File size: 175,159 Bytes
08c8a6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 |
Arithmetic Kenneth E. Iverson Copyright © 2002 Jsoftware Inc. All rights reserved. Preface Arithmetic is the basic topic of mathematics. According to the American Heritage Dictionary [1], it concerns “The mathematics of integers under addition, subtraction, multiplication, division, involution, and evolution.” The present text differs from other treatments of arithmetic in several respects: The provision of simple but precise definitions of the counting numbers and other notions introduced. The use of simple but precise notation that is executable on a computer, allowing experimentation and providing a simple and meaningful introduction to computer programming. The introduction and significant use of fundamental mathematical notions (such as vectors, matrices, Heaviside operators, and duality) in simple contexts that make them easy to understand. This lays a firm foundation for a wealth of later use in mathematics. Emphasis is placed on the use of guesses by speculation and criticism in the spirit of Lakatos, as discussed in the treatment of proofs in Chapter 5. The thrust of the book might best be appreciated by comparing it with Felix Klein’s Elementary Mathematics from an Advanced Standpoint [2]. However, I shun the corresponding title Arithmetic from an Advanced Standpoint because it would incorrectly suggest that the treatment is intended only for mature mathematicians; on the contrary, the use of simple, executable notation makes it accessible to any serious student possessing little more than a knowledge of the counting numbers. Like Klein, I do not digress to discuss the importance of the topics treated, but leave that matter to the knowledge of the mature reader and to the faith of the neophyte. Table of Contents Introduction ..............................................................................1 A. Counting Numbers.......................................................................... 1 B. Integers ........................................................................................... 2 C. Inverses ........................................................................................... 2 D. Domains.......................................................................................... 3 E. Nouns and Verbs............................................................................. 3 F. Pronouns and Proverbs.................................................................... 3 G. Conjunctions................................................................................... 4 H. Addition And Subtraction............................................................... 5 I. Verb Tables ...................................................................................... 5 J. Relations .......................................................................................... 6 K. Lesser-Of and Greater-Of............................................................... 7 L. List And Table Formation............................................................... 7 M. Punctuation .................................................................................... 8 N. Insertion.......................................................................................... 9 O. Multiplication ................................................................................. 10 P. Power............................................................................................... 10 Q. Summary......................................................................................... 11 R. On Language................................................................................... 12 Properties of Verbs ..................................................................17 A. Valence, Ambivalence, And Bonds................................................ 17 B. Commutativity ................................................................................ 18 C. Associativity ................................................................................... 18 D. Distributivity................................................................................... 18 E. Symmetry ........................................................................................ 19 F. Display of Proverbs......................................................................... 20 G. Inverses........................................................................................... 20 H. Partitions......................................................................................... 20 I. Identity Elements and Infinity.......................................................... 21 J. Experimentation ............................................................................... 22 K. Summary of Notation ..................................................................... 22 L. On Language ................................................................................... 22 Partitions and Selections.........................................................25 A. Partition Adverbs............................................................................ 25 B. Selection Verbs ............................................................................... 26 C. Grade and Sort ................................................................................ 28 D. Residue ........................................................................................... 28 E. Characters........................................................................................ 29 F. Box and Open.................................................................................. 30 G. Summary of Notation ..................................................................... 31 H. On Language .................................................................................. 31 Representation of Integers ......................................................33 A. Introduction .................................................................................... 