  a  rank-3  array.  Consequently,  +/  applied  to  a  table  adds  one  row  to 
another. For example: 

   i. 3 4 
0 1  2  3 
4 5  6  7 
8 9 10 11 

+/i. 3 4 
12 15 18 21 

2.  Expressions such as a */ b, already used to form tables when applied to lists, 

also apply to higher-rank arrays. For example: 

   2 3 5 */ i. 2 4 
 0  2  4  6 
 8 10 12 14 

 0  3  6  9 
12 15 18 21 

  
 
 
 
 
 
 
Chapter 4  Representation of Integers  41 

 0  5 10 15 
20 25 30 35 
   1+i.2 3 
1 2 3 
4 5 6 

*// (1+i.2 3) 

4  5  6 
8 10 12 
12 15 18 

3.  The  rank  conjunction  "  determines  the  rank  of  the  sub-array  to  which  a  verb 

applies. For example: 

  sum=:+/ 
    ]a=:i. 2 3  
 0  1  2  3 
 4  5  6  7 
 8  9 10 11 

12 13 14 15 
16 17 18 19 
20 21 22 23 

   sum a                sum"2 a          sum"1 a 
12 14 16 18          12 15 18 21       6 22 38 
20 22 24 26          48 51 54 57      54 70 86 
28 30 32 34 

G. Summary of Notation 

Notation introduced in this chapter comprises 
isolated trains of verbs (as indicated in the 
diagrams at the right); one conjunction (rank ") ;             f   h    f   h 
|   |   / \ / \ 
and four verbs -- base value and its inverse, 
y   y   x y x y 
laminate, and magnitude (#. #: ,: |). 

        g        g 
 / \      / \ 

Exercises 

A1  base10=: 10&#. 
   base8=: 8&#. 
   base2=: 2&#. 
   a=:1 0 1 0 1 
   base2 a 
   base8 a 
   base10 a 

base2 -a 
base8 -a 
base10 -a 

C1  Compare  the  multiplication  process  described  at  the  beginning  of  Section  C  with 
the commonly-taught process for multiplying 365 by 1776 by actually performing 
both. 

C2  Repeat  Exercise  C1  for  various  arguments,  and  note  particularly  the  relative 

difficulties of reviewing the work for suspected errors. 

E1  What is the result of applying the verb norm to a single number such as 1776? 

  
  
 
 
 
 
 
 
 
 
42  Arithmetic 

E2  Enter t=: ?4 2$10 to define a table t of decimal digits. Then define a verb sum 
such that sum t gives the list representation of the integers represented by the rows 
of t. Check your result by applying base10 to it and +/base10 to t. 

Answer:  sum=: norm@(+/)  

E3  Write an expression that gives the list representation of the product of the integers 

represented by the rows of t. 

Answer:  norm +//."2^:(<:#t) *//t  

F1  Enter #: i. 8 and compare the result with the use of the dyad #: in Section E. 
Use further experiments to determine and state the definition of the monad #: . 

Answer:  #:x is equivalent to (n#2)#:x , where n is chosen just large enough to 
represent the largest element of x. 

F2  Define t=: ,"1~&0 , ,"1~&1 . Then enter ]b=:i.2 1 and t b and t t b, and 

so on, and compare the results with the results of #:i.2^k for various values of k . 

  
 
 
 
 
Chapter 
5 

 Proofs 

A. Introduction 

A proof is an exposition intended to convince a reader that a certain relation is true, and 
perhaps to provide some insight into why it is true. For example, Section O of Chapter 1 
provided, in passing, an illustration that the sum of the first six odd numbers was equal to 
six times six, that is, the square of six. Thus: 

   odds=:1+2*i. k=:6 
   odds 
1 3 5 7 9 11 

   +/odds 
36 

   k*k 
36 

   *:k 
36 

   *:#odds 
36 

This relation for the case of six odds suggests that a similar relation might hold for any 
number, and the prefix scan (\) provides a convenient test: 

   d=:1+i.15 
   d 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

   odds=:1+2*i.15 
   odds 
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 

   +/\odds 
1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 

  
 
 
 
 
 
 
 
 
 
44 

   *:d 
1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 

This result provides rather strong evidence that the sum +/1+2*i.k equals the square of 
k for any value of k, but it provides no insight into why this should be so. 

The  following  numbered  sequence  of  sentences  begins  and  ends  with  the  pair  whose 
equivalence  is  to  be  established.  The  intermediate  sentences  differ  in  simple  ways  that 
can provide insight into why the relations would hold true for any value of k: 

S1 

odds=:1+2*i.k=:10 
odds 

1 3 5 7 9 11 13 15 17 19 

S2  

+/odds 

100 

S3 

S4 

S5 

S6 

S7 

S8 

S9 

|.odds 

19 17 15 13 11 9 7 5 3 1 

+/|.odds 

100 

-: (+/odds) + (+/|.odds)  (-: halves its argument) 

100 

-: +/ (odds+|.odds) 
100 

+/ -: (odds+|.odds) 

100 

odds+|.odds 

20 20 20 20 20 20 20 20 20 20 

-: odds+|.odds 

10 10 10 10 10 10 10 10 10 10 

S10 

k#k 

10 10 10 10 10 10 10 10 10 10 

S11 

+/k#k 

S12 

S13 

100 

k*k 

100 

*:k 

100 

Sentences  S2  and  S4  to  S7  show  that  the  sum  of  the  first  ten  odds  can  be  written  in 
several  equivalent  ways,  but  really  demonstrate  it  only  for  the  specific  case  of  k=:10. 

 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45 

However,  we  may  see  reasons  to  believe  that  the  relations between successive 
sentences should hold for other values of k. 

For  example,    because  +/  is  symmetric  (as  defined  in  Section  2  E),  and  because  the 
monad |. permutes its argument, S2 and S4 agree for any list odds . Further, in S5, one-
half of the sum of two equal things is equal to either one of them, and similarly simple 
arguments  can  establish  the  equality  of  the  pairs  S6,  S7;  S7,  S11;  S11,  S12;  and  S12, 
S13. In particular, S12 agrees with S11 because their agreement expresses the definition 
of multiplication. 

We will call a sequence such as S1-S13 an informal proof; it provides insight but leaves 
to the reader the task of providing precise reasons for the equivalence of certain pairs of 
sentences. A formal proof is one in which each sentence is annotated by a clear statement 
of the reasons for its equivalence with an earlier sentence. 

An  informal  proof  is  satisfactory  only  if  the  relations  between  successive  sentences  are 
obvious  to  the  reader.  If  so,  why  is  it  ever  desirable  to  make  formal  a  good  informal 
proof?  Firstly,  what  is  obvious  to  one  reader  may  not  be  to  another.  A  second,  more 
serious,  reason  is  that  obvious  reasons  for  relations  may,  in  fact,  be  wrong,  or  at  least 
incomplete. 

For example, does +/1+2*i.k equal k*k for the case k=:0 ? The answer is yes, but this 
does  not  follow  from  the  arguments  given  thus  far,  since  they  took  no  account  of  the 
definition  of  the  summation  of  an  empty  list.  A  complete  proof  would  require 
examination of the definition of identity elements in Section 2 I. 

In  the  foregoing  example  the  conclusion  remained  correct  even  though  the  reasons 
provided were incomplete, but unexamined proofs and definitions can also lead to errors 
or contradictions. For example, the prime numbers illustrated in Exercise O1 of Chapter 1 
have the important property that any counting number greater than one can be expressed 
as  a  product  of  one  or  more  primes,  and  that  this  factorization  is  unique.  For  example, 
using the first five elements of the list obtained in the cited exercise: 

   pr=:2 3 5 7 11 
   e=:2 0 2 1 0 
   pr^e 
4 1 25 7 1 
   */pr^e 
700 

Thus, the exponents 2 0 2 1 0 specify the prime factorization of the integer 700, and 
no other factorization in primes is possible. 

We turn now to a definition of primes that is commonly used in high-school: A prime is 
an integer that is divisible only by itself and one. The integers in the list pr satisfy this 
condition, but so does the integer 1. We now consider a list of “primes” that includes 1, 
and see that the factorization of the integer 700 in terms of it is not unique: 

   p=:pr,1 
   p 
2 3 5 7 11 1 

   */p^2 0 2 1 0 0 
700 
   */p^2 0 2 1 0 3 

    
 
 
 
 
46 

700 

The loss of unique factorization clearly lies in a definition of primes that admits 1 as a 
member. We turn to an informal development of primes that leads to a suitable definition: 

   i=:>:i.8 

   i 
1 2 3 4 5 6 7 8 

   rem=: i|/i 
   rem 
0 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 0 
1 2 0 1 2 0 1 2 
1 2 3 0 1 2 3 0 
1 2 3 4 0 1 2 3 
1 2 3 4 5 0 1 2 
1 2 3 4 5 6 0 1 
1 2 3 4 5 6 7 0 

   +/div 
1 2 2 3 2 4 2 4 

   2=+/div 
0 1 1 0 1 0 1 0 

   (2=+/div)#i 
2 3 5 7 

div=: 0= i|/i 
div 

1 1 1 1 1 1 1 1 
0 1 0 1 0 1 0 1 
0 0 1 0 0 1 0 0 
0 0 0 1 0 0 0 1 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 

The table rem is the table of remainders (or residues), and div is a divisibility table that 
identifies zero remainders. The sum +/div sums the columns of div to yield the number 
of divisors of each of the integers i, and the final sentence selects those integers that have 
exactly two distinct divisors. It furnishes a suitable definition: A prime is an integer that 
has exactly two distinct divisors. 

We conclude this section with an example of an informal development designed to clarify 
some matters of elementary algebra.  

The  expression  a3  is  commonly  used  to  denote  what  we  denote  here  by  a^3,  and  is 
defined  by  saying  that  it  is  the  product  of  three  factors  a  (which  we  would  write  as 
a*a*a)  but  also  by  continuing  to  define  a0  as  1.  What  is  meant  by  a  product  of  no 
factors, and why should its result be 1 ? Somewhat less mysteriously, what is a product of 
one factor (a1), and why should it yield a ? 

The definitions of expressions such as a^n and !n are commonly extended to arguments 
that  do  not fall under the initial definition, by extending them so as to maintain certain 
significant “patterns” or “identities”. These patterns can often be made clear by applying 
functions to lists (such as i.n) that themselves maintain simple patterns. For example: 

   a=:4 

   e=:3 4 5 

   a^e 

 
 
 
 
 
 
 
 
 
 
 
47 

64 256 1024 

To  evaluate  the  next  in  sequence  (that  is,  a^6),  one  might  perform  the  calculation 
4*4*4*4*4*4  or,  more  efficiently,  note  that  the  result  is  simply  4 times the preceding 
case  a^5.  In  other  words,  the  pattern  extends  to  the  right  by  multiplication  by  4. 
Consequently, and more interestingly, it proceeds to the left by division by 4. Thus, since 
4^3 is 64, it follows that 4^2 is 16, that 4^1 is 4, and that 4^0 is 1.  

These last two results provide some insight into why a^1 and a^0 are defined as a and 1 
for any a, including the case where a itself is zero. It is worth noting that some college 
texts  state  that  0^0  is  undefined,  even  though  the  result  1  is  clearly  needed  to  make  it 
possible to evaluate the general form of the polynomial in x with coefficients c, namely, 
+/c*x^i.#c. 

Going,  for  a  moment,  outside  the  domain  of  the  integers,  we  may  also  note  that  the 
pattern continues through negative and fractional values. Thus: 

   a=:4 
   e=:3 4 5 
   a^e 
64 256 1024 

   e=:3-~i.7 
   e 
_3 _2 _1 0 1 2 3 

   4^e 
0.015625 0.0625 0.25 1 4 16 64 

   f=:-:i.6 
   f 
0 0.5 1 1.5 2 2.5 

   4^f 
1 2 4 8 16 32 

In the final example, there are two steps rather than one between successive integers of 
the equally-spaced elements of the exponent f, and 4^f must therefore exhibit a pattern 
of multiplication by a factor which applied twice produces multiplication by 4; in other 
words, a factor that is the square root of 4. 

B. Formal and Informal Proofs 

Although topics in mathematics are often presented deductively, as a sequence of formal 
proofs that appear to lead to collections of indisputable facts, we will continue to use an 
informal approach that emphasizes the use of expressions (such as the pair +/\odds and 
*:d of Section A) that suggest relations, and sequences of expressions (such as S1-S13) 
that outline a proof. 

The  reasons  for  adopting  such  an  informal  approach  are  rooted  mainly  in  the  view  of 
mathematics expressed clearly and entertainingly in the dialogue in Lakatos’ Proofs and 
Refutations  [5]  (discussed  briefly  in  Section  C),  but  also  in  the  characteristics  of  the 

    
 
 
 
 
 
 
48 

notation used here; characteristics that make it easy to express patterns in lists and tables, 
and  to  display  them  accurately  and  effortlessly  by  entering  the  expressions  on  a 
computer. 

To  appreciate  these  characteristics  the  reader  should  attempt  to  render  various 
expressions  in  this  text  clearly  and  completely  in  more  conventional  notation.  For 
example,  +/odds  may  be  expressed  by  using  sigma  notation,  but  +/\odds  would 
probably be expressed as: 

        i 
  ci = Σ oddsi   
       j=1 

an expression that does not yield an entire list as does +/\odds, but specifies it indirectly 
by specifying each of the elements of some list denoted by c. 

In  a  similar  vein,  it  might  be  assumed  that  the  sigma  notation  used  for  +/odds  would 
also serve for +/|.odds as follows: 

n 
Σ   oddsi 

       i=1 

1 
Σ  oddsi 
i=n 

However,  the  summation  from  n  to  1  is  normally  taken  to  denote  summation  over  an 
empty set, since no summation from j to k could otherwise denote the empty case. 

It might also be noted that the symbol n commonly used in sigma notation has no clear 
connection  to  the  number  of  elements  in  the  argument,  and  cannot  be  expressed  as  a 
function of the argument without introducing some notation analogous to #odds. 

C. Proofs and Refutations 

Of his Proofs and Refutations [4], Lakatos says “Its modest aim is to elaborate the point 
that  informal,  quasi-empirical,  mathematics  does  not  grow  through  the  monotonous 
increase  of  the  number  of  indubitably  established  theorems  but  through  the  incessant 
improvement  of  guesses  by  speculation  and  criticism,  by  the  logic  of  proofs  and 
refutations.” 

He  goes  on  to  say  that  there  is  a  simple  pattern  of  mathematical  discovery  -  or  of  the 
growth  of  informal  mathematical  theories  -  that  consists  of  the  following  stages  (also 
quoted from [4]): 

1.  Primitive conjecture 

2.  Proof  (a  rough  thought-experiment  or  argument,  decomposing  the  primitive 

conjecture into sub-conjectures or lemmas). 

3. 

‘Global’ counterexamples (counterexamples to the primitive conjecture) emerge. 

4.  Proof re-examined: the ‘guilty lemma’ to which the global counter-example is a 
‘local’  counterexample  is  spotted.  This  ‘guilty’  lemma  may  have  previously 
remained ‘hidden’ or may have been misidentified. Now it is made explicit, and 
built  into  the  primitive  conjecture  as  a  condition.  The  theorem  -  the  improved 
conjecture  -  supersedes  the  primitive  conjecture  with  the  new  proof-generated 
concept as its paramount new feature. 

 
 
 
 
 
49 

As  a  result,  “Counterexamples  are  turned  into  new  examples  -  new  fields  of 
inquiry open up.” 

Lakatos illustrates this process by following a simple conjecture through surprising twists 
and  turns,  citing  positions  held  by  dozens  of  eminent  mathematicians.  To  quote  from  a 
review  cited  on  the  cover,  “The  whole  book,  as  well  as  being  a  delightful  read,  is  of 
immense value to anyone concerned with mathematical education at any level.” 