33 B. Addition .......................................................................................... 34 C. Multiplication.................................................................................. 35 D. Normalization ................................................................................. 37 E. Mixed Bases.................................................................................... 39 F. Experimentation .............................................................................. 40 G. Summary of Notation ..................................................................... 41 Proofs ........................................................................................43 A. Introduction .................................................................................... 43 B. Formal and Informal Proofs............................................................ 47 C. Proofs and Refutations.................................................................... 48 D. Proofs.............................................................................................. 50 Logic..........................................................................................57 A. Domain and Range ......................................................................... 57 B. Propositions .................................................................................... 58 C. Booleans ......................................................................................... 58 D. Primitives........................................................................................ 60 E. Boolean Dyads ................................................................................ 61 F. Boolean Monads.............................................................................. 62 G. Generators....................................................................................... 62 H. Boolean Primitives.......................................................................... 63 I. Summary of Notation ....................................................................... 63 Permutations ............................................................................65 A. Introduction .................................................................................... 65 B. Arrangements.................................................................................. 67 D. Products of Permutations................................................................ 69 E. Cycles.............................................................................................. 70 F. Reduced Representation .................................................................. 71 G. Summary of Notation ..................................................................... 72 Classification and Sets ............................................................75 A. Introduction .................................................................................... 75 B. Sets.................................................................................................. 78 C. Nub Classification........................................................................... 80 D. Interval Classification..................................................................... 80 E. Membership Classification.............................................................. 81 F. Summary of Notation ...................................................................... 83 Polynomials ..............................................................................85 A. Introduction .................................................................................... 85 B. Sums and Products.......................................................................... 86 C. Roots ............................................................................................... 87 D. Expansion ....................................................................................... 88 E. Graphs And Plots ............................................................................ 89 F. Real And Complex Numbers .......................................................... 89 G. General Expansion.......................................................................... 92 H. Slopes And Derivatives .................................................................. 93 I. Derivatives of Polynomials .............................................................. 96 J. The Exponential Family................................................................... 96 K. Summary Of Notation..................................................................... 99 L. On Language ................................................................................... 99 References ................................................................................107 1 Chapter 1 Introduction A. Counting Numbers The list 1 2 3 4 5 6 7 8 9 10 11 12 shows the first dozen counting numbers, and any reader of this book could extend the list to tedious lengths. Although this definition by example captures the basic idea, it fails to address related questions such as: 1. Do counting numbers continue forever? 2. Are there other numbers that precede the first counting number? 3. Are there other numbers between the counting numbers or elsewhere? These questions were addressed a century ago by Peano, who began by introducing the notion of a successor “operation” which, when applied to any counting number, produced its successor. For example, successor 3 would produce 4. We will denote the successor operation by the two-character word >: . For example: >: 3 4 >: 999 1000 The foregoing is an example of dialogue with the computer. Because the notation used here (and throughout the book) can be executed by a computer provided with the language J (available from website jsoftware.com), every expression used can be tested by executing it, as can related expressions that the reader may wish to experiment with. For example, one might apply the successor to lists of counting numbers as follows: >: 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 13 >: 2 4 6 8 10 3 5 7 9 11 2 Arithmetic Is there a last or largest counting number? Peano answered this by asserting that every counting number has a distinct successor, thus introducing the idea of an unbounded or infinite list of counting numbers. B. Integers Since 7 is the successor of 6, we may also say that 6 is the predecessor of 7, and introduce a predecessor operation denoted by <: . For example: <:3 5 7 9 11 2 4 6 8 10 >:2 4 6 8 10 3 5 7 9 11 It would be convenient if the predecessor (like the successor) applied to all counting numbers, but since 1 is the first counting number, its predecessor cannot be a counting number. We therefore introduce a wider class of numbers, in which every member has a predecessor as well as a successor. Thus: <: 1 0 <: 0 _1 <: _1 _2 This wider class of numbers is called the integers, and includes zero (0), as well as negative numbers (_1 _2 _3 etc.). It is helpful to form the habit of looking up any new technical term in a good dictionary; even if the term is already familiar, its etymology often provides useful insight. For example, in the American Heritage Dictionary (a dictionary to be recommended because of its method of treating etymology) the definition of integer refers to the Indo-European root tag that means “to touch; handle”. This with the prefix in- (meaning not) implies that an integer is untouched, or whole; in contrast to one that is “fractured”, like one of the fractions one-half, one-quarter, etc. Similarly, the word infinite introduced in Section A will be found to mean not (in) finite, or without finish. C. Inverses The predecessor operation (<:) is said to be the inverse of the successor (>:) because it “undoes” its work. For example, <:>: 8 yields 8, and the same relation holds for any integer. Thus: >:1 2 3 4 5 6 2 3 4 5 6 7 <:>:1 2 3 4 5 6 1 2 3 4 5 6 In the original definition the successor applied only to the counting numbers. We now re- define it to apply to all integers by defining it as the inverse of predecessor. For example: Chapter 1 Introduction 3 >:<: _3 _2 _1 0 1 2 _3 _2 _1 0 1 2 D. Domains The successor >: defined in Section A applied only to counting numbers, and they would be said to be its domain (over which it “ruled”). In defining the predecessor in Section B it became necessary to extend its domain to the integers, that also included zero and the negative numbers. By re-defining the successor as the inverse of the predecessor, we also extended its domain to the integers. We will find that the introduction of further operations (such as the inverse of “doubling”) will require further extensions of domains. However, to keep the development simple, we will restrict attention to simple domains as far as possible. E. Nouns and Verbs The successor operation >: can be said to “act upon” a counting number to produce a result, and is therefore analogous to an “action word” or verb in English. Similarly, the numbers to which the verb >: applies are analogous to nouns in English. We will soon see that the terms verb and noun lead to further important analogies with adverbs, conjunctions, and other parts of speech in English. We will therefore adopt them, even though other terms (function, operator, and variable) are more commonly used in mathematics. However, function will sometimes be used as a synonym for verb. F. Pronouns and Proverbs Consider the following use of the pronoun it : it=: 1 2 3 4 5 6 <: it 0 1 2 3 4 5 >:<: it 1 2 3 4 5 6 The copula =: behaves like the copulas is and are in English, and the first sentence would be read aloud as “it is the list of counting numbers 1 2 3 4 5 6” or as “it is 1 2 3 4 5 6”. In English the names used for pronouns are restricted to a very few, such as it, he, and she; they are not so restricted here. For example: zero=: 0 neg=: _1 _2 _3 list6=: it list6,zero,neg 1 2 3 4 5 6 0 _1 _2 _3 4 Arithmetic A proverb is used to stand for a verb, just as a pronoun is used to stand for a noun. (The word proverb in this sense is found only in larger dictionaries.) For example: increment=: >: decrement=: <: increment list6,zero,neg 2 3 4 5 6 7 1 0 _1 _2 inc=: increment inc list6 2 3 4 5 6 7 G. Conjunctions The phrase Run and hide expresses an action performed as a sequence of two simpler actions, and in it the word and is said to be a copulative conjunction. We will use the symbol @ to denote an analogous conjunction. For example: add3=: >: @ >: @ >: add3 1 2 3 4 5 6 4 5 6 7 8 9 identity=: <: @ >: identity 1 2 3 4 5 6 1 2 3 4 5 6 Although the verb identity defined above makes no change to its argument, it is an important verb, so important that it is given its own symbol. Thus: ] 1 2 3 4 5 6 1 2 3 4 5 6 Although a verb for the twelfth successor could be expressed by repeated use of @, it would be tedious, and we introduce a second conjunction illustrated below: list=: 1 2 3 4 5 6 >:^:3 list 4 5 6 7 8 9 >:^:12 list 13 14 15 16 17 18 <:^:6 list _5 _4 _3 _2 _1 0 The conjunction ^: is called the power conjunction; it applies its left argument (the verb to its left) the number of times specified by its noun right argument. H. Addition And Subtraction The examples of the preceding section illustrate the fact that if n is any counting number, then the verb >:^:n adds n to its argument, and <:^:n subtracts n. Chapter 1 Introduction 5 For example : n=: 5 abc=: 10 11 12 13 14 15 >:^:n abc 15 16 17 18 19 20 <:^:n abc 5 6 7 8 9 10 abc+n 15 16 17 18 19 20 abc-n 5 6 7 8 9 10 The last two examples introduce the notation commonly used for addition and subtraction, and the whole set of examples essentially defines them in terms of the simpler successor and predecessor of Peano. I. Verb Tables Two lists can be added and subtracted as illustrated below: a=: 0 1 2 3 4 5 b=: 2 3 5 7 11 13 a+b 2 4 7 10 15 18 a-b _2 _2 _3 _4 _7 _8 a+a 0 2 4 6 8 10 a-a 0 0 0 0 0 0 a +/ b 2 3 5 7 11 13 3 4 6 8 12 14 4 5 7 9 13 15 5 6 8 10 14 16 6 7 9 11 15 17 7 8 10 12 16 18 a +/ a 0 1 2 3 4 5 1 2 3 4 5 6 2 3 4 5 6 7 3 4 5 6 7 8 4 5 6 7 8 9 5 6 7 8 9 10 6 Arithmetic The last two examples show addition tables that add each item of the first argument to each item of the second in