We will illustrate the process briefly. Having counted the number of vertices v, edges e, 
and faces f of various polyhedra (bounded by multiple flat faces, surfaces, or “seats” as 
suggested by the root hedra), a class arrives at the conjecture that the expression f+v-e 
yields 2 for any polyhedron. For example: 

Tetrahedron 

Square-base pyramid 

Cube 

f 

4 

5 

6 

v 

4 

5 

8 

e 

6 

8 

12 

f+v-e 

2 

2 

2 

The  teacher  provides  the  following  proof  or  “thought-experiment”  to  establish  the 
validity of the relation for all polyhedra: 

1.  Triangulate  each  face  by  (repeatedly)  drawing  a  line  between  some  pair  of 
vertices not already joined by an edge. [In the square-based pyramid this requires 
one  diagonal  on  the  base;  in  the  cube  it  requires  one  diagonal  on  each  face.] 
Since each line drawn adds one edge and one face (splitting one existing face into 
two), the triangulation does not change the result of f+v-e. 

2.  Remove one face, leaving a hole bounded by three edges. 

3.  Dismantle the body triangle-by-triangle until only one remains, removing at each 
step one edge and one face, or one vertex, two edges, and one face. Either action 
leaves f+v-e unchanged. 

4.  For the final triangle, f+v-e is 1+3-3 (that is, 1), which, together with the face 

removed in step 2, gives a result of 2 for f+v-e. 

The validity of each step of the process is challenged by students who enter the dialogue, 
and the validity of the conjecture itself is challenged by counterexamples, including one 
provided by a body formed by fitting together into a square “picture frame” four identical 
moldings (polyhedra) having the following end and side views: 

    __          __________________________ 
   /  \     
  /    \       /                            \ 

 /                          \ 

A direct count gives 16+16-32 or 0, contradicting the conjecture. 

Attempts  are  first  made  to  sharpen  the  definition  of  a  polyhedron  so  as  to  save  the 
conjecture by barring the picture frame from consideration (as a “monster”), and later to 
revise the conjecture so as to account for such a monster. 

One such revision is based on the observation that the “well-behaved” polyhedra shared 
the property that (if constructed of elastic surfaces) they could be inflated to a sphere, but 
the picture frame could not. Moreover, a single cut through one limb of the frame (which 

    
 
 
 
50 

would appear as a vertical line in the side view above) would form a body with two new 
faces, eight new vertices, and eight new edges, restoring the result of 2 for f+v-e, and 
producing a body that could be inflated to a sphere. 

A revised conjecture taking into account the “connectedness” or “number of cuts needed 
to  produce  a  ‘spherical’  body”  can  therefore  be  formulated;  but  it  again  is  subject  to 
further criticism and refinement. 

We conclude this section with an extended quotation from Lakatos (page 73): 

TEACHER:  No! Facts do not suggest conjectures and do not support them either! 

BETA: 

Then  what  suggested  2=f+v-e  to  me  if  not  the  facts,  listed  in  my 
table? 

TEACHER: 

I  shall  tell  you.  You  yourself  said  you  failed  many  times  to  fit  them 
into  a  formula.  Now  what  happened  was  this:  you  had  three  or  four 
conjectures which in turn were quickly refuted. Your table was built up 
in the process of testing and refuting these conjectures. These dead and 
now  forgotten  conjectures  suggested  the  facts,  not  the  facts  the 
conjectures. Naive conjectures are not inductive conjectures: we arrive 
at them by trial and error, through conjectures and refutations. But if 
you - wrongly - believe that you arrived at them inductively, from your 
tables, if you believe that the longer the table, the more conjectures it 
will  suggest,  and  later  support,  you  may  waste  your  time  compiling 
unnecessary data. Also, being indoctrinated that the path of discovery 
is from facts to conjecture, and from conjecture to proof (the myth of 
induction),  you  may  completely  forget  about  the heuristic alternative: 
deductive guessing. 

D. Proofs 

Throughout this text we will present examples intended to stimulate the formulation of 
conjectures, but will not develop proofs. However, the reader is encouraged to provide 
formal  and  informal  proofs  for  any  conjectures  that  suggest  themselves.  The  present 
section  will  provide  examples  of  proofs  of  identities  that  are  familiar  in  elementary 
mathematics, but are often treated in more limited forms. 

In this section we will use the name X to denote a single element (or scalar), and other 
names to denote lists (or vectors). We will write one sentence below another to indicate 
that they are equivalent. Thus: 

Thm1: 

+/X*W 

X*+/W 

asserts  that  the  sum  over  a  scalar  times  a  list  is  equivalent  to the scalar times the sum 
over the list, and labels the identity as Thm1 (Theorem 1) for future reference. 

A formal proof of a theorem is provided by annotating each sentence after the first with 
the reason that it is equivalent to the sentence preceding it. Thus: 

Thm1: 

+/X*W 

    X*+/W 

X&* distributes over +   (Section 2 D) 

If  values  are  assigned  to  the  names  used  in  a  theorem,  then  each  sentence  may  be 
entered and executed as a test for the case of the particular values assigned. Thus: 

 
 
 
51 

   X=: 3 
   W=: 3 1 4 1 
   +/X*W 
27 

   X*+/W 
27 

This  executability  is  reassuring  in  developing  an  identity  or  proof,  because  a  mis-
statement will very likely produce a different result. For example: 

Thm2: V=: 2 4 6 

+/V*/W 
  36 12 48 12 

(+/V)*W 
  36 12 48 12 

Thm1 applied for each element of W 
(since +/V is a scalar) 

A  sequence  of  equivalent  sentences  implies  that  the  first  sentence  is  equivalent  to  the 
last.  Hence  the  following  is  a  formal  proof  that  the  sum  of  the  column  sums  of  the 
multiplication table V*/W equals the product of the sums +/V and +/W: 

Thm3: +/+/V*/W 

    +/V*(+/W) 

 Thm2 and commutativity of * 

    (+/V)*(+/W) 

Thm1 (with +/W for X and V for W) 
and commutativity of *. 

The following theorem can be proved formally by showing that the element of column j 
of row i of the first table is equal to the corresponding element of the second table: 
Thm4:  (A*P)*/(B*Q) 
      (A*/B)*(P*/Q) 

It can be illustrated as follows: 

   A=:2 3 5 
   B=: 3 1 4 1 
   P=: 4 3 2 
   Q=: 2 7 1 8 

   (A*P)*/(B*Q) 
48 56 32 64 
54 63 36 72 
60 70 40 80 

   (A*/B)*(P*/Q) 
48 56 32 64 
54 63 36 72 
60 70 40 80 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52 

Since  x^n is defined by */n#x, it is easy to show that (x^n)*(x^m) is equivalent to 
x^(m+n). This result can be used in the proof of the following theorem: 

Thm5:  (X^A)*/(X^B) 

      X^(A+/B) 

The foregoing theorems will be used in an exercise in Section B of Chapter 9 to prove 
that  the  product  of  two  polynomials  with  coefficients  C  and  D  is  equivalent  to  a 
polynomial with coefficients +//.C*/D. 

The fact that multiplication distributes over addition is commonly extended to a product 
of sums and expressed in conventional notation as: 

LHS= (a+A)(b+B) 

RHS= (ab)+(aB)+(Ab)+(AB) 

the left-hand side LHS being equivalent to the right-hand side RHS. 

This identity can be extended to a product over any number of sums as follows: 

LHS=(a+A)(b+B)(c+C) 

RHS=(abc)+(abC)+(aBc)+(aBC)+(Abc)+(AbC)+(ABc)+(ABC) 

LHS=(a+A)(b+B) ... (z+Z) 

The last expression above uses the informal three-dot notation to suggest continuation of 
the  same  form  to  arbitrary  lengths.  To  appreciate  the  difficulties  of  such  informal 
notation,  the  reader  should  attempt  its  use  in  a  clear  definition  of  the  corresponding 
right-hand side. 

The use of vectors (lists) makes the expression of the left-hand side simple: */v1+v2 , 
where (in the three-element case above), v1=:a,b,c and v2=:A,B,C. 

To clarify the pattern of the right-hand side, we will use explicit values for v1 and v2, 
thus allowing the direct evaluation of every expression. We will also use numbers less 
than ten in v1, and greater than ten in v2 to make patterns easier to recognize. Thus: 

   v1=:2 3 4 

    v2=:12 13 14 

v1+v2 
14 16 18 

   ]LHS=: */v1+v2 
4032 

   ]RHS=:(2*3*4)+(2*3*14)+(2*13*4)+(2*13*14)+(12*3*4)+ 
              (12*3*14)+(12*13*4)+(12*13*14) 
4032 

The pattern in the expression for RHS can be better seen in the following table: 

   M=:>2 3 4;2 3 14;2 13 4;2 13 14;12 3 4;12 3 14; 
              12 13 4;12 13 14 

 
 
 
   
 
 
 
 
 
53 

   M 
 2  3  4 
 2  3 14 
 2 13  4 
 2 13 14 
12  3  4 
12  3 14 
12 13  4 
12 13 14 

   */"1 M 
24 84 104 364 144 504 624 2184 

   +/*/"1 M 
4032 

Because  the  items  of  v2  exceed  10,  the  pattern  in  M  can  be  displayed  more  clearly  as 
booleans: 

   ]b1=: M<10 
1 1 1 
1 1 0 
1 0 1 
1 0 0 
0 1 1 
0 1 0 
0 0 1 
0 0 0 

]b2=: M>10 

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

The right-hand side can now be expressed in either of two ways: 

   ]RHS=: +/(*/"1 v1^b1)*(*/"1 v2^b2) 
4032 

   ]RHS=: +/*/"1 (v1,v2)^(b1,.b2) 
4032 

The  details  of  these  expressions  can  be  explored  by  displaying  the  partial  results.  For 
example, the rows of v1^b1 contain the appropriate elements from v1 with the elements 
from  v2  being  replaced  by  ones  (the  identity  element  of  *),  and  the  product  over  the 
rows  multiplied  by  the  product  over  the  rows  of  v2^b2  yields  the  products  to  be 
summed. Thus: 

   v1^b1 
2 3 4 
2 3 1 
2 1 4  
2 1 1  
1 3 4  
1 3 1  
1 1 4  

v2^b2 
  1  1  1 
  1  1 14 
  1 13  1 
  1 13 14 
 12  1  1 
 12  1 14 
 12 13  1 

    
 
 
 
 
 
 
 
 
54 

1 1 1  

 12 13 14 

   */"1 v1^b1 
24 6 8 2 12 3 4 1 
   */"1 v2^b2 
1 14 13 182 12 168 156 2184 

   (*/"1 v1^b1)*(*/"1 v2^b2) 
24 84 104 364 144 504 624 2184 

   +/(*/"1 v1^b1)*(*/"1 v2^b2) 
4032 

Comparison of b2 with the result of #:i.2^3 in Exercise F1 of Chapter 4 should make 
it clear that #:i.2^n is the table appropriate to any list v of n elements. Moreover, as 
illustrated 
the  verb  t=:  ,"1~&0,  ,"1~&1 
applied to #:i.2^n yields the table for a list of one more element. 

in  Exercise  F2  of  Chapter  4, 

The  foregoing  facts  can  be  used  to  formalize  the  following  proof  of  the  equality  of 
general  functions  for  the  results  illustrated  above  for  LHS  and  RHS.  We  first  define  the 
functions: 

   lhs=:*/@(+"1) 

   rhs=:+/@(f*g) 

     g=:*/"1@(]^T)@] 

     f=:*/"1@(]^0&=@T)@[ 

       T=: #:@i.@(2&^)@# 

For lists V and W of one element each, the results of V lhs W and V rhs W can easily 
be shown to be equivalent. We now present an inductive proof in which we assume that 
V  lhs  W  and  V  rhs  W  are  equivalent  for  any  lists  of  n  elements,  and  then  use  that 
induction hypothesis to prove that they are equivalent for lists on n+1 elements. Thus: 

(x,V) rhs (y,W) 

+/(x,V) (f*g) (y,W) 

+/(L=:(x,V)f(y,W))*(x,V)g(y,W) 

+/L**/"1(y,W)^T (y,W) 

Def of rhs 

Def of fork 

Def of g 

+/L**/"1(y,W)^(0,"1 U),(1,"1 U=:T W)   

Structure of T 

+/L*((y^0)*Q),(y^1)*Q=:*/"1 W^U   

+/L*Q,y*Q 

+/((x*P),P=:*/"1 V^0=U)*Q,y*Q 

+/(x*P*Q),y*P*Q      

(x+y)*+/P*Q 

(x+y)*V lhs W                                  

(x+y)**/V+W 

*/(x,V)+(y,W) 

Analogous 

treatment of L 

Induction 

hypothesis 

 
 
 
 
 
55 

(x,V) lhs (y,W) 

    
 
57 

Chapter 
6 

Logic 

A. Domain and Range 

As stated in Section 1 D, the domain of a verb is the collection of arguments to which it 
can apply. For example, the integer 4 is in the domain of >:, but the characters '!' and 
'b'  and '4' are not. 

Similarly, the range of a verb is the collection of results that it can produce. The verb >: 
can  produce  any  integer,  and  so  its  range  is  the  same  as  its  domain.  This  agreement  of 
range and domain also holds for verbs such as + and *; but not for %, which can produce 
fractions or rational numbers, and so has a wider range as discussed in Chapter 9. 

A verb may also have a range more limited than its domain. For example, the verb 4&| 
applies to any integer, but its results all fall in the finite list i.4, that is,0 1 2 3. 

It  is  sometimes  useful  to  examine  the  properties  of  a  verb  when  it  is  applied  only  to  a 
restricted part of its domain, particularly if it is restricted to its range. For example, when 
restricted to the domain i.4, the verbs: 

pm4=: 4&|@* 
sm4=: 4&|@+ 

(Product modulo 4) 
(Sum modulo 4) 

have the following tables: 

   pm4/~ i.4 
0 0 0 0 
0 1 2 3 
0 2 0 2 
0 3 2 1 

sm4/~ i.4 

0 1 2 3 
1 2 3 0 
2 3 0 1 
3 0 1 2 

We will use the phrase “v on d” to refer to the verb resulting from restricting the verb v 
to the domain d. For example, “4&|@* on i.4” refers to the product mod 4 restricted to 
the  domain  0  1  2  3,  and  “*  on  i.2”  refers  to  the  boolean  and,  to  be  discussed  in 
Section C. 

  
 
 
 
 
 
 
58  Arithmetic 

B. Propositions 

A proposition or truth-function is any statement which can be judged to be either true or 
false, and is therefore a verb having a range of two elements. Following Boole (the father 
of  symbolic  logic),  we  will  denote  these  elements  by  1  (for  true)  and  0 (for false). For 
example: 

   p=: <&5 
   p 3 
1 

   p a=:i.8 
1 1 1 1 1 0 0 0 

(p a)#a 

0 1 2 3 4 

   2=+/0=|/~ a 
0 0 1 1 0 1 0 1 

   a#~2=+/0=|/~ a 
2 3 5 7 

C. Booleans 

The  nouns  0  and  1  (the  range  of  propositions)  are  called  booleans,  and  a  verb  whose 
domain and range are boolean is called a boolean function, or boolean. For example,  * 
limited to booleans might be called and; its table would appear as follows: 

   and=:* 
   and/~ b=:0 1 
0 0 
0 1 

   ]c=:i.8 
0 1 2 3 4 5 6 7 

   (>&2 c) and (<&5 c) 
0 0 0 1 1 0 0 0 

   (>&2 and <&5) c 
0 0 0 1 1 0 0 0 

   c #~ (>&2 and <&5) c 
3 4 
   (] #~ >&2 and <&5) c 
3 4 

The sentence  (>&2  and  <&5) is a “compound” proposition whose result is true if the 
proposition >&2 is true and the proposition <&5 is true. 