a systematic manner. The verb +/ is formed by applying the adverb / to the verb + , and is usually referred to as the verb “plus table”. The adverb / applies uniformly to other verbs, and we can therefore produce subtraction tables as follows: a-/a 0 _1 _2 _3 _4 _5 1 0 _1 _2 _3 _4 2 1 0 _1 _2 _3 3 2 1 0 _1 _2 4 3 2 1 0 _1 5 4 3 2 1 0 b-/1 2 1 0 2 1 4 3 6 5 10 9 12 11 To make clear the meaning of a verb table, draw a vertical line to its left and write the left argument vertically to the left of it; draw a horizontal line above the table, and enter the right argument horizontally above it. We can produce such an annotated display of a verb table by using the adverb table instead of /, as follows: a +table b +-+---------------+ | |2 3 5 7 11 13| +-+---------------+ |0|2 3 5 7 11 13| |1|3 4 6 8 12 14| |2|4 5 7 9 13 15| |3|5 6 8 10 14 16| |4|6 7 9 11 15 17| |5|7 8 10 12 16 18| +-+---------------+ a-table a +-+----------------+ | |0 1 2 3 4 5| +-+----------------+ |0|0 _1 _2 _3 _4 _5| |1|1 0 _1 _2 _3 _4| |2|2 1 0 _1 _2 _3| |3|3 2 1 0 _1 _2| |4|4 3 2 1 0 _1| |5|5 4 3 2 1 0| +-+----------------+ J. Relations Any two integers a and b are related in certain simple ways: a precedes (or is less than) b; a equals b; or a follows (or is greater than) b. We introduce the verbs < and = and > whose results show whether the particular relation holds between the arguments. For example: 1<3 1 1=3 0 1>3 0 a=: 1 2 3 4 5 b=: 6-a b Chapter 1 Introduction 7 5 4 3 2 1 a<b 1 1 0 0 0 a=b 0 0 1 0 0 a</b 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 a=/b 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 a>b 0 0 0 1 1 a>/b 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 A result of 1 indicates that the relation holds, and 0 indicates that it does not; it is reasonable to read the ones and zeros aloud as “true” and “false”. The final example is a greater-than table. K. Lesser-Of and Greater-Of The lesser of (or minimum of) two arguments is the one that precedes (or perhaps equals) the other; the verb <. yields the lesser of its arguments. For example: b 5 4 3 2 1 a>.b 5 4 3 4 5 a 1 2 3 4 5 a<.b 1 2 3 2 1 a<./b 1 1 1 1 1 2 2 2 2 1 3 3 3 2 1 4 4 3 2 1 5 4 3 2 1 L. List And Table Formation Although any list can be specified by listing its members, certain lists can be specified more conveniently. The integers verb i. produces lists or tables of integers (beginning with zero) that are convenient in producing verb tables. For example : ] a=:i. 5 0 1 2 3 4 a<./a 8 Arithmetic 0 0 0 0 0 0 1 1 1 1 0 1 2 2 2 0 1 2 3 3 0 1 2 3 4 4-a 4 3 2 1 0 1+a 1 2 3 4 5 i. _5 4 3 2 1 0 i.3 4 0 1 2 3 4 5 6 7 8 9 10 11 The verb # replicates its right argument the number of times specified by the left: 3#5 5 5 5 5#3 3 3 3 3 3 2 3 4 # 6 7 8 6 6 7 7 7 8 8 8 8 b=: _2 + i. 5 b _2 _1 0 1 2 c=:b>0 c 0 0 0 1 1 c#b 1 2 The verb $ “shapes” its right argument, using cyclic repetition of its items as needed: 8$2 3 5 2 3 5 2 3 5 2 3 3 4$2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 M. Punctuation Although the two sentences: The teacher said he was stupid The teacher, said he, was stupid differ only in punctuation, they differ greatly in meaning. Arithmetic sentences may also be punctuated (by paired parentheses) as illustrated below: Chapter 1 Introduction 9 (8-3)+4 9 8-(3+4) 1 8-3+4 1 The last sentence illustrates the behaviour in the absence of parentheses: in effect, the sentence is evaluated from right to left or, equivalently, the right argument of each verb is the value of the entire phrase to its right. Punctuation makes possible many useful expressions. For example: c=: 2 7 1 8 2 8 (c=2)#c 2 2 ((c=2)>.(c=8))#c 2 8 2 8 (c<2)>.(c=2) 1 0 1 0 1 0 The last sentence can be read as “c is less than or equal to 2”. It is equivalent to the verb <: in the expression c<:2. The beginner is advised to use fully-parenthesized sentences even though some of the parentheses are redundant. Thus, write (c<2)>.(c=2) even though (c<2)>.c=2 is equivalent. N. Insertion a=: 2 7 1 8 2 2+7+1+8+2 20 +/a 20 The foregoing sentences illustrate the fact that the adverb / produces a verb that “inserts” its verb left argument between the items of the argument of the resulting verb +/ . Insert applies equally to other verbs. For example: 2>.7>.1>.8>.2 8 >./a 8 sum=:+/ max=:>./ 10 Arithmetic min=:<./ sum a 20 spread=: (max a)-(min a) range=: (min a)+i. >:spread range 1 2 3 4 5 6 7 8 O. Multiplication m=:3 n=:5 n#m 3 3 3 3 3 +/n#m 15 The final result above is clearly the product of m and n, and the sentences essentially define multiplication in terms of repeated addition. In mathematics the product verb is denoted in a variety of ways; we will use * as in: m*n 15 dig=: 1+i. 6 dig 1 2 3 4 5 6 odds=: 1+2*i. k=: 6 odds 1 3 5 7 9 11 */dig 720 !#dig 720 +/odds 36 k*k 36 The last two sentences on the left illustrate the definition of a new verb, factorial, denoted by ! . P. Power m=: 3 n#m 3 3 3 3 3 n=: 5 */n#m 243 The final result above is called the nth power of m, or m to the power n. Comparison with Section O will show that power is defined in terms of multiplication in the same way that multiplication is defined in terms of addition. In most math texts there is no symbol for power, it being denoted by showing the second argument as a superscript. We will adopt the symbol ^ used by de Morgan [3] about a century ago. For example: Chapter 1 Introduction 11 m^n 243 3^5 243 (3^5)*(3^2) 2187 3^(5+2) 2187 As suggested by the equivalence of the last two sentences, (a^b)*(a^c) is equivalent to a^(b+c). The reason for this can be seen by substituting the definition of power given above: (3^5)*(3^2) 2187 (*/5#3)*(*/2#3) 2187 (5+2)#3 3 3 3 3 3 3 3 */(5+2)#3 2187 Q. Summary The main results of this chapter may be summarized as follows: 1. The idea of the counting numbers is formalized and extended to infinity by introducing the notion that every counting number has a successor; it is extended to include zero and negative numbers by introducing the notion of predecessor, inverse to successor. 2. Symbols are introduced to denote successor and predecessor (>: and <:); because they specify actions they are called verbs, and the integers they act upon are called nouns. 3. The copula =: is introduced to assign a name (called a pronoun) to a noun or list of nouns and to assign a name (called a proverb) to a verb. 4. Conjunctions (@ and ^:) are introduced to define verbs that are specified by a sequence of simpler verbs. 5. Addition is defined in terms of a sequence of successors; subtraction is defined in terms of predecessors. 6. Verb tables are introduced to display the behaviour of addition, subtraction, and other verbs that apply to two arguments, such as relations (< = >) and minimum and maximum (<. >.). 7. Parentheses are introduced as punctuation, that is, to specify the order in which phrases in a sentence are to be interpreted. 8 An adverb called insert (denoted by /) is introduced to insert a verb between items of a list argument, and +/ is used with replication (#) to define multiplication in terms of repeated addition; power is defined in terms of repeated multiplication. We will now summarize all of the notation used. This summary may be useful for reference, but because related symbols are used for related ideas, it should also be studied 12 Arithmetic for mnemonic aids. Succeeding chapters conclude with similar summaries of notation, and all notation is available from the J Dictionary discussed in Book 1. The table shows the verbs in three columns, each headed by the final character (dot or colon) of the verbs in that column: the first row shows Less than (<) in the first column, Lesser of (<.) in the second, and Predecessor (<:) in the third: Verbs And Copula . : < Less than Lesser of (Min) Predecessor > Greater than Greater of (Max) Successor Copula = Equals + Add - Subtract * Multiply ^ ! Power Factorial ] Identity Replicate Shape Catenate # $ , i Integers Adverbs / Insert (when used with one noun argument, as in +/b) Table (when used with two noun arguments, as in a+/b) Conjunctions @ Atop (defines a verb by a sequence, as in >:@>:@>:) ^: Power (>:^:3 is >:@>:@>:) In conventional math, the symbol - denotes subtraction when used with two arguments (a-b) and negation when used with one (-b). We will adopt this usage, defining -b by 0-b. The thoughtful reader may have noticed such usage in this chapter: the verbs produced by the adverb / (as shown above), and the <: used for predecessor throughout, but used dyadically (that is, with two arguments) for Less or equal in Section M. This ambivalent use of verbs is discussed fully in Chapter 2. R. On Language Notation, the term normally used to refer to the mode of expression in math, is defined (in the AHD) as “A system of figures or symbols used in specialized fields ... ”. An Chapter 1 Introduction 13 executable notation such as that used here is normally called a programming language; we will use the terms notation and language interchangeably. Programming languages are commonly taught in specific courses, prerequisite to courses in topics that employ them. In mathematics, on the contrary, notation is not taught as such, but is introduced in passing as required by the subject. The same approach is adopted in this text. Any reader interested in using the notation in topics other than those treated here should consult Section 9 L. In a math course there is little reason for a student to be curious or concerned about notation that has not yet been used. In using a programming language the situation is somewhat different; a student who already knows something of the possibilities of computer programming may feel frustrated at not knowing what symbols to use for operations that she knows must be available in the language. There are several avenues open to the student who may be more interested in the language than in the treatment of arithmetic: 1. Press key F1 in the top row to display the vocabulary of J. Then click the mouse on any desired entry in the vocabulary to display its definition. Press Esc to remove the display. 2. Use the computer to experiment with various facilities, and therefore to explore their definitions. 3. Range ahead to the On Language sections that conclude Chapters 2 and 9. Exercises In exercises first write (or at least sketch out) the result of each sentence without using the computer; then enter the sentence on the computer to check your answer. In using the computer, it will be more efficient if you familiarize yourself with the available editing facilities. In particular, these allow you to revise entries being prepared, and to recall earlier entries for re-entry. Also learn to use expressions such as: names 0 To display the names used for pronouns names 1 To display the names used for adverbs names 2 To display the names used for conjunctions names 3 To display the names used for proverbs erase <'abc' To erase the name abc Letters such as A and B in the labels below indicate the sections to which the associated experiments are relevant. Refer back to these sections for any needed help: A1 >:12345 >:1 2 3 4 5 >:>:>:>:1 2 3 4 5 14 Arithmetic B1 <: _12345 <:_1 _2 _3 _4 _5 <:<:<:<:1 2 3 4 5 <:<:>:>:1 2 3 4 5 >:<:>:<:1 2 3 4 5 F1 a=:1 2 3 b=:4 5 >:a a,b >:a,b F2 z=:0 n=:_5 _4 _3 _2 _1 n,z,a,b b,a,z,n F3 wax=: >: wane=:<: wax wax wane n,z,a,b G1 list=:1 2 3 4 5 right=:>:@>: left=:<:@<: right list left list left right list ] list G2 decade=:>:^:10 decade list century=:decade^:10 century list >:^:10^:10 list G3 First review the discussion of inverses in Section C. Then enter the following sentences on the computer, observe their results, and try to state the effect of the power conjunction with negative right arguments: Chapter 1 Introduction 15 >:^:_1 list <:^:_1 list >:^:_3 list decade^:_1 list decade^:2 decade^:_2 list I1 Reproduce on the computer the last two tables of Section I. J1 The verbs over and by used in the following sentences were defined and illustrated in Section I. As usual, first sketch the result of each sentence by hand before entering it on the computer: d=: 0 1 2 3 4 d by d over d</d d by d over d=/d d by d over d+/d d by d over d-/d J2 Repeat Exercise J1 using the list e=:_3 _2 _1 0 1 2 3 instead of the list d. K1 Repeat Exercises J1 and J2 for the verbs >. and <., that is, for tables of maximum and minimum. M1 An integer such as 14 that can be written as the sum of some integer with itself is called an even number; a number such as 7 that cannot is called odd. Write an expression using the verb i. to produce the first twenty even numbers. Do not look at the answer below until you have tested your answer on the computer. Answer: (i.20)+(i.20) M2 Write an expression for the first 20 odds. N1 Review Section M and note that the unparenthesized sentence 2-7-1-8-2 is equivalent to 2-(7-(1-(8-2))) . Then evaluate the sentence and verify that your result agrees with -/2 7 1 8 2. Evaluate and compare the results of the following sentences: -/2 7 1 8 2 (+/2 1 2)-(+/7 8) Then state in simple terms what the verb -/ produces, and test your statement on other lists (including lists with both odd and even numbers of items). 