A verb or may be defined similarly: 

   or=: *@+ 
   or/~b 
0 1 

 
 
 
 
 
 
 
 
 
 
 
Chapter 6  Logic  59 

1 1 

   (=&7 c) or (<&5 c) 
1 1 1 1 1 0 0 1 

Note that the dyad + may produce non-boolean results, from which the monad * (called 
signum) produces booleans. Thus: 

   * _2 0 2 
_1 0 1 

+/~ b 

* +/~b 

0 1 
1 2 

0 1 
1 1 

The booleans and and or are exceedingly useful. For example: 

   dof10=: 0&=@(|&10) 
   dof10 c =: 1+i. 20 

1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

   c#~dof10 c  

1 2 5 10 

   dof15=: 0&=@(|&15) 
   c#~dof15 c 

1 3 5 15 

Divisors of ten 

Divisors of fifteen 

   c#~ (dof10 and dof15) c 

1 5 

Common divisors of ten and fifteen 

   >./c#~ (dof10 and dof15) c 

5 

GCD of 10 and 15 

   10 15 |~/ c 
0 0 1 2 0 4 3 2 1 0 10 10 10 10 10 10 10 10 10 10 
0 1 0 3 0 3 1 7 6 5  4  3  2  1  0 15 15 15 15 15 

   0=10 15 |~/ c 
1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

   and/0=10 15 |~/ c 
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   c #~ and/0=10 15 |~/ c 
1 5 

   >./c #~ and/0=10 15 |~/ c 
5 

GCD of ten and fifteen 

  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
60  Arithmetic 

The dyad +. is defined to yield the greatest common divisor of its arguments: 

   10 +. 15 
5 

+./ 10 15 

5 

The least common multiple is denoted by *. as illustrated below: 

   10 *. 15 
30 

(10*15) % 10+.15 

30 

D. Primitives 

Verbs  (such  as  *  and  +  and  *.  and  i.)  that  are  denoted  by  single  words  are  called 
primitives, to distinguish them from derived verbs produced by phrases such as that (*@+) 
used to define the boolean or in Section C. Since primitives and derived verbs are treated 
identically, this distinction is of little consequence except to the designer of a language, 
who must choose what primitives to provide. 

Should new primitives be added for such important cases as the boolean and and or? Not 
if primitives already exist that give the appropriate results when restricted to the boolean 
domain. The dyads <. and >. (min and max) might be tested for this purpose. Thus: 

   and=: * 
   or=: *@+ 
   b=: 0 1 
   <./~b 
0 0 
0 1 
   and/~b 
0 0 
0 1 

>./~b 

0 1 
1 1 

or/~b 

0 1 
1 1 

But do min and max provide the appropriate identity elements? The identity element for 
or should be 0, and for and should be 1, as illustrated below: 

   0 or b 
0 1 

1 and b 

0 1 

However, the identity elements of min and max are infinities. Thus: 

   <./i.0 
_ 

>./i.0 

__ 

Other  candidates  for  or  and  and  when  restricted  to  booleans  are  the  greatest  common 
divisor  (+.)  and  the  least  common  multiple  (*.)  introduced  in  the  preceding  section. 
Thus: 

   +./~b 
0 1 
1 1 

*./~b 

0 0 
0 1 

 
 
 
 
 
 
 
 
 
 
 
   +./i.0 
0 

*./i.0 

1 

Hereafter, these primitives will be used for or and and. It may be noted that Boole also 
represented  or  and  and  by  then-current  symbols  for  plus  and  times,  but  without  the 
appended dot used here to distinguish them from these verbs. 

Chapter 6  Logic  61 

E. Boolean Dyads 

Are  there  any  other  boolean  dyads  in  addition  to  *.  and  +.  (and  and  or)?  If  so,  how 
many? 

To  answer  these  questions  we  first  display  the  tables  for  *.  and  +.,  together  with  the 
ravel of each produced by the monad , : 

   *./~ b=:0 1 
0 0 
0 1 

   ,*./~b 
0 0 0 1 

+./~ b=:0 1 

0 1 
1 1 

,+./~b 

0 1 1 1 

We then observe that each table must contain four elements, each of which must belong 
to the range 0 1. Since each element may have either of two values, there are 2*2*2*2, 
or 2^4, or 16 possible tables which, when ravelled to form a four-element list, must agree 
with one of the columns in the following transposed table: 

   |:T 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

For example, columns 1 and 7 represent *. and +. : 

   1{"1 T 
0 0 0 1 

   and=: 1 b. 
   and/~ 0 1 
0 0 
0 1 

   and/i. 0 
1 

7{"1 T 

0 1 1 1 

or=: 7 b. 
or/~ 0 1 

0 1 
1 1 

or/i. 0 

0 

As illustrated in the foregoing, the adverb b. applies to any of the indices (0 to 15) of the 
table T to produce the corresponding boolean dyad. It may be noted that the base-2 value 
of any row yields its index; for example, 2#.7{T is 7. 

  
 
 
 
 
 
 
 
 
 
62  Arithmetic 

F. Boolean Monads 

A monad that negates a boolean argument is equivalent to subtraction from 1; it is called 
not, and is denoted by -. . There are in all four boolean monads as illustrated below: 

   b 
0 1 

   -. b 
1 0 

   ] b 
0 1 

   ~:~ b 
0 0 

   =~ b 
1 1 

G. Generators 

In English, compound propositions are commonly expressed using only or, and, and not. 
For example, using p, q, and r to denote propositions, and using parentheses to express 
the punctuation clearly: 

  p and q 

  not (p and q) 

  (p or q) and not (p and q) 

  not p and (not q) 

(p or q) or (p or not q) 

  (p and q) and (p and not q) 

(1 b.) 

(14 b.) 

(6 b.) 

(13 b.) 

(15 b.)    

(0 b.) 

Exclusive-or 

Implication 

True 

False 

Each of the foregoing phrases can be restated as definitions of verbs.  For example: 

   exclor=: +. *. -.@*. 
   exclor/~ 0 1 
0 1 
1 0 

Can all of the sixteen booleans be expressed using only or, and, and not ? The answer is 
yes, and for this reason the collection of verbs +. *. -. is said to be a set of generators 
of the booleans. For example, the case 0 b. (which yields 0 for every pair of arguments) 
can  be  expressed  as  (p  and  q)  and  (p  and  not  q),  and  15  b.  as  not 
(p and q) and (p and not q). 

 
 
 
 
 
 
 
 
 
 
 
Chapter 6  Logic  63 

Is +. *. -. a minimal set of generators, or could one of them be omitted? This is easily 
answered  by  showing  that  *.  itself  can  be  expressed  in  terms  of  +.  and  -.  and  can 
therefore be omitted: 

  and is not (not p) or (not q) 

The foregoing relation is sometimes expressed as “and is the dual of or (with respect to 
negation).” 

The  use  of  or  and  not  as  the  only  generators  can  lead  to  cumbersome  expressions  for 
some of the booleans, but all can be expressed in terms of them. 

Can a single boolean serve as generator? It can be shown that either 8 b. (not-or or nor) 
or 14 b. (not-and or nand) will serve. This matter is developed in exercises. 

H. Boolean Primitives 

The primitives +. and *. (gcd and lcm) when restricted to the boolean domain provide 
the  important  boolean  verbs  or  and  and.  Others  are  provided  by  similarly  restricting 
relations: 

< 

<: 

= 

>: 

> 

~: 

4 b. 

13 b. 

9 b. 

11 b. 

2 b. 

6 b. 

Implication 

Identity 

Exclusive-or 

Finally, +: and *: denote nor and nand, that is, 8 b. and 14 b. . 

I. Summary of Notation 

The  notation  introduced  in  this  chapter  comprises  one  adverb  boolean  (b.);  five  dyads 
or, and, nor, nand,  and not-equal  (+. *. +: *: ~:); three monads not, signum, and 
ravel (-. * ,). 

Exercises 

A1  Predict and test the results of n | (i. n) +/ (i. n) and of n | (i. n) */ 

(i. n) for various values of n including 10. 

A2  Define monads S and P such that S n and P n yield the tables of Exercise A1. 

Answer: 

 S=: ] | i. +/ i. and P=:]|i.*/i. 

B1  Predict  and  test  the  result  of  applying  to  an  integer  n  the  verb  PR=:  i.  #~ 
T@(+/)@(0&=)@(|/~)@i. for the cases T=:2&= and T=:2&< and T=:3&= . 

B2  Define  and  test  a  verb  IN  such  that  a  IN  b  yields  1  if  a  lies  in  the  interval 

between the smallest and largest elements of b. 

  
 
 
 
 
 
 
 
 
 
 
64  Arithmetic 

Answer: 

IN=: (<./@] < [)*.(>./@] > [) 

B3  Define  a  verb  L  such  that  a  L  b  lists  the  elements  of  a  that  lie  in  the  interval 

defined by b. 

Answer: 

L=: IN#[ 

C1  Explain the equivalence of the dyads *. and *%+. and test it in expressions such as 

(?7#100) (*. = * % +.)/ (? 10#100) . 

E1  The  verbs  1  b.  and  7  b.  may  be  called  and  and  or.  Recall  or  invent  suitable 
names for as many of the remaining fourteen boolean functions as you can. 

G1  Using  only  NAND=:  14  b.  define  a  monad  called  NOT  that  is  equivalent  to  the 

monad -. on the boolean domain. 

Answer: 

NOT=: NAND~ 

G2  Using only NAND=: 14 b.and NOT define dyads AND and OR that are equal to *. 

and +. on the boolean domain. 

Answer:  AND=: NOT@NAND       OR=:NOT@(NOT AND NOT) 

G3  Repeat Exercises G1, G2 using NOR=: 8 b. instead of NAND. 

 
 
 
 
 
 
65 

Chapter 
7 

Permutations 

A. Introduction 

Permute  is  a  verb  meaning  “to  change  the  order  of”,  and  |.  is  an  example  of  a 
permutation: 

   |. 'abcdef' 
fedcba 

   |. i. 5 
4 3 2 1 0 

Indexing provides arbitrary permutations. For example: 

   2 0 1 5 4 3 { 'abcdef' 
cabfed 

A  list  of  indices  to  {  that  produces  a  permutation  is  called  a  permutation  vector,  or 
permutation,  and  one  that  contains  n  elements  is  called  a  permutation  of  order  n.  A 
permutation of order n is itself a permutation of the list i. n. 

To  enumerate  all  permutations  of  order  n,  it  is  best  to  list  them  in  ascending  order 
(ascending  when  considered  as  the  digits  representing  an  integer),  as  illustrated  in  the 
following tables: 

p2 

0 1 
1 0 

p1 

0 

   p3 
0 1 2 
0 2 1 
1 0 2 
1 2 0 
2 0 1 
2 1 0 

   i=:i.!3 

  
 
 
 
 
 
 
 
 
 
66  Arithmetic 

   i{p4         (6+i){p4      (12+i){p4      (18+i){p4 
0 1 2 3      1 0 2 3       2 0 1 3        3 0 1 2 
0 1 3 2      1 0 3 2       2 0 3 1        3 0 2 1 
0 2 1 3      1 0 3 2       2 1 0 3        3 1 0 2 
0 2 3 1      1 2 3 0       2 1 3 0        3 1 2 0 
0 3 1 2      1 3 0 2       2 3 0 1        3 2 0 1 
0 3 2 1      1 3 2 0       2 3 1 0        3 2 1 0 

A  row  (or  rows)  of  any  one  of  these  tables  can  be  applied  to  index  (and  therefore  to 
permute) a list of the appropriate number of items. For example: 

   3{p4 
0 2 3 1 

   (3{p4){'abcd' 
acdb 

   (3 4{p4){'abcd' 
acdb 
adbc 

   (3 4{p4){i.4 
0 2 3 1 
0 3 1 2 

   p3{'abc' 
abc 
acb 
bac 
bca 
cab 
cba 

   3 A. 'abcd' 
acdb 

   3 4 A. 'abcd' 
acdb 
adbc 

p2{'ab' 

ab 
ba 

The  last  examples  illustrate  the  use  of  the  dyad  A.  in  which  i  A.  y  permutes  y  by  a 
permutation  of  order  #y,  the  permutation  being  row  i  of  the  corresponding  table of all 
permutations of that order. 

The index i in the phrase i A. y can be thought of as an atomic (that is, single-element) 
representation  of  the  permutation  vector  it  applies,  thus  providing  a  mnemonic  for  the 
word A. . 

From  these  examples  it  should  be  clear  that  the  phrase  (i.!n)A.i.n will produce the 
complete table of !n permutations of order n. Thus: 

 
 
 
 
 
 
 
 
 
 
 
 
   PT=: i.@! A. i. 

Chapter 7 Permutations  67 

PT 2 

0 1 
1 0 

PT 1 

0 

   PT 3 
0 1 2 
0 2 1 
1 0 2 
1 2 0 
2 0 1 
2 1 0 

B. Arrangements 

Any selection of k different items from a list is called an arrangement, or k-arrangement. 
For  example,  0  1{a  and  1  0{a  and  3  1{a  are  2-arrangements  from  the  list 
a=:'abcd'. 

Any k columns of a permutation table will contain all k-arrangements, each arrangement 
appearing !k times. For example: 

   CLAR2 
ab 
ac 
ad 
ba 
bc 
bd 
ca 
cb 
cd 
da 
db 
dc 

AR2 

   ALL=: (PT #a) { a=:'abcd' 
   AR2=: 2 {."1 ALL 
   CLAR2=: ~. AR2 
   ALL 
abcd 
abdc 
acbd 
acdb 
adbc 
adcb 
bacd 
badc 
bcad 
bcda 
bdac 
bdca 
cabd 
cadb 
cbad 
cbda 
cdab 
cdba 
dabc 
dacb 
dbac 
dbca 
dcab 
dcba 

ab 
ab 
ac 
ac 
ad 
ad 
ba 
ba 
bc 
bc 
bd 
bd 
ca 
ca 
cb 
cb 
cd 
cd 
da 
da 
db 
db 
dc 
dc 

The  table  ALL  contains  all  permutations  of  the  list  a;  the  table  AR2  contains  all  2-
arrangements,  with  each  arrangement  appearing  twice;  the  table  CLAR2  is  the  “clean” 
table  of  arrangements  with  redundant  items  suppressed.  The  suppression  of  redundant 
items is performed by the monad ~. (called nub).    

  
 
 
 
 
68  Arithmetic 

C. Combinations 

The arrangement 'ca' that occurs in the table CLAR2 is a permutation of the arrangement 
'ac', and the two cases therefore represent the same combination of elements from the 
list a=: 'abcd'. We may obtain a table of all 2-combinations of a by first sorting each 
row of CLAR2, and then taking the nub of the sorted table: 

~./:~"1 CLAR2 

ab 
ac 
ad 
bc 
bd 
cd 

   /:~"1 CLAR2 
ab 
ac 
ad 
ab 
bc 
bd 
ac 
bc 
cd 
ad 
bd 
cd 

The steps in the development of combinations can now be assembled to define a verb C 
such that k C n produces the table of all k-combinations of order n: 

   nub=: ~. 
   rtake=: {."1 
   rsort=: /:~"1 
   C=: nub@rsort@nub@([ rtake (PT@])) 
   2 C 4 
0 1 
0 2 
0 3 
1 2 
1 3 
2 3 

ab 
ac 
ad 
bc 
bd 
cd 

(2 C #a){a=: 'abcd' 

3 C 3 

0 1 2 

   1 C 3 
0 
1 
2 

   2 C 5 
0 1 
0 2 
0 3 
0 4 
1 2 
1 3 
1 4 
2 3 
2 4 

2 C 3 

0 1 
0 2 
1 2 

3 C 5 

0 1 2 
0 1 3 
0 1 4 
0 2 3 
0 2 4 
0 3 4 
1 2 3 
1 2 4 
1 3 4 

 
 
 
 
 
 
Chapter 7 Permutations  69 

3 4 

2 3 4 

   $ 2 C 5 
10 2 

$ 3 C 5 

10 3 

   (!5)%(!2)*(!5-2) 
10 

   (!5)%(!3)*(!5-3) 
10 

The  foregoing  definition  of  C  shows  clearly  the  relation  of  combinations  to  the 
permutations  of  the  corresponding  order.  However,  it  is  highly  inefficient  in  the  sense 
that k C n generates and sorts a large table (of r=:!n rows and n columns) in order to 
select from it a smaller table (of r%(!k)*(!n-k) rows and k columns). A more efficient 
alternative is developed in Exercise J10 of Chapter 9. 

As  illustrated  by  the  preceding  examples,  the  number  of  k-combinations  of  order  n  is 
given  by  (!n)%(!k)*(!n-k).  The  number  of  combinations  is  a  commonly-useful 
result; so important that the corresponding verb is treated as a primitive. For example: 

   2!5 
10 

(i.6)!5 
1 5 10 10 5 1 

   !/~i.6 
1 1 1 1 1  1 
0 1 2 3 4  5 
0 0 1 3 6 10 
0 0 0 1 4 10 
0 0 0 0 1  5 
0 0 0 0 0  1 

The last result is called the table of binomial coefficients; when transposed and displayed 
without the relevant sub-diagonal zeros it is also called Pascal’s triangle. 

D. Products of Permutations 

If p is a permutation vector, then the verb p&{ is a permutation. For example: 

   p=: 2 3 4 1 0 5 
   P=:p&{ 
   P a=:'abcdef' 
cdebaf 

   P^:2 a 
ebadcf 

P P a 

ebadcf 

   P^:0 1 2 3 4 5 6 7 8 a 
abcdef 
cdebaf 
ebadcf 
adcbef 
cbedaf 
edabcf 

P^:(i.9) i.6 

0 1 2 3 4 5 
2 3 4 1 0 5 
4 1 0 3 2 5 
0 3 2 1 4 5 
2 1 4 3 0 5 
4 3 0 1 2 5 

  
 
 
 
 
 
 
 
 
 
70  Arithmetic 

abcdef 
cdebaf 
ebadcf 

0 1 2 3 4 5 
2 3 4 1 0 5 
4 1 0 3 2 5 

In the foregoing it may be noted that the sixth power of the permutation P agrees with its 
original  argument,  and  the  pattern  therefore  repeats  thereafter.  The  period  of  this 
particular permutation is therefore said to be 6. 

E. Cycles 

Column 3 of the tables produced by the power of the permutation P of Section D shows 
that position 3 of successive powers is occupied by the elements 'd', and 'b' (or 3 1) 
in a repeating cycle of length two. Column 1 shows the same cycle displaced. 

Similarly,  column  4  shows  the  length-3  cycle  4  0  2,  and  columns  0  and  2  show  the 
same cycle displaced; column 5 shows the 1-cycle 5.  

The permutation P could therefore be represented unambiguously by its cycles as follows: 

   c=: 3 1 ; 4 0 2 ; 5 
   c 
+---+-----+-+ 
|3 1|4 0 2|5| 
+---+-----+-+ 
The dyad C. produces permutations specified in cycle form. Thus: 

   c C. a=:'abcdef' 
cdebaf 

   p { a 
cdebaf 

   p C. a 
cdebaf 

As  illustrated  by  the  last  example,  the  dyad  C.  also  accepts  permutation  vectors  as  the 
left  argument,  and  in  that  case  is  equivalent  to  the  dyad  {  .  Finally,  the  monad  C. 
provides  a  self-inverse  transformation  between  the  cycle  and  permutation-vector 
representations of a permutation. Thus: 
   C. c 
2 3 4 1 0 5 
   C. C. c 
+---+-----+-+ 
|3 1|4 0 2|5| 
+---+-----+-+ 
   PT=: i.@! A. i.    
   (PT 3);(C. PT 3);(C. C. PT 3) 
+-----+-------------+-----+ 
|     |+-----+---+-+|     | 
|     ||  0  | 1 |2||     | 
|     |+-----+---+-+|     | 
|0 1 2||  0  |2 1| ||0 1 2| 
|0 2 1|+-----+---+-+|0 2 1| 
|1 0 2|| 1 0 | 2 | ||1 0 2| 
|1 2 0|+-----+---+-+|1 2 0| 

 
 
 
 
 
Chapter 7 Permutations  71 

|2 0 1||2 0 1|   | ||2 0 1| 
|2 1 0|+-----+---+-+|2 1 0| 
|     ||2 1 0|   | ||     | 
|     |+-----+---+-+|     | 
|     ||  1  |2 0| ||     | 
|     |+-----+---+-+|     | 
+-----+-------------+-----+ 
From  columns  0  and  1  of  the  table  of  Section  D  it  may  be  seen  that  the  return  to  an 
identity permutation can occur only when the two cycles (of lengths 2 and 3) complete at 
the same time, in this case after  2*3 applications of the permutation. The period of the 
permutation is therefore 6. 

In general, the period of a permutation is the least common multiple of the lengths of its 
cycles. This will be illustrated further by a permutation of order 20 : 

   p20=:17 4 9 7 12 14 18 13 0 6 15 1 16 10 2 8 3 19 5 11 
   ]c20=:C. p20 
+-------------+-----------------------------------+ 
|18 5 14 2 9 6|19 11 1 4 12 16 3 7 13 10 15 8 0 17| 
+-------------+-----------------------------------+ 
   #@> c20 
6 14 
   p20&{^:18 a=: 'abcdefghijklmnopqrst' 
bdcphfgiljrqnaotkesm 

*./#@> c20 

42 

   p20&{^:(i.19) 'abcdefghijklmnopqrst' 
abcdefghijklmnopqrst 
rejhmosnagpbqkcidtfl 
tmgnqcfkrsiedpjahlob 
lqskdjoptfamhigrnbce 
bdfphgcilorqnastkejm 
ehoinsjabctdkrflpmgq 
mncakfgrejlhptobiqsd 
qkjrpostmgbnilceadfh 
dpgticflqsekabjmrhon 
hislajobdfmpregqtnck 
nafbrgcehoqitmsdlkjp 
kroetsjmncdalqfhbpgi 
ptcmlfgqkjhrbdoneisa 
iljqbosdpgntehckmafr 
abgdecfhisklmnjpqrot 
reshmjonafpbqkgidtcl 
tmfnqgckroiedpsahljb 
lqokdsjptcamhifrnbge 
bdcphfgiljrqnaotkesm 

F. Reduced Representation 

There are exactly !n permutations of order n, and the “factorial” base n-i.n introduced 
in  Section  4  E  can  be  seen  to  provide  exactly  !n  distinct  lists  of  n  integers,  each 
belonging to i.n: 

   R=: (]-i.) #: i.@! 
   R 3 
0 0 0 
0 1 0 

  
 
 
72  Arithmetic 

1 0 0 
1 1 0 
2 0 0 
2 1 0 

These  lists  can  be  used  to  represent  the  permutations  in  what  we  will  call  a  reduced 
representation, as distinguished from the “direct” representation used thus far: 

   D=: i.@! A. i. 
   D 3 
0 1 2 
0 2 1 
1 0 2 
1 2 0 
2 0 1 
2 1 0 

We will now define a verb RFD to yield the reduced representation from the direct, and an 
inverse DFR: 

   RFD=: +/@({.>}.)\."1 
   DFR=: /:^:2@,/"1 

For example: 

   RFD D 3 
0 0 0 
0 1 0 
1 0 0 
1 1 0 
2 0 0 
2 1 0 

DFR R 3 

0 1 2 
0 2 1 
1 0 2 
1 2 0 
2 0 1 
2 1 0 

The definitions of these verbs will be discussed in exercises. 

G. Summary of Notation 

The notation introduced in this chapter comprises five verbs: atomic permutation, cycle, 
nub, number of combinations, and random (A. C. ~. ! ?). 

Exercises 

A1  Using  as  argument  a  list  of  four  items,  test  the  assertion  that  the  monad  |.  is  a 
permutation, and determine the value of k such that k&A. is equivalent to |. . 

A2  Repeat Exercise A1 for the cases of lists of two, three, and five items. 

A3  Test  the  assertion  that  a  rotation  such  as  r&|.  is  a  permutation,  and  repeat 

Exercises A1 and A2 using rotations instead of reversal. 

A4  Apply the monad A. to various permutation vectors, and state its definition. 

 
 
 
 
 
 
 
 
A5  Experiment with k A. 'abcd' for negative values of k. 

B1  Write an expression for the number of k-arrangements of order n. 

C1  Define a monad  BC such that  BC  n gives the table of binomial coefficients up to 

Chapter 7 Permutations  73 

order n-1. 

Answer: 

  BC=: !/~@i. 

C2  Without using ! or BC define a monad CS that gives the column sums of BC n. 

Answer: 

CS=: 2&^@i.   

D1  Determine the power of the permutation p=: 4824 A. i. 7. 

Hint: 

Examine the table produced by p&{^:(i.20) i.7 

D2  Determine the power of the random permutation q=: 5?5. 

E1  Predict and test the results of C. k A. i.n for various values of k and n. 

E2  Predict and test the result of C. 1 3;2 0 4. 

E3  Repeat Exercise E2 for various boxed arguments of C. . 

E4  Use  various  permutations  p  to  test  the  assertion  that  the  power  of  p  is  the  least 

common multiple of the lengths of the cycles in its cycle representation. 

E5  Define a monad PER to give the power of a permutation p. 

Answer: 

PER=: *./@(#@>@C.) 

E6  What is the maximum period of a permutation of order n ? 

F1 

Predict  and  test  the  results  of  R  4  and  D  4  and  RFD  D  4  and  DFR  R  4  and 
(RFD@D = R) 4. 

F2  Define rfd equivalent to RFD except that it will apply only to a single permutation 

and not to a table of permutations. 

Answer: 

Omit "1 from RFD. 

F3  Analyze  the  definition  of  rfd  of  the  preceding  exercise  by  defining  and 

individually applying two functions such that f @ (g \.) is equivalent to rfd. 

Answer: 

f=:+/    g=: {.<}. 

F4  Analyze DFR. 

  
 
 
 
 
 
 
75 

Chapter 
8 

Classification and Sets 

A. Introduction 

It  is  often  necessary  to  separate  a  collection  of  objects  into  several  classes,  and  then 
perform some operation upon each of the classes. The operation performed is often trivial 
compared  to  the  complexity  of  the  classification  procedure  itself,  and  classification  is 
therefore  an  important  matter.  Indeed,  most  computation  involves  some  classification, 
even though the classification process may be implicit rather than explicit. 

As an example of the use of classification, consider a set of transactions that are recorded 
as a list of account numbers and a corresponding list of credits to the accounts. Thus: 

   an=: 1010 1040 1030 1030 1020 1010 1040 1040 1050 
   cr=:  131  755  458  532  218   47  678  679  934 

A summary should therefore post the sum 131+47 to account 1010  and 218 to account 
1020, and so on. If: 

   all=: 1010 1020 1030 1040 1050 

is the list of all account numbers, then c=: all =/ an is the classification table, and: 

   c=: all =/ an 
   c 
1 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 1 1 0 0 0 0 0 
0 1 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 1 
   c*cr 
131   0   0   0   0 47   0   0   0 
  0   0   0   0 218  0   0   0   0 
  0   0 458 532   0  0   0   0   0 
  0 755   0   0   0  0 678 679   0 
  0   0   0   0   0  0   0   0 934 

   +/"1 c*cr 

  
 
 
 
 
 
 
76  Arithmetic 

178 218 990 2112 934 

The  classification  represented  by  the  table  c  is  both  complete  (each  element  being 
assigned  to  some  class)  and  disjoint  (each  element  being  assigned  to  no  more  than  one 
class). Classifications that arise from the expression a =/ b are disjoint if the elements 
of a are all distinct, and are complete if every element of b belongs to a. A boolean table 
B  represents  a  complete  disjoint  classification  if and only if each of its column sums is 
equal to 1; that is, if *./1=+/B . 

Since  a  table  provides  such  a  convenient  representation  of  a  classification,  we  will 
henceforth  speak  (rather  loosely)  of  the  table  itself  as  a  classification,  or  as  an  n-way 
classification, where n=:#B. 

Meaningful classifications need not be disjoint. For example, the letters of the alphabet 
may be classified phonetically by a 27-column table as follows: 

   a=:'abcdefghijklmnopqrstuvwxyz ' 
   PH 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 
1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 
0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 

   (0{PH)#a 
sz 
   a#~1{PH 
fv 

   a#~2{PH 
bdpt 
   a#~3{PH 
aeiouy 

Sibilants 

Fricatives 

Plosives 

Vowels 

   a#~4{PH 
bcdfghjklmnpqrstvwxz 

Consonants 

   a#~ >/4 2{PH 
cfghjklmnqrsvwxz 

Consonants that are not plosives 

Moreover, if t is any text, then (a i. t){"1 PH provides classifications of it: 

   t=: 'i sing of olaf' 
   a i. t 
8 26 18 8 13 6 26 14 5 26 14 11 0 5 

   (a i. t) {"1 PH 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 1 0 0 0 1 0 0 1 0 1 0 
0 0 1 0 1 1 0 0 1 0 0 1 0 1 

   ((a i. t) {"1 PH) # t 
s      
ff     

 
 
 
 
 
 
 
 
 
 
Chapter 8 Classification And Sets  77 

iiooa  
sngflf 

Incomplete classifications are also useful. For example, the classification provided by PH 
is  incomplete  because  the  space  belongs  to  none  of  the  classes.  Indeed,  every  n-way 
classification B implicitly defines a further class (which might be called other) defined by 
the expression -.+./B; that is, not the or over the classes. Any classification table may 
therefore be completed by applying the verb comp=: ] , -.@(+./) . 

Related classifications can be obtained from a table. Thus: 

   ]M=:>1 0 0 1 0;0 1 1 0 0 
1 0 0 1 0 
0 1 1 0 0 
   M *."0 1 PH 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   sovfop=: +./"2 M *."0 1 PH 
   sovfop 
1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 

   ((a i. t) {"1 sovfop) # t 
isiooa 
ff     

The  first    row  of  the  resulting  classification  table  sovfop  includes  sibilants  or  vowels; 
the second includes fricatives or plosives. 

For any classification table B, a corresponding disjoint classification can be obtained by 
suppressing from each column any 1 except the first. This is achieved by the expression 
</\B. For example: 

   </\PH 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 
1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 
0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 

  
 
 
 
 
 
 
 
78  Arithmetic 

The last class of the resulting table represents “all consonants that do not fall in the earlier 
classes”. 

B. Sets 

A set is a one-way classification, and is therefore defined by a proposition. For example: 

   GT10=: >&10 
   L=: 2 3 5 7 
   MEML=: +./@(L&(=/)) 
   GT10 2 3 5 7 11 13 17 
0 0 0 0 1 1 1 

VOW=: +./@('aeiouy'&(=/)) 

III=: (]=<.) *. >&8 *. <&75   

   VOW 'happy those early days' 
0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 

   MEML i.15 
0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 

    III 6 7 +/ 2%~i.10 
0 0 0 0 0 0 1 0 1 0 
0 0 0 0 1 0 1 0 1 0 

Thus, VOW defines “The set of all vowels”, MEML defines “The set of all members of the 
list L (a parameter that may be changed) ”, and III defines “The set of all integers in an 
interval”. 

The proposition that defines a set is often itself defined in terms of the list of elements 
that belong to the set, as was done directly in the proposition VOW, and indirectly in the 
proposition MEML.  

Although we often speak loosely of the set as the list itself (as in “The set 'aeiouy'”, or 
“The  set  L”),  it  is  important  to  remember  that  the  definition  of  the  set  is  the  entire 
proposition, that the ordering of the elements of the list therefore imposes no ordering on 
the  members  of  the  set,  and  that  the  repetition  of  elements  in  the  defining  list  does not 
affect the definition of the set. 