16 Arithmetic Answer: -/ list produces the alternating sum, the sum of every other item of the list diminished by the sum of the remaining items. O1 Construct the multiplication table produced by the sentence (2+i.9)*/(2+i.9) and observe that its largest item is 100. Note that the table cannot contain prime numbers (which cannot be products of positive integers other than themselves and 1). Examine the table to determine all of the primes up to 9. P1 b=:i.7 b by b over b^/b a=:b-3 a by b over a^/b 17 Chapter 2 Properties of Verbs A. Valence, Ambivalence, And Bonds In the phrases a-b and a<:b and a+/b the verbs “bond to” two arguments and (adopting an analogous term from chemistry) we say that in this context the verbs have valence 2; in the expressions -b and <:b and +/b the same verbs have valence 1. From these examples it is clear that the verbs are ambivalent, the valence being determined by the context in which they are used. We also say that a verb used with valence 1 is used monadically, or is a monad; a verb used with valence 2 is a dyad. In the phrase 3&* the conjunction & bonds the noun 3 to the verb * to produce a monad. Thus: triple=: 3&* triple a=: 1 2 3 4 3 6 9 12 square=: ^&2 square a 1 4 9 16 ^&3 a 1 8 27 64 Although a is the list 1 2 3 4, it should be noted that the phrase ^&3 1 2 3 4 is not equivalent to ^&3 a, because the sequence 3 1 2 3 4 is treated as a single list that is bonded to ^ to form a verb. However, ^&3 (1 2 3 4) and ^&3 a are equivalent. The bond conjunction is extremely prolific because its use with any dyad d generates two families of monads, one using left bonding (n&d) and one using right bonding (d&n). For example, with right bonding the verb ^ produces the square, cube, and higher powers; with left bonding it produces exponential verbs. The conjunction @ introduced in Section 1 G composes two verbs, as in i.@- 3 to yield 2 1 0; the verb i.@- also has a dyadic meaning, as in 8 i.@- 3 to yield 0 1 2 3 4. In general, v1@v2 b is equivalent to v1 v2 b, and a v1@v2 b is equivalent to v1 (a v2 b). In effect, the monad v1 is applied “atop” the dyad v2, and the conjunction @ (denoted by the commercial at symbol) is called atop. 18 Arithmetic B. Commutativity The dyads + and * yield the same results if their arguments are interchanged or “commuted”, and they are therefore said to be commutative. For example: 3+5 8 5+3 8 (3*5)=(5*3) 1 The dyad produced by the commute or cross adverb ~ “crosses” the bonds of the verb to which it is applied. Moreover, the monad produced by ~ duplicates its single argument. For example: 5-3 2 ^~3 27 3-~5 2 +~3 6 */~i.5 0 0 0 0 0 0 1 2 3 4 0 2 4 6 8 0 3 6 9 12 0 4 8 12 16 C. Associativity Compare the results of the following pairs of sentences, which differ only in the “associations” produced by different punctuations: (4+3)+(2+1) 10 (4-3)-(2-1) 0 (4>.3)>.(2>.1) 4 4+((3+2)+1) 10 4-((3-2)-1) 4 4 4>.((3>.2)>.1) (4*3)*(2*1) 24 4*((3*2)*1) 24 (4^3)^(2^1) 4096 4^((3^2)^1) 262144 Those verbs (+ >. and *) that yield the same results are examples of associative verbs; the others are non-associative. D. Distributivity The monad >: is said to distribute over the dyad <. because a sentence such as (>:7) <. (>:4) has the same result as the corresponding sentence >:(7<.4) in which the monad >: is “distributed over” the result of the dyad <. . Observe the further tests of distributivity: Chapter 2 Properties of Verbs 19 a=:7 b=:4 triple=: *&3 (triple a) + (triple b) 33 (triple a) - (triple b) 9 (*&3 a) <. (*&3 b) 12 (-&3 a) <. (-&3 b) 1 (3&- a) <. (3&- b) _4 triple (a+b) triple (a-b) *&3 (a<.b) -&3 (a<.b) 3&- (a<.b) 33 9 12 1 _1 In the last two pairs of sentences it appears that although the monad -&3 (which subtracts 3 from its argument) distributes over minimum, the monad 3&- (which subtracts its argument from 3) does not. This point is made to show the pitfall in a common practice in math, where it is stated that the dyad * distributes over addition, rather than stating (as we do here) that the family *&n of right bonds of * distributes over addition. Because * is commutative, the left bond c&* is equivalent to the right bond *&c, and both distribute over addition. However, in the case of a non-commutative verb such as subtraction, it is possible that a right bond with a given dyad distributes while the corresponding left bond does not. In such a case it is clearly incorrect to say that the dyad distributes, and one is led to statements such as “- distributes to the right over minimum”. A linear verb (to be discussed further in Chapter 9) is one that distributes over addition. E. Symmetry If a dyad d (such as + or * or >.) is both associative and commutative, then the monad d/ produced by insertion is said to be symmetric, because it produces the same result when the argument list to which it applies is re-ordered or permuted. For example: a=: 1 2 3 4 5 b=: 3 1 5 2 4 +/a 15 */a 120 +/b 15 */b 120 >./a >./b 20 Arithmetic 3 -/a 3 3 9 -/b F. Display of Proverbs If a proverb is entered alone (that is, without arguments), its representation is displayed. For example, if the proverbs of Sections F and G of Chapter 1 are already defined, then: increment >: add3 >:@>:@>: identity <:@>: G. Inverses Review the discussion of inverses in Section C and Exercise G3 of Chapter 1. Then observe the results of the following uses of inversion: a=:0 1 2 3 4 5 >:^:_1 a _1 0 1 2 3 4 >:^:_1 < +&3^:_1 a _3 _2 _1 0 1 2 +&3^:_1 -&3 -&3^:_1 a 3 4 5 6 7 8 3&-^:_1 a 3 2 1 0 _1 _2 3&- 3&-^:3 a 0 1 2 3 4 5 3&-^:_1 3&- H. Partitions The sum of a list (+/list) is equal to the sum of sums over parts of the list, and a similar relation holds for some other verbs such as */ and >./ . For example: Chapter 2 Properties of Verbs 21 +/3 1 4 1 5 9 23 (+/3 1)+(+/4 1 5 9) 23 */3 1 4 1 5 9 540 (*/3 1)*(*/4 1 5 9) 540 >./3 1 4 1 5 9 9 9 (>./3 1)>.