A set is completely determined by the proposition that defines it, and we will sometimes 
speak loosely of “the set P” rather than “the set defined by P”. The defining proposition is 
often compound, and these compound propositions are often given special names. Thus: 

   PI=: P1 *. P2      The intersection of P1 and P2 

   PU=: P1 +. P2      The union of P1 and P2 

   PD=: P1 >  P2      The difference of P1 and P2 

  PSD=: P1 ~: P2      The symmetric difference of P1 and P2 

Although a proposition defining a set may have an infinite domain (such as all numbers), 
it is also useful to consider propositions restricted to a finite list of arguments. We will 
denote such lists by names beginning with U (for universe of discourse). 

For example, some or all of the letters of the alphabet might be assigned to colours, as in 
Acquamarine, Blue, Cyan, Dun, ... Orange, Pink, Quercitron, Red, ... Yellow, and Zaffer. 
The universe is then defined by: 

 
 
 
 
 
   U=:'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 

Chapter 8 Classification And Sets  79 

and  the  sets  of  primary  and  secondary  pigment  colours  might  be  defined  by  the 
propositions: 

   P=: +./@(1 17 24&(=/)@(U&i.)) 
   S=: +./@(6 14 21&(=/)@(U&i.)) 

For example: 

   (P U)#U 
BRY 

U#~S U 

GOV 

   cv=: P U 
   cv 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 

   ]ml=: cv # U 
BRY 

The vectors cv and ml defined above are the characteristic vector and member list of the 
set  defined  by  the    proposition  P  on  the  universe  U.  The  set  P  could  alternatively  be 
defined in terms of them: 

   P1=: {&cv@(U&i.) 
   P2=: +./@(ml&(=/)) 
   U#~P1 U 
BRY 

BRY 

U#~P2 U 

The table B=: #: i. 2^# U (whose rows are the base-2 representations of successive 
integers) provides an exhaustive classification of the universe U, including the empty set 
(represented by a characteristic vector of zeros), and the complete set (represented by a 
characteristic vector of ones). For example: 

   ]EC=: #: i. 2^# U=: 2 3 5 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

This exhaustive classification is very useful. For example, the sums and products over all 
subsets of U can be obtained as follows: 

   +/"1 U*EC 
0 5 3 8 2 7 5 10 

*/"1 U^EC 

1 5 3 15 2 10 6 30 

Moreover, since EC is exhaustive, any collection of subsets can be obtained by selecting 
rows from it. For example: 

  
 
 
 
 
 
 
 
 
 
 
 
80  Arithmetic 

   5 1 2{EC 

(2=+/"1 EC)#EC 

1 0 1 

0 0 1 
0 1 0 

0 1 1 

1 0 1 
1 1 0 

C. Nub Classification 

The nub of an argument contains all of its distinct items. Thus: 

   nub=: ~. text=: 'mississippi' 
   nub 
misp 

   ]i=:nub i. text 
0 1 2 2 1 2 2 1 3 3 1 

         i{nub 

mississippi 

A  classification  of  an  argument  in  terms  of  its  nub  will  be  called  a  nub  or  self  or  auto 
classification. For example: 

   nub =/ text 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 1 0 0 1 0 0 1 
0 0 1 1 0 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 0 
   +/"1 = text 
1 4 4 2 

= text 

1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 1 0 0 1 0 0 1 
0 0 1 1 0 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 0 

The table on the right shows the use of the nub-classification monad = ; the expression 
+/"1  =  text  gives  the  distribution  of  the  items  of  its  argument,  that  is,  a  frequency 
count of its distinct items. 

D. Interval Classification 

A  list  of  integers  L  may  be  classified  according  to  its  interval,  that  is,  the  list  of 
successive  integers  beginning  with  the  largest  element  of  L  and  continuing  through  the 
smallest. Thus: 

' *' {~ (INT L) =/ L 

   (INT=: >./ - i.@>:@(>./ - <./)) L=:8 3 0 _1 0 3 8 
8 7 6 5 4 3 2 1 0 _1 
   (INT L) =/ L 
1 0 0 0 0 0 1             *     * 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 1 0 0 0 1 0              *   * 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 1 0 1 0 0               * * 
0 0 0 1 0 0 0                *    

If  the  list  L  is  the  result  of  some  function,  then  the  foregoing  classification  is  called  a 
graph of the function. For example, if: 

 
 
 
 
 
 
 
Chapter 8 Classification And Sets  81 

    PARABOLA=: -&2 * -&4 

then PARABOLA i. 7 yields the list L used above. The foregoing results can be collected 
to define a graphing function as follows: 

   GRAPH=: ] =/~ >./ - i.@>:@(>./ - <./) 

Moreover,  the  expression  +./\GRAPH  L  produces  a  barchart of  L. Conversely, (in the 
case of non-integer values of L) it may be better to define a barchart function directly by 
substituting the comparison <:/ for the =/ used in GRAPH: 

   BARCHART=: ] <:/~ >./ - i.@>:@(>./ - <./) 

A graph may then be provided by the expression </\ BARCHART L. Finally, it may be 
remarked  that  a  barchart  is  a  classification  of  its  argument,  and  that  the  phrase  </\ 
applied to it produces the corresponding disjoint classification used as a graph. 

E. Membership Classification 

The functions VOW and MEML of Section B provide examples of defining a classification 
according  to  membership  in  a  list,  using  an  or  over  equality,  as  in  MEML=: 
+./@(L&(=/)) . Membership in a list is important enough to be accorded a primitive, 
denoted  in  mathematics  by  the  Greek  letter  epsilon,  and  here  by  e.  .  For  example,  the 
function MEML could be defined by e.&L . 

Membership can be used to define a form of plotting that supplements the barcharts and 
graphs provided by the interval classification in Section D. If B is a boolean table, then 
B{' *' gives a plot of the points indicated by the ones in B: 

   B 
1 1 1 0 0 0 
1 0 1 0 0 0 
1 0 1 0 0 0 

1 1 1 0 0 0 

B{' *' 

*** 
* * 
* * 

*** 

Such a table can be specified by the coordinates of its ones; for example, the coordinates 
defining B are the columns of the table: 

   b=:0 1 2 0 2 0 2 0 1 2,:0 0 0 1 1 2 2 3 3 3 

Laminate (,:) forms a table from list arguments: 

   b 
0 1 2 0 2 0 2 0 1 2 
0 0 0 1 1 2 2 3 3 3 

If A is a table of all coordinates of B, then B itself can be specified in terms of the index 
list  b  by  using  membership  (e.)  in  the  expression  A  e.  boxcol  b,  where  boxcol 

  
 
 
 
 
 
 
 
 
 
 
 
 
82  Arithmetic 

boxes the columns of its argument. We first define a function to generate all indices of a 
table, using the catalogue function { that forms boxed lists by choosing an element from 
each of the boxes in its argument: 

   ]w=:'ABC';'abcd' 
+---+----+ 
|ABC|abcd| 
+---+----+ 

   {w 
+--+--+--+--+ 
|Aa|Ab|Ac|Ad| 
+--+--+--+--+ 
|Ba|Bb|Bc|Bd| 
+--+--+--+--+ 
|Ca|Cb|Cc|Cd| 
+--+--+--+--+ 

   (i.&.>"1)  4 6 
+-------+-----------+ 
|0 1 2 3|0 1 2 3 4 5| 
+-------+-----------+ 

   ALLIX=: {@(i.&.>"1) 
   ALLIX 4 6  
+---+---+---+---+---+---+ 
|0 0|0 1|0 2|0 3|0 4|0 5| 
+---+---+---+---+---+---+ 
|1 0|1 1|1 2|1 3|1 4|1 5| 
+---+---+---+---+---+---+ 
|2 0|2 1|2 2|2 3|2 4|2 5| 
+---+---+---+---+---+---+ 
|3 0|3 1|3 2|3 3|3 4|3 5| 
+---+---+---+---+---+---+ 

We now use ALLIX to form the lists of coordinates in the usual form; that is, with the x-
coordinate  first  and  increasing  from  left  to  right,  and  with  the  y-coordinate  increasing 
from bottom to top:  

   ALLCO=: |.&.>@:|.@:ALLIX@:>: 
   ALLCO 4 6 
+---+---+---+---+---+---+---+ 
|0 4|1 4|2 4|3 4|4 4|5 4|6 4| 
+---+---+---+---+---+---+---+ 
|0 3|1 3|2 3|3 3|4 3|5 3|6 3| 
+---+---+---+---+---+---+---+ 
|0 2|1 2|2 2|3 2|4 2|5 2|6 2| 
+---+---+---+---+---+---+---+ 
|0 1|1 1|2 1|3 1|4 1|5 1|6 1| 
+---+---+---+---+---+---+---+ 
|0 0|1 0|2 0|3 0|4 0|5 0|6 0| 
+---+---+---+---+---+---+---+ 

   plot=: {&' *'@(ALLCO@[ e. boxcol@]) 

     boxcol=: <"1@|: 

   4 6 plot b 

 
 
 
 
 
 
 
 
 
 
 
Chapter 8 Classification And Sets  83 

***     
* *     
* *     
*** 

A  function  equivalent  to  plot  can  also  be  defined  by  replacing  all  of  its  component 
functions by the expressions that define them: 

  PLOT=:{&' *'@(|.&.>@|.@({@(i.&.>"1))@>:@[e.<"1@|:@])     

If  f and  g are two functions, then a plot of the points with x-coordinate  f  k{a and y-
coordinate g k{a will be called a plot of f with g or, alternatively,  a plot of g versus f. 
Thus: 

   f=: *: 
   (f ,: g) a 
0 1 4 9 
0 2 4 6 

g=: +:        a=:0 1 2 3 

   7 10 PLOT (f ,: g) a 

         *  

    *       

 *          

*       

F. Summary of Notation 

The monads self-classification and catalogue (= and  {), and the dyads membership and 
laminate (e. and ,:) were introduced in Sections C and E. 

Exercises 

A1  Enter  b=:  ?5  7$2 to produce a random boolean table, and n=:(7#2) #. b to 
produce  the  base-2  values  of  its  rows.  Then  enter  (7#2)#:  n  and  compare  the 
result with b . 

 A2  The base -2 value of the rows of the phonetic classification table PH is given by:   

n=: 258 2097184 41945216 71569476 62648250 

Use this fact to enter the table PH and then experiment with its use. 

B1  Define two or three propositions, and experiment with their intersection, union, and 

differences. 

B2  Predict  and  enter  the  complete  classification  table  for  four  elements,  and  select 

from it the classification table for all subsets of two elements. 

C1  Experiment with nub-classification on various arguments, including the boxed list 

;:'A rose is a rose is a rose.' 

D1  Enter the verbs defined in Section D, and experiment with them. 

E1  Predict and verify the result of {'ht';'ao';'gtw' 

  
        
 
 
 
 
 
            
            
            
            
 
 
84  Arithmetic 

E2  Plot -&2*-&4 versus ] on i.7, and compare the result with the parabola in Section 

D. 

E3  Plot 2&^ versus ^&2  

 
 
85 

Chapter 
9 

Polynomials 

A. Introduction 

A  polynomial  is  a  weighted  sum  of  non-negative  integer  powers  of  its  argument.  For 
example: 

   x=:1 2 3 4 5 
   e=: 0 1 2 3 
   c=: 1 3 3 1 
   x^/e 
1 1  1   1 
1 2  4   8 
1 3  9  27 
1 4 16  64 
1 5 25 125 

   +/"1 c*x^/e 
8 27 64 125 216 

c*x^/e 
1  3  3   1 
1  6 12   8 
1  9 27  27 
1 12 48  64 
1 15 75 125 

The  final  result  is  the  value  of  a  polynomial  with  exponents  e  and  weights  (or 
coefficients) c applied to an argument list x. 

A zero coefficient effectively suppresses the effect of the corresponding exponent (e.g., 
+/"1 (0 0 1 2)*x^/0 1 2 3 is equivalent to +/"1 (1 2)*x^/2 3 ); it is therefore 
convenient to express a polynomial only in terms of its coefficients c, and to assume that 
the corresponding exponents are i.#c : 

   POL=: +/"1 @ ([ * ] ^/ i.@#@[) 
   c POL x 
8 27 64 125 216 

The discussion in Sections A-D will be limited to polynomials with integer coefficients, 
but  general  polynomials  admit  real  and  complex  numbers,  as  discussed  in  Section  F. 
Because  a  general  polynomial  admits  an  arbitrary  number  of  arbitrary  coefficients, 
polynomials can be designed to approximate almost any function of practical interest. 

  
 
 
 
 
 
86  Arithmetic 

Although  its  utility  rests  largely  on  its  potential  for  approximation,  the  polynomial  has 
other important characteristics that can be discussed in the restricted context of integers: 
the following four functions are themselves polynomials: 

1.  The sum or difference of polynomials. 

2.  The product of polynomials. 

3.  The derivative (or “rate of change”) of a polynomial. 

4.  The integral of (or “area under”) a polynomial. 

Although  the  coefficients  of  the  polynomials  for  cases  3  and  4  are  trivial  to  compute 
(}.c*i.#c and 0,c%>:i.#c), their treatment will be deferred to Section H. 

B. Sums and Products 

The cases of the sum and product may be illustrated as follows: 

d=: 1 2 1 

   x=: 0 1 2 3 4 5 
   c=: 1 3 3 1 
   c POL x 
1 8 27 64 125 216 

   d POL x 
1 4 9 16 25 36 

   (c POL x) + (d POL x) 
2 12 36 80 150 252 

   (c+d,0) POL x 
2 12 36 80 150 252 

   (c POL x) * (d POL x) 
1 32 243 1024 3125 7776 

   TIMES=: +//. @ (*/) 
   c TIMES d 
1 5 10 10 5 1 

   (c TIMES d) POL x 
1 32 243 1024 3125 7776 

It will be more illuminating to discuss the sum and product of polynomials in terms of a 
table of an arbitrary number of coefficients. For example: 

   ]TC=: >1 3 3 1 ; 1 2 1 ; 1 1 
1 3 3 1 
1 2 1 0 
1 1 0 0 

   +/TC 
3 6 4 1 
   (+/TC) POL x 

 
 
 
 
 
 
 
 
 
 
Chapter 9 Polynomials  87 

3 14 39 84 155 258 

   TIMES/TC 
1 6 15 20 15 6 1 0 0 0 

   (TIMES/TC) POL x 
1 64 729 4096 15625 46656 

   TC POL"1 x 
1 8 27 64 125 216 
1 4  9 16  25  36 
1 2  3  4   5   6 

*/TC POL"1 x 

1 64 729 4096 15625 46656 

It should be noted that the final zeros appended to coefficients in forming the table TC do 
not change their effects as coefficients. However, it may be convenient to trim redundant 
trailing zeros from a result such as TIMES/TC above. Thus: 

   trim=: +./\.@* # ] 
   trim TIMES/TC 
1 6 15 20 15 6 1 

(i.7)!6 

1 6 15 20 15 6 1 

C. Roots 

If a function f applied to an argument a yields 0, then a is said to be a zero or root of f. 
A function is sometimes defined in terms of its roots. For example: 

   PIR=: */@(-~/) 
   r=: 2 3 5 
   x=: 0 1 2 3 4 5 6 
   r PIR x 
_30 _8 0 0 _2 0 12 

   r&PIR x 
_30 _8 0 0 _2 0 12 

(x-2)*(x-3)*(x-5) 

_30 _8 0 0 _2 0 12 

The  monad  r&PIR  is  also  said  to  be  a  polynomial  (or  polynomial  in  terms  of  roots) 
because  it  can  be  shown  to  be  equivalent  to  a  polynomial  c&POL  for  appropriate 
coefficients  c.  This  is  best  demonstrated  by  defining  a  function  CFR  that  produces  the 
coefficients from the roots. Thus: 

   AS=: #:@i.@(2&^)@# 
   AS r 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

   POAS=: */"1@(-^AS) 
   POAS r 
1 _5 _3 15 _2 10 6 _30 

Boolean table of all subsets of #r items. 

Product over all subsets of -r. 

  
 
 
 
 
 
 
 
 
 
88  Arithmetic 

   CLBN=: =@(+/"1@AS) 
   CLBN r 
1 0 0 0 0 0 0 0 
0 1 1 0 1 0 0 0 
0 0 0 1 0 1 1 0 
0 0 0 0 0 0 0 1 

Classification by number of 
elements in set. 

   CFR=: +/"1@|.@(CLBN*POAS)    
   CFR r 
_30 31 _10 1 

Coefficients from roots. 

   (CFR r) POL x 
_30 _8 0 0 _2 0 12 
   r PIR x 
_30 _8 0 0 _2 0 12 

D. Expansion 

If the polynomial d&POL is equivalent to c&POL x+1, then the coefficients d are said to 
be the expansion of the coefficients c. More formally, d is the expansion of c if d&POL 
and c&POL@>: are equivalent. For example: 

   x=: i. 6 
   ]d=: +/ c * !~/~i.#c 
10 15 10 2 

c=:3 1 4 2 

   d POL x 
10 37 96 199 358 585 
   c POL x+1 
10 37 96 199 358 585 

   EXP=: +/@(] * !~/~@i.@#) 
   EXP c 
10 15 10 2 

   EXP^:4 c 
199 129 28 2 

   (EXP^:4 c) POL x 
199 358 585 892 1291 1794 

   c POL x+4 
199 358 585 892 1291 1794 

The definition of the function EXP will be analyzed in exercises. 

Although  the  function  EXP  and  its  non-negative  powers  can  produce  expansions  for  c 
POL x+i for any non-negative integer i, it must be modified to handle the general case 
for fractional values of i such as 0.1. This matter will be addressed in Section F, after 
the introduction of real numbers. 

 
 
 
 
 
 
 
 
 
Chapter 9 Polynomials  89 

E. Graphs And Plots 

Graphs  and  barcharts  of  functions  with  non-integer  results  can  be  produced  by  the 
methods of Section 8 D.We first define a uniform grid of a specified number of intervals, 
and use it to classify the non-integer results. Thus: 

   space=:(>./ - <./)@] % [ 
   grid=: <./@] + space * i.@>:@[ 
   graph=: {&' *'@ (</\@|.@ (grid </ ] + -:@space)) 
   10 graph %: i. 40 

                                    **** 
                             *******     
                      *******            
                 *****                   
            *****                        
        ****                             
     ***                                 
   **                                    
 **                                      

*        

The plots of Section 8 E may be extended similarly: 

  GPLOT=: [ PLOT |.@([ classify"0 1 ]) 

  classify=: <:@(+/@(grid </ ] + -:@space)) 

  PLOT=:{&' *'@(|.&.>@|.@({@(i.&.>"1))@>:@[e.<"1@|:@]) 

  6 10 GPLOT (*:,:+:) i.5 

          * 

       *    

     *      
* *         

F. Real And Complex Numbers 

In order to discuss further uses of polynomials, it will be necessary to extend the domains 
of our primitives beyond the integers to which they have been restricted thus far. 

Just as the inverse of the successor led to results outside of the counting numbers, so do 
inverses  of  certain  functions  on  integers  lead  outside  the  domain  of  integers.  For 
example: 

   a=: 1 2 3 4 

   *&2 ^:_1 a 

0.5 1 1.5 2 

   %&2 a 
0.5 1 1.5 2 

Rational numbers 

  
 
                                         
 
            
            
            
 
 
90  Arithmetic 

   %&2 -a 
_0.5 _1 _1.5 _2 

   ^&2 ^:_1 a 

1 1.41421 1.73205 2 

   %: a 

1 1.41421 1.73205 2 

Irrational numbers 

   %: -a 

Imaginary numbers 

0j1 0j1.41421 0j1.73205 0j2 

   a+%:-a 

Complex numbers 

1j1 2j1.41421 3j1.73205 4j2 

The  rationals  include  the  integers  and,  together  with  the  irrationals,  they  comprise  the 
real numbers. The informal extension of primitives to the real domain is straightforward; 
they are extended so as to maintain the properties discussed in Chapter 2. The imaginary 
and complex numbers are treated similarly, but merit further discussion. 

Since the square of any real number is non-negative, the square root of _1 must be a new 
number outside the domain of reals. It will be denoted by 0j1. The product of 0j1 with 
any  real  number  shares  the  property  that  its  square  is  a  negative  number.  This  follows 
from the normal properties of multiplication: 

   b=: 1 2 3 4 5 
   b*0j1 
0j1 0j2 0j3 0j4 0j5 

   (b*0j1) * (b*0j1) 
_1 _4 _9 _16 _25 

   b*b * 0j1*0j1 
_1 _4 _9 _16 _25 

   (b*b) * (0j1 * 0j1)  
_1 _4 _9 _16 _25 

   (b*b) * _1 
_1 _4 _9 _16 _25 

If  a  and  b  and  c  and  d  are  real  numbers,  then  a+0j1*b  and  c+0j1*d  are  complex 
numbers. Moreover, their sum can be derived from the familiar properties of addition and 
multiplication: 

   a=: 1+b=: 1+c=: 1+d=: 1 
   a,b,c,d 
4 3 2 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 9 Polynomials  91 

   (a+0j1*b) + (c+0j1*d) 
6j4 

   (a+c) + 0j1*(c+d) 
6j3 

   (a+c) + 0j1*(b+d) 
6j4 

6+0j1*4 

6j4 

The product of complex numbers can be derived similarly: 

   (a+0j1*b) * (c+0j1*d) 
5j10 

   ((a*c)+(0j1*0j1*b*d)) + (0j1*((a*d)+(b*c)))  
5j10 

   ((a*c)+(_1*b*d)) + (0j1*((a*d)+(b*c))) 
5j10 

   ((a*c)-(b*d)) + (0j1*((a*d)+(b*c))) 
5j10 

These processes can be described succinctly by representing each complex number by a 
two-element list, and using the primitive j. defined as follows: 

     j. y is 0j1*y 
   x j. y is x+j.y 
   j. b 
0j3 

4j3 

a j. b 

j./a,b 

4j3 

The  “complex  plus”  and  “complex  times”  functions  on  two-element  lists  can  now  be 
defined as follows: 

   cplus=: + 
   ctimes=: -/@:* , +/@([ * |.@]) 
   m=: 3 4 
n=: 5 2 
   j./m 
3j4 

j./n 
5j2 

   ]sum=: m cplus n 
8 6 

]prod=: m ctimes n 

7 26 

   j./prod 
7j26 

(j./m)*(j./n) 

7j26 

Although  a  collection  of  complex  numbers  could  be  represented  by  the  rows  of  a  two-
column table, it is more convenient to adopt an atomic representation, obtained by boxing 
each list. Thus: 

   M=:<m 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92  Arithmetic 

   N=:<n 
   M,N 
+---+---+ 
|3 4|5 2| 
+---+---+ 
   < (>M) ctimes (>N) 
+----+ 
|7 26| 
+----+ 
As illustrated above, the verb cplus can be applied to these representations only by first 
applying > (open), and the corresponding atomic representation is obtained by applying 
the inverse < (box). 

The whole can be achieved by the conjunction &. in which the verb u &. v first applies 
v,  applies  u  to  that,  and  finally  applies  v^:_1.  The  conjunction  &.  is  called  under, 
because u is applied “under” v in the sense that surgery is performed under anaesthetic, 
the patient being restored from its effects at the end of the operation: 

   M ctimes&.> N 

+----+ 
|7 26| 
+----+ 
   M,N,M 
+---+---+---+ 
|3 4|5 2|3 4| 
+---+---+---+ 
   ctimes&.>/ M,N,M 
+-------+ 
|_83 106| 
+-------+ 

   CPLUS=: cplus&.> 
   CTIMES=: ctimes&.> 
   M CPLUS N CTIMES M 
+-----+ 
|10 30| 
+-----+ 
The monad magnitude (|) is extended to complex numbers to yield the square root of the 
sum of the squares of its imaginary parts: 

   | _5 
5 

   | 3j4 
5 

   %:+/*:3 4 
5 

In  other  words,  the  magnitude  is  the  distance  of  a  point  from  the  origin  when  the 
imaginary part is plotted against the real part. 

G. General Expansion 

 
 
 
 
 
 
The function EXP of Section D has the property that (EXP c) POL x is equivalent to c 
POL x+1. We will now define a more general expansion such that (y GEXP c) POL x 
is equivalent to c POL x+y: 

Chapter 9 Polynomials  93 

   x=: i. 6 
   y=: 0.1 
   c=: 3 1 4 2 
   GEXP=: +/@(] * !~/~@i.@#@] * [ ^ -/~@i.@#@]) 
   y GEXP c 
3.142 1.86 4.6 2 

   (y GEXP c) POL x 
3.142 11.602 41.262 104.122 212.182 377.442 
   c POL x+y 
3.142 11.602 41.262 104.122 212.182 377.442 

The definition of the expansion will be analyzed in exercises. 

H. Slopes And Derivatives 

If s is a small quantity, then the difference (f x+s)-(f x) gives an indication of the 
change in the result of the function f in the vicinity of the point  x. Moreover, the ratio 
s%~(f x+s)-(f x) obtained by dividing the “step size” s into this difference gives an 
indication of the rate at which f is changing. Because on a graph of the function this ratio 
is the slope of the secant line joining the points with coordinates x,f x and (x+s), f 
x+s, it is called the secant slope of f. For example: 

   f=: *: 

   x=: 4 [ s=: 2 
   (f x+s)-f x 
20 

The square function 

s%~(f x+s)-f x 

10 

   ]s=: 10^-i.5 
1 0.1 0.01 0.001 0.0001    

   s%~(f x+s)-f x 
9 8.1 8.01 8.001 8.0001  

We now define a dyadic function F such that s F x gives the secant slope of f at x with 
step size s: 

   F=: [ %~"0 1 f@([+/,@])-f@] 
   2 F x=: 4 5 6 7 
10 12 14 16 

   s F x 
     9      11      13      15 
   8.1    10.1    12.1    14.1 
  8.01   10.01   12.01   14.01 
 8.001  10.001  12.001  14.001 
8.0001 10.0001 12.0001 14.0001 

  
 
 
 
 
 
 
 
94  Arithmetic 

For a small step size, the secant slope s F x is a close approximation to the slope of the 
tangent to the graph of f at the point x, a value called the derivative of f at the point x. 
For example: 

Approximate derivative of square 

Approximate derivative of cube 

Approximate derivative of fourth power 

   s=:10^_10 
   s F x 
8 10 12 14 

   2*x 
8 10 12 14 
   f=:^&3 

   s F x 
48 75 108 147 

   3*x^2 
48 75 108 147 

   f=:^&4 
   s F x 
256 500 864 1372 

   4*x^3 
256 500 864 1372 

   n=:5 
   f=:^&n 

   s F x 
1280 3125 6480 12005 

   n*x^n-1 
1280 3125 6480 12005 

   n&([ * ] ^ <:@[) x 
1280 3125 6480 12005 

foregoing 

results  suggest 

The 
function 
n&([ * ] ^ <:@[). This relation will be explored by displaying the terms that must be 
summed to produce the results used in determining the slope, that is, f x+s and f x and 
(f x+s)-f x and s%~(f x+s)-f x. 

the  derivative  of  ^&n 

that 

the 

is 

For the power function f=:^&n and for the case n=: 3, the terms of f x+s are easily 
obtained from the direct expansion of the product (x+s)*(x+s)*(x+s) to the form : 

   ((s^3)*(x^0)+(3*(s^2)*(x^1))+(3*(s^1)*(x^2))+((s^0)*(x^3)) 

Thus for x=:2 and s=:0.1: 

  1 3 3 1 * (x^0 1 2 3) * (s^3 2 1 0)  
0.001 0.06 1.2 8 

Terms of ^&3 x+s 

  0 0 0 1 * (x^0 1 2 3) 
0 0 0 8 

Terms of ^&3 x 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 9 Polynomials  95 

  1 3 3 0 * (x^0 1 2 3) * (s^3 2 1 0)  
0.001 0.06 1.2 0 

Terms of difference 

  1 3 3   * (x^0 1 2  ) * (s^3 2 1  )               " 
0.001 0.06 1.2 
  1 3 3   * (x^0 1 2  ) * (s^2 1 0  )   
0.01 0.6 12 

Terms of slope 

  1 3 3   * (x^0 1 2  ) * (0^2 1 0  )   
0 0 12 

Slope for s=:0 

  1 3 3   * (x^0 1 2  ) *  0 0 1                        
0 0 12 

  3*x^2                                                                          
12 

 " 

 " 

In the general case of ^&n, the coefficients 1 3 3 1 and 0 0 0 1 become EXP CP n 
and CP n, and the difference becomes: 

   CP=: #&0,1: 
   EXP=: +/@(] * !~/~@i.@#) 
   CP 4 
0 0 0 0 1 

   EXP CP 4 
1 4 6 4 1 
   (EXP CP 4)-CP 4 
1 4 6 4 0 

   <@(EXP@CP - CP)"0 i. 6 
+-+---+-----+-------+---------+-------------+ 
|0|1 0|1 2 0|1 3 3 0|1 4 6 4 0|1 5 10 10 5 0| 
+-+---+-----+-------+---------+-------------+ 

   <@(_2&{.)@(EXP@CP - CP)"0 i. 7 
+---+---+---+---+---+---+---+ 
|0 0|1 0|2 0|3 0|4 0|5 0|6 0| 
+---+---+---+---+---+---+---+ 
It appears that the last two elements of the binomial coefficients of order n are n and 1. 
Since the binomial coefficients are the coefficients that represent the product (x+1)^n, 
insight can be gained by applying the product process of Section B to the corresponding 
coefficients 1 1: 

   1 1 */ 1 1 
1 1 
1 1 
   </.1 1 */ 1 1 
+-+---+-+ 
|1|1 1|1| 
+-+---+-+ 
   ]b2=:+//. 1 1 */ 1 1 
1 2 1 
   1 1 */ b2 
1 2 1 
1 2 1 

  
 
 
  
 
 
 
 
 
 
 
96  Arithmetic 

   </. 1 1 */ b2 
+-+---+---+-+ 
|1|2 1|1 2|1| 
+-+---+---+-+ 

   ]b3=:+//. 1 1 */ b2 
1 3 3 1 

I. Derivatives of Polynomials 

From the definition of the secant slope it is clear that the slope of a multiple of a function 
(m&*@f)  is  the  same  multiple  of  its  slope,  and  that  the  slope  of  the  function  f+g is the 
sum of the slopes of f and g. The same relations hold for derivatives.  

The  polynomial  c&POL  applied  to  an  argument  x  is  a  sum  of  terms  of  the  form 
(i{c)*(x^i) and (using the results of Section H) its derivative is (i{c)*i*(x^i-1). 
The  derivative  of  the  polynomial  c&POL  is  therefore  a  polynomial  with  coefficients 
}.c*i.#c. For example, using the functions F and POL of Sections H and A: 

   x=:1 2 3 4 5 
   D=: }.@(] * i.@#) 
   D c 
1 8 6 

c=:3 1 4 2 

(D c) POL x 
15 41 79 129 191 

   f=:c&POL 
   (s=: 10^-10) F x 
15 41 79 129 191 

J. The Exponential Family 

We  will  now  examine  coefficients  of  the  form  %!i.n,  and  their  relation  to  the 
coefficients of the corresponding derivative polynomial: 

   ]ce=: %!i.n=: 7 
1 1 0.5 0.166667 0.0416667 0.00833333 0.00138889 

   D ce 
1 1 0.5 0.166667 0.0416667 0.00833333 

Except 
(D ce)&POL agree, and the agreement improves as n increases. 

final  coefficient, 

function  ce&POL  and 

the 

the 

for 

its  derivative 

The primitive monad ^ (called exponential) is the limiting value of this polynomial. It is 
therefore  a  “growth”  function,  whose  rate  of  growth  is  equal  to  the  function  itself.  For 
example: 

   f=: ^ 
   f x 
2.71828 7.38906 20.0855 54.5982 148.413 

   s F x 

 
 
 
 
 
 
 
 
 
 
Chapter 9 Polynomials  97 

2.71828 7.38906 20.0855 54.5982 148.413 

Not only is the exponential important in its own right, but the odd and even parts of ^ and 
^@j. produce the hyperbolic functions (sinh and cosh, denoted by 5&o. and 6&o.) and 
the circular or trigonometric functions (sine and cosine, denoted by 1&o. and 2&o.). 