(>./4 1 5 9) These relations can be expressed more clearly in terms of the truncation verbs take ({.) and drop (}.). Thus: a=:3 1 4 1 5 9 2{.a 3 1 2}.a 4 1 5 9 (+/2{.a)+(+/2}.a) 23 +/a 23 (*/2{.a)*(*/2}.a) 540 */a 540 (+/6{.a)+(+/6}.a) 23 (*/6{.a)*(*/6}.a) 540 The last two examples are interesting because the list 6}.a is empty, yet the results of +/ and */ upon it are such as to maintain the identities seen for the other cases. Thus: +/6}.a */6}.a 0 1 This matter is explored further in the succeeding section. I. Identity Elements and Infinity It is easy to verify that the monads 0&+ and 1&* and -&0 are identity verbs that produce no change in their arguments. A noun that bonds with a dyad to form an identity verb is said to be an identity element of that dyad. Thus, 1 is the identity element of *, and 0 is the identity element of + and of - . Although -&0 is an identity, 0&- is not. We may therefore say more precisely that 0 is a right identity of - . The same is true for other non-commutative verbs. Thus, 1 is a right identity of ^ (power). 22 Arithmetic To ensure that identities of the form (+/a)=(+/k{.a)+(+/k}.a) remain true when one of the lists is empty, we define the result of d/b to be the identity element of d if the list b is empty. Does the dyad <. (minimum) possess an identity element? If h were a huge number (such as 10^9) then it would serve for all practical purposes as the identity element of minimum. However, since there is no largest number among the integers, we must again extend the domain by adding a new element, denoted by _ and called infinity. To provide an identity for maximum we also add a negative infinity denoted by __ . We will refer to the resulting domain as integers+. Thus: <./0#0 _ >./i.0 __ J. Experimentation In experimenting with expressions on the computer you will find that many verbs, adverbs, and conjunctions have meanings that are more general than the definitions given in the text. For example: halve=: 2&*^:_1 halve 2 4 6 8 10 1 2 3 4 5 sqr=:*~ sqrt=: sqr^:_1 sqrt 1 4 9 16 25 1 2 3 4 5 halve 1 2 3 4 5 0.5 1 1.5 2 2.5 sqrt 1 2 3 4 5 1 1.41421 1.73205 2 2.23607 sqrt - 1 2 3 4 5 0j1 0j1.41421 0j1.73205 0j2 0j2.23607 Some of the results of these experiments are fractions and complex numbers that lie outside the domain of integers treated thus far. There is no harm in experimenting further with any that interest you, but do not spend too much time on baffling matters that will be treated later in the text. K. Summary of Notation The notation introduced in this chapter comprises two nouns (_ and __) for the identity elements of minimum and maximum; two verbs take and drop ({. }.) for truncating a list; the commute adverb ~ ; the conjunction & to bond nouns to dyads; and verbs produced by the atop conjunction @ have dyadic as well as monadic cases. L. On Language Use the computer to test the following assertions: 1. The monad | yields the magnitude or absolute value. 2. The monad |. reverses its argument, and 3&|. rotates it by three places. 3. The monad -&| is equivalent to -@|, but the dyad -&| applies the dyad - to the result of applying the monad | to each argument. Chapter 2 Properties of Verbs 23 4. %&4 is division by 4, and is equivalent to 4&*^:_1 . 5. The monads +: and -: are double and halve. 6. The monads *: and %: are square and square root. 7. 'abcde' is the list of the first five letters of the alphabet, and monads such as |. and 3&|. and 3 4&$ apply to it. Exercises A1 Define a verb sump that sums the positive elements of a list. Define dsq and sqd to double the square and square the double. Answer: sump=:+/@(0&>.) dsq=:(2&*)@(^&2) sqd=:^&2@(2&*) B1 Define the following verbs: from That subtracts its left argument from the right square Without using ^ double Without using * zero A monad that yields zero Answer: from=: -~ square=:*~ double=:+~ zero=:-~ C1 Test all the dyads defined thus far for associativity. D1 Which of the monads defined in preceding exercises are linear? E1 Use the arguments a=: 1 2 3 4 5 and b=: 3 1 5 2 4 to test all dyads (including -~ and ^~) for symmetry. E2 The expression ?~ n produces a random permutation of the integers i. n. Use it for further tests of symmetry. G1 Experiment with inverses of the monads defined in preceding exercises. H1 Test the dyad <. to see if (<./k{.a)<.(<./k}.a) agrees with <./a for various values of k and a . H2 Repeat Exercise H1 for the dyads - and ^ H3 Characterize those dyads that satisfy the test of Exercise H1. Answer: They are associative I1 J1 Experiment with various dyads to determine their identity elements. Experiment with the dyad % 25 Chapter 3 Partitions and Selections A. Partition Adverbs The partition adverb \ (called prefix) applies to monads to produce many useful verbs. For example: a=: 1 2 3 4 5 sum=: +/ sum a 15 sum\ a 1 3 6 10 15 Subtotals or “running” sums (+/1),(+/1 2),(+/1 2 3),(+/1 2 3 4),(+/1 2 3 4 5) 1 3 6 10 15 +/\a 1 3 6 10 15 Running products */\a 1 2 6 24 120 !a 1 2 6 24 120 >./\ 3 1 4 1 5 9 3 3 4 4 5 9 Running maxima The partition adverb \. behaves similarly to produce a verb that applies to suffixes: sum \.a 15 14 12 9 5 */\.a 120 120 60 20 5 <./\.3 1 4 1 5 9 26 Arithmetic 1 1 1 1 5 9 (*/\.a)*(*/\a) 120 240 360 480 600 (+/\.a)+(+/\a) 16 17 18 19 20 (-/\.a)-(-/\a) 2 _1 2 1 2 The diagonal adverb /. applies to (forward sloping) diagonals of tables. It will later be seen to be useful in multiplying polynomials and integers expressed in decimal. It is also useful in treating correlations and convolutions: t=:1 2 1*/1 2 1 t 1 2 1 2 4 2 1 2 1 sum/. t 1 4 6 4 1 (sum/. t)*(10^i.