A  function  f  is  said  to  be  symmetric  or  even  if  it  gives  the  same  result  for  positive  and 
negative arguments; that is, if f and f@- agree. In terms of its graph we may say that an 
even function is “reflected in the vertical axis”. A function f is skew-symmetric or odd if f 
equals -@f@- or, equivalently, if f equals f&.- . Its graph is reflected in the origin. 

The functions: 

   e=: -:@(f+f@-) 

   o=: -:@(f-f@-) 

are,  respectively,  even  and  odd  functions.  Moreover,  e+o  equals  f,  and  they  are  called 
the even and odd parts of f. 

The adverbs ..- and .:- yield the even and odd parts of their arguments. For example: 

   cosh=: ^ ..- 
   sinh=: ^ .:- 
   ]x=: 0.2*i.6 
0 0.2 0.4 0.6 0.8 1 

 space must precede .. 

   cosh x 
1 1.02007 1.08107 1.18547 1.33743 1.54308 

   cosh -x 
1 1.02007 1.08107 1.18547 1.33743 1.54308 

   sinh x 
0 0.201336 0.410752 0.636654 0.888106 1.1752 

   sinh -x 
0 _0.201336 _0.410752 _0.636654 _0.888106 _1.1752 

   5 o. x 
0 0.201336 0.410752 0.636654 0.888106 1.1752 

   (sinh+cosh) x 
1 1.2214 1.49182 1.82212 2.22554 2.71828 

   ^ x 
1 1.2214 1.49182 1.82212 2.22554 2.71828 

The function ^@j. and its odd and even parts yield further important functions. We first 
observe that the magnitude of any result of ^@j. is 1. Thus: 

   2 3 $ ^@j. x 
                1 0.980067j0.198669 0.921061j0.389418 
0.825336j0.564642 0.696707j0.717356 0.540302j0.841471 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98  Arithmetic 

   |^@j. x 
1 1 1 1 1 1 

As remarked in Section F, this implies that a plot of the imaginary part against the real 
part of any result of ^@j. lies on a circle whose radius has a length of 1. Moreover, the 
even and odd parts of ^@j. are its real and imaginary parts, and therefore the plot of one 
of the following functions against the other forms a circle: 

   cos=: ^@j. .. - 

   sin=: j^:_1@ (^@j. .:-) 

   26 52 GPLOT (sin,:cos) 0.2*i.30 
                    *    *    *                       
               *                   *                  
           *                            *             

       *                                    *         

    *                                          *      

                                                  *   
 *                                                    
                                                   *  
*                                                     

                                                    * 
*                                                     

 *                                                    

   *                                             *    

     *                                        *       

         *                                *           
             *                                        
                  *                   *               
                       *    *    * 

Moreover, (cos,sin) 0 is 1 0, and the length along the circle from this base point to 
the  point  with  coordinates  (cos,sin)  x  is  x.  Since  the  monad  o.  multiplies  its 
argument by pi, the circumference of the circle with unit radius is o. 2, and the sin and 
cos applied to the points o.4%~i.9 yield interesting results. Thus: 

   o. 2 
6.28319 
   sin o. 2 
_8.67362e_19 

   clean=: **| 
   clean sin o. 2 
0 

   ]p=:4%~i.9 
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 

   clean (cos,:sin) o. p 
1 0.707107 0 _0.707107 _1 _0.707107  0  0.707107 1 
0 0.707107 1  0.707107  0 _0.707107 _1 _0.707107 0 

 
 
 
 
                                                      
                                                      
                                                      
                                                      
                                                      
                                                      
                                                      
                                                      
                                                      
 
 
 
 
 
Chapter 9 Polynomials  99 

The monad * used in the definition of clean above is called signum:  *x is 0 if x is near 
zero, 1 if it is greater than zero, and _1 if it is less than zero.  

K. Summary Of Notation 

The  notation  introduced  in  this  chapter  comprises  complex  numbers  (3j4)  and  the 
corresponding verb j. (as in 3 j. 4 and j. 4); three conjunctions under, odd and even 
(&. .: ..); and six monads:  sine, cosine, sinh, cosh, signum, and exponential, (1 2 5 
6&o. *  ^). 

L. On Language 

In  accord  with  the  comments  in  the  language  section  of  Chapter  1,  notation  has  been 
introduced  sparingly,  only  as  needed  in  the  topics  under  discussion.  As  a  consequence, 
many important language constructs have been ignored. This section presents a sampling 
of them, grouped according to contexts in which they commonly arise. 

Programming.  Computer  programming  concerns  the  definition  and  use  of  verbs  in  a 
language executable on a computer, and programming therefore runs through this entire 
text. Nevertheless, it might not be recognized as such by programmers familiar with other 
languages, primarily because it is tacit rather than explicit. 

A tacit definition is one in which no explicit mention is made of the arguments to which 
the defined verb might apply. For example: 

   IQ=: <.@% 
   317 IQ 10 
31 

   IQ 0.166 
6 

Integer quotient of arguments. 

Integer reciprocal of argument. 

An explicit definition begins with an entry that includes the phrase 3 : 0, and follows 
with sentences that use x. and y. to denote the arguments, uses a colon alone on a line to 
separate  the  definitions  of  the  monadic  and  dyadic  cases,  and  concludes  with  a  right 
parenthesis alone on a line. For example: 

   iq=: 3 : 0 
if. y. < 0  
  do. 0   else. %: y. 
end. 
: 
<. x. % y. 
) 

   iq 
\ 25 
5 

   iq _25 
0 

  
 
 
 
 
 
 
 
 
100  Arithmetic 

   317 iq 10 
31 

Tacit  definitions  facilitate  the  use  of  structured  programming,  in  which  complicated 
functions are defined in terms of a hierarchy of simpler functions, each of which is useful 
in its own right. The following example is from statistics: 

Standard deviation 
Variance 
Normalization 
Mean 

std a 
0.816497 

mean a 

4 

   std=: sqrt@var 
     var=: mean@sqr@norm 
       norm=: ] - mean 
         mean=: +/ % # 
           sqrt=: %: 
   sqr=: *: 
a=:3 4 5 

   ]report=: ?3 4 5 $ 10 
1 7 4 5 2 
0 6 6 9 3 
5 8 0 0 5 
6 0 3 0 4 

6 5 9 8 5 
0 6 4 7 9 
7 2 0 7 3 
6 7 9 3 2 

9 7 7 6 0 
6 8 2 4 7 
4 2 2 3 1 
4 8 9 0 9 

   mean report 
5.33333 6.33333  6.66667 6.33333 2.33333 
      2 6.66667        4 6.66667 6.33333 
5.33333       4 0.666667 3.33333       3 
5.33333       5        7       1       5 

Mean over tables 

   mean"1 report 
3.8 4.8 3.6 2.6 
6.6 5.2 3.8 5.4 
5.8 5.4 2.4   6 

Mean over rows 

   std"1 report 
2.13542 3.05941 3.13688 2.33238 
1.62481 3.05941 2.78568 2.57682 
3.05941 2.15407  1.0198 3.52136 

Adverbs And Conjunctions. Adverbs and conjunctions may be defined either tacitly or 
explicitly. The following illustrates the tacit definition of adverbs: 

   ]a=: 1 2 3 4 5 
1 2 3 4 5 

   prsu=: \\. 

A sequence of adverbs  (prefix and suffix) 

   < prsu a 
+-+---+-----+-------+---------+ 
|1|1 2|1 2 3|1 2 3 4|1 2 3 4 5| 

 
 
 
 
 
 
 
 
 
 
 
 
Chapter 9 Polynomials  101 

+-+---+-----+-------+---------+ 
|2|2 3|2 3 4|2 3 4 5|         | 
+-+---+-----+-------+---------+ 
|3|3 4|3 4 5|       |         | 
+-+---+-----+-------+---------+ 
|4|4 5|     |       |         | 
+-+---+-----+-------+---------+ 
|5|   |     |       |         | 
+-+---+-----+-------+---------+ 

   +/ prsu a 
1 3  6 10 15 
2 5  9 14  0 
3 7 12  0  0 
4 9  0  0  0 
5 0  0  0  0 

   iprsu=: /\\. 
   * iprsu a 
1  2  6  24 120 
2  6 24 120   0 
3 12 60   0   0 
4 20  0   0   0 
5  0  0   0   0 

   inverse=: ^:_1 
   %: inverse a 
1 4 9 16 25 

q=: /prsu 
*q a 

1  2  6  24 120 
2  6 24 120   0 
3 12 60   0   0 
4 20  0   0   0 
5  0  0   0   0 

A conjunction with one argument 

   each=:&.> 
   <\a 
+-+---+-----+-------+---------+ 
|1|1 2|1 2 3|1 2 3 4|1 2 3 4 5| 
+-+---+-----+-------+---------+ 

   |. each <\a 
+-+---+-----+-------+---------+ 
|1|2 1|3 2 1|4 3 2 1|5 4 3 2 1| 
+-+---+-----+-------+---------+ 

   slope=: 1 : '[%~ + -&x.f. ]'  
   0.000001 ^ slope i.5 
1 2.71828 7.38906 20.0855 54.5982 

   ^ i.5 
1 2.71828 7.38906 20.0855 54.5982 

Explicit definition of adverb 

The  tacit  definition  of  conjunctions  will  be  illustrated  first  by  using  the  case  adverb-
conjunction-adverb, whose result can be used to provide the ordinary matrix product:  

   dot=: /@(("0 1)("1 _)) 
   m=:i.3 3 
   m 
0 1 2 
3 4 5 
6 7 8 

15 18  21 
42 54  66 
69 90 111 

m + dot * m 

  
 
 
 
 
 
 
 
 
102  Arithmetic 

A second illustration produces a conjunction that applies one of its arguments to a prefix, 
and the other to a suffix: 

   ps=: 2 : '(x.@{.)`,`(y.@}.)\' 
   f=: *: ps %: 
   3 f 2 3 4 5 6  
4 9 16 2.23607 2.44949  

f"0 1~i. 5 

0 1 1.41421 1.73205 2 

   1 f 2 3 4 5 6  
4 1.73205 2 2.23607 2.44949 

0 1 1.41421 1.73205 2 
0 1 1.41421 1.73205 2 

   f 2 3 4 5 6  
4 1.73205 2 2.23607 2.44949  

0 1       4 1.73205 2 
0 1       4       9 2 

Gerunds. The conjunction ` “ties” verbs together to form a gerund, a noun that (like the 
English  word  cooking)  carries  the  force  of  a  verb.  Gerunds  have  a  variety  of  uses,  of 
which two are illustrated below: 

   +`*/ 1 2 3 4 5 
47 
   1+2*3+4*5 
47 

   fac_or_sqr=: !`*: @. (>&5) 
   fac_or_sqr 8 
64 
   fac_or_sqr 5 
120 

   fac_or_sqr"0 i. 10   
1 1 2 6 24 120 36 49 64 81 

Insertion of successive verbs 

The conjunction @.(agenda) 
uses the index produced by  
its right argument to select a 
member of the gerund to  
produce the final result. 

Recursion. A function that is defined in terms of itself is said to be recursively defined. 
For example: 

   fac=: 1:`(] * fac@<:)@.* 
   fac 5 
120 

fac"0 i.6 
1 1 2 6 24 120 

The  1:  is  the  constant  function  that  yields  1,  and  the  monad  *  (signum)  yields  1  if  its 
argument is greater than 0. 

Controlled Iteration. If f and g are functions and h=: f ^: g, then x h y “iterates” 
f  by  applying  it  repeatedly  as  long  as  the  result  of  g  is  non-zero.  For  example,  an 
iterative  determination  of  the  square  root  using  Newton’s  method  may  be  defined  as 
follows: 

   h=: (-:@(] + %))^:([ ~: *:@]) ^: _ 
   5 h 1 
2.23607 

   *: 5 h 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
5 

   1 2 3 4 5 h"0 (1) 
1 1.41421 1.73205 2 2.23607 

Chapter 9 Polynomials  103 

Linear Functions. The expression mp=:+/ . * uses the dot conjunction to produce the 
dot, inner, or matrix product mp. For example: 

   mp=: +/ . * 
   v=: i.3 
   m   
0 1 2 
3 4 5 
6 7 8 

m=: i. 3 3 
m mp m 
15 18  21 
42 54  66 
69 90 111 

   m mp v 
5 14 23 

v mp m 

15 18 21 

Moreover,  m&mp  is  a  linear  function  which  (as  stated  in  Section  2  D)  distributes  over 
addition. For example: 

   LF=: m&mp 
   a=: 2 3 4 
   LF (a+b) 
14 62 110 

   LF (m+2*m) 
 45  54  63 
126 162 198 
207 270 333 

b=: 5 1 1 
(LF a)+(LF b) 

14 62 110 

(LF m)+(LF 2*m) 

45  54  63 
126 162 198 
207 270 333 

Any linear function LF can be represented in the form M&mp for a suitable matrix M. If LF 
applies to vectors of n elements, then M may be obtained by applying LF to the identity 
matrix =i.n. For example, if p is an arbitrary permutation vector, then the permutation 
function p&{ is linear and: 

   n=: 6 

   LF=: p&{ 
   x=:2 3 5 7 11 13 
   LF x 
13 5 3 7 2 11 

   M=: LF =i.n 
   M&mp x 
13 5 3 7 2 11 

   M 
0 0 0 0 0 1 
0 0 1 0 0 0 
0 1 0 0 0 0 

]p=: n?n 
5 2 1 3 0 4 

%. M 
0 0 0 0 1 0 
0 0 1 0 0 0 
0 1 0 0 0 0 

  
 
 
 
 
 
 
 
 
 
   
 
 
104  Arithmetic 

0 0 0 1 0 0 
1 0 0 0 0 0 
0 0 0 0 1 0 

0 0 0 1 0 0 
0 0 0 0 0 1 
1 0 0 0 0 0 

   (%.M) mp 13 5 3 7 2 11 
2 3 5 7 11 13 

   M&mp^:_1 (13 5 3 7 2 11) 
2 3 5 7 11 13 

Exercises 

A1  Experiment with the expression  c  POL  x using  x=:i.7 and various coefficients 

c, including those from the columns of Pascal’s triangle in Section 7 C. 

A2  Using the value of x from Ex A1, evaluate (x+1)^n for various values of n, and 

compare the results with those of Exercise A1. 

A3  Define a function CP such that (CP n) POL x equals x^n. 

Answer: 

CP=: #&0,1:   

B1  Evaluate 1 1&TIMES ^:n  1 for various values of n. 

B2  Explore the definition of TIMES by evaluating the following: 

c=: 3 1 4 

  d=: 2 0 3 5  

c */d   

  </.c */ d      +//. c */ d 

Also compare TIMES with multiplication of integers in Section 4 C. 

B3  Use  theorems  3-5  of  Section  5  D  to  prove  that  the  product  of  polynomials  with 

coefficients C and D is equivalent to the polynomial with coefficients +//.C*/D. 

C1  Predict  and  test  the  results  of  CFR  n#1  for  various  values  of  n.  Repeat  for  CFR 

n#_1. 

C2  Define a function F such that n F r gives the coefficients of a polynomial having 

n repeated roots r. Test it on expressions such as 

5 F 1     5 F _1     5&F"0 -i. 6     F&_1"0>:i.6 

Answer: 

F=: CFR@#   

D1  Predict and test the results of EXP&CP n for various values of n, where CP is from 

Ex A3. 

D2  Explore the definition of EXP by defining the functions: 

A=: +/"1 

B=: ] * C 

C=: !/~@i.@#@] 

and then evaluating expressions such as C d=:3 1 4 2 and B d and A B d. 

E1  Predict and test the results of the following expressions: 

CTIMES/a=: 1 2;3 4;5 6 

CTIMES/\a 

 
 
 
    
 
 
 
 
     
  
 
 
 
 
 
 
Chapter 9 Polynomials  105 

a CPLUS CTIMES/a 

G1  Experiment with GEXP for various arguments. 

G2  Explore the definition of GEXP by defining the subtraction table function ST=: -

~/~@i.@#@] and evaluating ST c=: 3 1 4 2. 

G3  Evaluate y^ST c for various values of y, including 0.   

G4  Explain the equivalence of the expressions  (x+y)^n and  (y  GEXP  CP  n)  POL 

x, where CP is from Exercise A3. 

H1  Extend the sequence that concluded Section H. 

L1  Test the assertion that the scan +/\ is linear. 

L2  Predict and test the results of the following expressions: 

c=: 3 1 4 2 6 

+/\c 

I=: =/~i.#c 

M=: +/\ I 

d=: M +/ . * c 

(%.M) +/ . * d 

(>:/~i.#c) +/ . * c 

L3  Look  through  earlier  chapters  for  other  linear  functions,  and  re-express  them  as 
inner  products.  In  particular,  identify  the  cases  that  can  employ  Pascal’s  triangle 
(!/~i.n) and Vandermonde’s matrix x^/i.#c. 

L4  Predict and test the results of applying the matrix inversion function %. to some of 
the  matrices  used  in  Exercises  L2  and  L3,  and  use  them  in  defining  linear 
functions. 

L5  Examine  the  matrices  M  and  %.M  of  Ex  L2,  and  note  that  the  former  produces 

“aggregation” or “integration”, and the latter produces “differencing”. 

L6  Review  the  discussion  of  combinations  in  Section  7  C,  and  enter  and  experiment 
with  the  following  structured  definition  of  a  function  for  generating  tables  of 
combinations: 

        comb=: basis`[email protected] 

      basis=:i.@(<:,[) 

      recur=: (count#start),.(index@count{comb&.<:) 

         count=:<:@[!<:@[+|.@start 

         start=:i.@-.@- 

         index=:;@:((i.-])&.>) 
      test=: *@[*.< 

[Try 3 comb 4] 

  
 
 
 
 
References 

107 

1.  American Heritage Dictionary of the English Language, Houghton-mifflin (Any 

edition that includes the appendix of Indo-European roots). 

2.  Klein, Felix, Elementary Mathematics from an Advanced Standpoint, Dover 

Publications. 

3.  Cajori, F., A History of Mathematical Notations, Open Court Publishing Company, 

LaSalle, Illinois. 

4.  Lakatos, Imre, Proofs and Refutations: the logic of mathematical discovery, 

Cambridge University Press. 

  
 
110088 

  Arithmetic 

 
Index   

110099

0, 7 

1, 7 

action word, 3 

INDEX 

BARCHART, 83 

barcharts, 91 

base-10, 36 

addition, 5, 6, 10, 11, 12, 19, 35, 38, 54, 63, 92, 

bases, 36, 41 

105 

Addition, 5, 11, 36 

adds, 5, 42, 51 

adverb, 6, 10, 12, 13, 18, 22, 25, 26, 63, 65, 103, 

104 

adverbs, 3, 13, 22, 31, 99, 103 

ADVERBS, 12, 25, 103 

AHD, 13 

alternating sum, 16 

Ambivalence, 17 

ambivalent, 13, 17 

American Heritage Dictionary, 2, 109 

and, 60, 62 

annotated display, 6 

are, 3 

argument, 4, 5, 6, 8, 9, 10, 11, 12, 18, 19, 23, 28, 
29, 35, 40, 42, 46, 47, 50, 64, 72, 75, 82, 83, 
84, 87, 89, 98, 100, 101, 103, 104, 105 

Arithmetic, 9 

Arrangements, 69 

arrays, 42, 43 

associativity, 23 

Associativity, 18 

atomic, 68 

atop, 17, 22 

auto classification, 82 

base-value, 36, 41 

binomial coefficients, 71, 97 

bond conjunction, 17 

bond to, 17 

Bonds, 17 

Boole, 60, 63 

Boolean Dyads, 63 

Boolean Monads, 64 

Boolean Primitives, 65 

Boolean table, 89 

booleans, 55 

Booleans, 60 

Box, 30 

by, 15 

carrying, 37 

Catenate, 12 

Characters, 29 

circle, 100 

circular, 99 

classification, 28, 77, 78, 79, 80, 81, 82, 83, 85, 

86 

Classification, 77 

classified, 27, 78, 82 

clean, 100 

coefficients, 49, 87 

  
2  Arithmetic 

combinations, 108 

de Morgan, 11 

COMBINATIONS, 70 

decimal, 26, 35, 36, 37, 44 

commutative, 18, 19, 22, 38 

derivative, 96 

commutativity, 53 

Commutativity, 18 

derivative polynomial, 98 

Derivatives, 95, 98 

complex numbers, 22, 87, 92, 93, 94, 101 

derived verbs, 62 

Complex Numbers, 91 

diagonal adverb, 26 

computer, 1, 13, 15, 16, 22, 23, 32, 50, 101 

diagonals, 38 

Computer programming, 101 

dialogue, 1, 50, 51 

conjecture, 50 

dictionary, 2 

conjunction, 4, 15, 17, 22, 43, 94, 103, 104, 105 

differencing, 107 

conjunctions, 3, 14, 22, 101, 103, 104 

Display, 20 

Conjunctions, 4, 11 

CONJUNCTIONS, 12, 103 

Consonants, 78 

constant function, 105 

convolutions, 26 

coordinates, 84 

copula, 3, 11 

COPULA, 12 

copulative conjunction, 4 

correlations, 26 

cosh, 99 

cosine, 99 

distribute over, 19 

distributes, 105 

Distributivity, 19 

division, 23, 49 

divisors, 48 

domain, 3, 22, 28, 29, 49, 59, 60, 62, 65, 66, 80, 

91, 92 

Domain, 59 

dot, 105 

doubling, 3 

drop, 21 

duplicates, 18 

Counterexamples, 51 

counting number, 1, 2, 3, 5, 11, 47 

counting numbers, 1, 2, 3, 11, 28, 35, 91 

Counting Numbers, 1 

cross, 18 

CYCLES, 72 

cyclic repetition, 8 

dyad, 17, 18, 19, 21, 22, 23, 24, 27, 29, 32, 36, 

41, 42, 44, 61, 62, 63, 68, 72 

dyadically, 13, 41 

each item, 6, 37 

elementary algebra, 48 

Elementary Mathematics, 109 

empty, 21, 22, 47, 50, 81 

English, 3, 29, 64, 104, 109 

 
Index  3 

etymology, 2 

guesses, 50 

even, 2, 3, 9, 15, 16, 47, 49, 77, 99, 100, 101 

higher-rank, 42 

executable, 13, 101 

hyperbolic functions, 99 

exhaustive classification, 81 

identities, 21, 22, 48, 52 

Expansion, 90, 94 

identity, 4, 20, 21, 22, 24, 47, 52, 53, 54, 56, 62, 

experiment, 1, 13, 42, 50, 51, 85, 86, 108 

Experimentation, 22 

EXPERIMENTATION, 42 

explicit, 101 

Explicit definition, 103 

explore, 13 

exponent, 35, 49, 87 

exponential, 17, 98, 99, 101 

Exponential Family, 98 

exponents, 87 

factorial, 10, 42, 74 

false, 7 

formal proof, 47, 53 

fractions, 2, 22, 59 

fractured, 2 

Fricatives, 78 

73, 105 

Identity Elements, 21 

Imaginary numbers, 92 

in, 2 

indexing, 27 

Indo-European root, 2 

induction hypothesis, 56 

infinite, 2, 80 

infinities, 62 

infinity, 11, 22, 40 

Infinity, 21 

informal proof, 47 

inner, 105 

Insertion, 9 

inserts, 10, 42 

integer, 2, 15, 27, 28, 29, 47, 48, 59, 65, 67, 83, 

87, 90, 91 

function, 3, 50, 60, 83, 84, 85, 87, 89, 90, 95, 96, 

98, 99, 100, 104, 105, 106, 107, 108 

integers, 2, 3, 6, 7, 11, 16, 22, 23, 26, 28, 42, 44, 
47, 48, 49, 74, 80, 81, 82, 88, 91, 92, 106 

Generators, 64 

gerund, 104 

Grade, 28 

GRAPH, 83 

Graphs, 91 

greater than, 6, 28, 47, 54, 101, 105 

Greater-Of, 7 

greatest common divisor, 62 

Integers, 2, 35 

integration, 107 

Interval Classification, 82 

intervals, 27, 28, 91 

inverse, 2, 3, 11, 27, 28, 29, 31, 42, 43, 72, 74, 

91, 94, 103 

inverses, 15, 20, 23, 91 

Inverses, 20 

Irrational numbers, 92 

  
4  Arithmetic 

is, 3 

it, 3 

ITERATION, 105 

Klein, 109 

Lakatos, 50, 51, 52, 109 

Lakatos’, 50 

Language, 13, 23, 32, 101 

least common multiple, 62 

less than, 6, 9, 28, 54, 101 

Less than, 12 

Lesser of, 12 

Lesser-Of, 7 

linear, 19, 23 

linear functions, 107 

LINEAR FUNCTIONS, 105 

List, 7 

literal characters, 29 

Logic, 59 

magnitude, 23, 42, 43, 94, 100 

mathematical discovery, 50 

mathematics, 3, 10, 13, 49, 50, 52, 83 

matrices, 107 

matrix product, 104, 105 

max, 62 

maximum, 15 

Mean, 102 

MEMBERSHIP CLASSIFICATION, 83 

min, 62 

monad, 17, 18, 19, 23, 28, 30, 31, 42, 44, 47, 61, 
63, 64, 66, 70, 72, 75, 82, 89, 94, 98, 100, 
101, 105 

monads, 17, 21, 23, 25, 27, 31, 64, 65, 85, 101 

multiplication, 10, 11, 12, 16, 28, 35, 37, 38, 39, 

44, 47, 49, 53, 54, 92, 106 

Multiplication, 10, 37 

NAND, 66 

negation, 13, 65 

negative infinity, 22 

negative numbers, 2, 3, 11 

NOR, 66 

normal form, 37 

Normalization, 37, 39, 102 

notation, 1, 5, 12, 13, 22, 31, 42, 50, 54, 65, 74, 

101 

Nouns, 3 

nub, 82 

NUB CLASSIFICATION, 82 

odd, 15, 16, 45, 99, 100, 101 

Open, 30 

operator, 3 

or, 62 

over, 15 

pads, 31 

parentheses, 9, 40, 64 

Parentheses, 12 

partition, 31 

Partitions, 21, 25 

parts of speech, 3 

minimum, 7, 12, 15, 19, 22 

Pascal’s triangle, 71, 106, 107 

Mixed Bases, 41 

modulo, 29, 59 

Peano, 1, 2, 5 

 
permutation, 23, 27, 28, 67, 68, 69, 70, 71, 72, 

proposition, 60, 80, 81 

Index  5 

73, 74, 75, 105 

permutation vector, 27, 67 

permutations, 42 

Permutations, 67 

permuted, 19 

permutes, 47 

planes, 42 

Plosives, 78 

Plots, 91 

polyhedra, 51 

polynomial, 49, 87, 106 

polynomials, 26, 54, 87, 88, 91, 106 

Polynomials, 87, 98 

power, 4, 11, 12, 15, 22, 35, 39, 72, 75, 96 

Power, 11 

power conjunction, 4, 15 

predecessor, 2, 3, 5, 11, 13, 28 

Predecessor, 12 

prefix, 25, 104 

prime numbers, 16, 47 

primes, 26 

primitives, 62 

Primitives, 62 

product, 10, 38, 44, 47, 48, 53, 54, 56, 59, 88, 92, 

93, 96, 97, 104, 105, 106 

Products, 88 

propositions, 60 

Propositions, 60 

proverb, 4, 11, 20 

Proverbs, 3, 20 

punctuation, 9, 12, 64 

Punctuation, 9 

PUNCTUATION, 9 

quotes, 29, 31 

radices, 36 

range, 10 

Range, 59 

rank conjunction, 43 

rate, 95 

rational numbers, 59 

Rational numbers, 91 

ravel, 63, 65 

Real, 91 

recursively, 104 

Reduced Representation, 74 

redundant, 9, 70, 89 

re-entry, 13 

Refutations, 50 

Relations, 6 

remainder, 39 

remainders, 48 

programming language, 13 

repeated addition, 10, 12 

Pronouns, 3 

proofs, 47, 49, 50, 52 

Proofs, 45, 50, 52 

Properties Of Verbs, 17 

replicates, 8 

replication, 12 

representation, 36 

Representation, 35 

  
6  Arithmetic 

residue, 29, 31, 39, 40, 41 

successor, 1, 2, 3, 4, 5, 11, 28, 91 

RESIDUE, 28 

residues, 48 

right to left, 9 

Roman numerals, 35 

Roots, 89 

rows, 42 

Running maxima, 25 

Running products, 25 

secant line, 95 

secant slope, 95, 96, 98 

selection, 26, 27, 69 

Selection, 26 

Selections, 25 

Sets, 77, 80 

Shape, 12 

Sibilants, 78 

signum, 61, 101 

sine, 99 

sinh, 99 

skew-symmetric, 99 

Slopes, 95 

Sort, 28 

spread, 10 

square root, 49, 94 

Standard deviation, 102 

structured programming, 102 

Subtotals, 25 

subtraction, 5, 6, 11, 12, 13, 19, 64, 107 

Subtraction, 5 

subtracts, 5, 19, 23 

suffix, 104 

suffixes, 25 

Summary, 11, 31, 43, 65, 74, 85, 101 

SUMMARY, 22 

Sums, 88 

superscript, 11 

symbolic logic, 60 

symmetric, 19, 47, 99 

symmetry, 23 

Symmetry, 19 

synonym, 3 

Table, 7 

tables, 6, 7, 12, 15, 26, 38, 42, 43, 50, 52, 59, 63, 

65, 67, 68, 72, 102, 108 

tacit, 101 

tag, 2 

take, 21 

Tetrahedron, 51 

the counting numbers, 1, 3, 11, 91 

three-dot notation, 54 

train, 40 

trains, 40 

transposed, 63, 71 

trigonometric, 99 

true, 7 

truth-function, 60 

unbounded, 2 

under, 94 

universe of discourse, 80 

upon, 3, 11, 21, 77 

 
Index  7 

valence, 17 

Valence, 17 

Vandermonde’s matrix, 107 

variable, 3 

Verbs, 3, 17, 26 

VERBS, 12 

versus, 85 

Vowels, 78 

vectors, 52, 54, 72, 75, 81, 105 

word-formation, 30, 31 

verb tables, 7 

Verb Tables, 5 

verbs, 6, 10, 11, 12, 13, 15, 17, 18, 21, 22, 23, 25, 
26, 35, 39, 40, 41, 43, 59, 62, 63, 64, 65, 66, 
74, 86, 101, 104 

zero, 2, 3, 4, 7, 11, 23, 37, 40, 48, 49, 87, 89, 

101, 105