-5) 10000 4000 600 40 1 +/(sum/. t)*(10^i.-5) 14641 121*121 14641 +//.1 2 1*/1 3 3 1 1 5 10 10 5 1 +//.1 3 3 1*/1 4 6 4 1 1 7 21 35 35 21 7 1 B. Selection Verbs The take and drop ({. and }.) used in Section 2 H are examples of selection verbs. A more general selection is provided by the verb { (called from). For example: primes=:2 3 5 7 11 13 2{primes 5 0 2 4{primes 2 5 11 3{.primes Chapter 3 Partitions And Selections 27 2 3 5 (i.3){primes 2 3 5 (i.-#primes){primes 13 11 7 5 3 2 i.3 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 2{i.3 5 0 1 2 3 4 10 11 12 13 14 2 1 3 5 0 4{primes 5 3 7 13 2 11 The last sentence above is an example of a permutation that reorders the items of the list primes; a list such as 2 1 3 5 0 4 that produces a permutation is called a permutation list, or permutation vector, or simply a permutation. If the items of a list a are distinct, then the selection b=: i{a has an inverse in the sense that for a given b, an index can be found that selects it. The dyad i. fulfills this purpose, and is called indexing. For example: a=:2 3 5 7 11 13 ]b=:3{a 7 a i. b 3 a i. 11 2 5 4 0 2 More precisely, the monads {&a and a&i. are mutually inverse. For example: psel=: {&2 3 5 7 11 13 pind=: 2 3 5 7 11 13&i. pind 7 2 3 0 psel pind 7 2 7 2 A list such as a specifies a set of intervals, and an integer may be classified according to the interval in which it falls. More precisely, we will determine the index of the largest element in the list that equals or precedes it. Thus, 5 and 6 both lie in interval 2 of a because they are greater than or equal to 2{a and less than 3{a. Indexing can be used to perform the classification as follows: 28 Arithmetic a 2 3 5 7 11 13 x=: 6 x<a 0 0 0 1 1 1 (x<a) i. 1 3 ]i=: <:(x<a)i.1 2 i{a 5 C. Grade and Sort The monad /: grades its argument. For example: p=: 5 3 7 13 2 11 /:p 4 1 0 2 5 3 (/:p){p 2 3 5 7 11 13 More precisely, the monad /: produces a permutation vector that can be used to sort its argument to ascending order. D. Residue Just as the introduction of the predecessor as the inverse of the successor led to a new class of numbers outside the class of counting numbers, so an attempt to introduce an inverse to a multiplication such as 5&* leads to new numbers when applied to an integer such as 17 that is not an integer multiple of 5. In other words, 17 is not in the (integer) domain of the inverse 5&*^:_1 . Similar remarks apply to an arbitrary multiple m&*. An approximate inverse in integers can be obtained by locating the argument in the intervals specified by the multiples 5*i.n . For example: x=: 17 m5=: 5*i.6 m5 0 5 10 15 20 25 d=: <:(x<m5)i. 1 d 3 5*d 15 r=: x-5*d Chapter 3 Partitions And Selections 29 r 2 5|x 2 The result r is the difference between the original argument and the nearest multiple of 5 that does not exceed it; it is called the residue of x modulo 5, or the 5-residue of x . The dyad | is called residue, and x-m|x is an integer multiple of m. Consequently it is in the domain of the inverse m&*^:_1. Thus: a=: i. 21 a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 8|a 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 a-8|a 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 16 16 16 16 16 8&*^:_1 a-8|a 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 10&*^:_1 a-10|a 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 E. Characters In English, the word Milk refers to a white liquid, whereas ‘Milk’ refers to the list of four literal characters ‘M’ and ‘i’ and ‘l’ and ‘k’. We will use quotes in a similar manner, as illustrated below: alph=: ' ABCDEFGHIJKLMNOPQRSTUVWXYZ' 9 0 9 9 0 9 9 9 0 9 22 0 22 0 22 9 0 22 9 9 { alph I II III IV V VI VII t { ' *' t=: 4>*/~ 3 2 1 0 1 2 3 t 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0 *** *** ******* ******* ******* *** *** sentence=: '1 2 3^4' reverse=: (i.-#sentence){sentence reverse 4^3 2 1 do=:". do sentence 1 16 81 do reverse 30 Arithmetic 64 16 4 ;: sentence +-----+-+-+ |1 2 3|^|4| +-----+-+-+ F. Box and Open The word-formation verb ;: can be applied to a character list that represents a sentence to break it into its individual words. Thus: letters=: 'abc=:i.3 4+2' words=: ;: letters words +---+--+--+---+-+-+ |abc|=:|i.|3 4|+|2| +---+--+--+---+-+-+ #words 6 (i.-#words){words +-+-+---+--+--+---+ |2|+|3 4|i.|=:|abc| +-+-+---+--+--+---+ As illustrated, the result of the word-formation is a list of six items, each of which is a boxed list representing the corresponding word. A single box can also be formed by the box monad < as follows: <'abcd' +----+ |abcd| +----+ <2 3 5 +-----+ |2 3 5| +-----+ (<(<'abcd'),<2 3 5),<2 3$(<'abcd'),<2 3 5 +------------+-------------------+ | |+-----+-----+-----+| |+----+-----+||abcd |2 3 5|abcd || ||abcd|2 3 5||+-----+-----+-----+| |+----+-----+||2 3 5|abcd |2 3 5|| | |+-----+-----+-----+| +------------+-------------------+ The box verb can also be very helpful in clarifying the behaviour of the partition adverbs. For example: <\a=:1 2 3 4 5 +-+---+-----+-------+---------+ |1|1 2|1 2 3|1 2 3 4|1 2 3 4 5| +-+---+-----+-------+---------+ <\.a +---------+-------+-----+---+-+ Chapter 3 Partitions And Selections 31 |1 2 3 4 5|2 3 4 5|3 4 5|4 5|5| +---------+-------+-----+---+-+ i. 3 4 0 1 2 3 4 5 6 7 8 9 10 11 </.i.3 4 +-+---+-----+-----+----+--+ |0|1 4|2 5 8|3 6 9|7 10|11| +-+---+-----+-----+----+--+ The monad > is the inverse of box; where necessary it “pads” the result with appropriate zeros or spaces. For example: ]a=: ;: 'Gaily into Ruislip gardens' +-----+----+-------+-------+ |Gaily|into|Ruislip|gardens| +-----+----+-------+-------+ >a Gaily into Ruislip gardens b=:</.i.3 4 b +-+---+-----+-----+----+--+ |0|1 4|2 5 8|3 6 9|7 10|11| +-+---+-----+-----+----+--+ >b 0 0 0 1 4 0 2 5 8 3 6 9 7 10 0 11 0 0 G. Summary of Notation The notation introduced in this chapter comprises three partition adverbs, prefix, suffix, and oblique (\ \. /.); the dyads from and residue ({ |); and the monads box, open, grade, and word-formation (< > /: ;:). Section E also introduced the use of quotes to distinguish literals and other characters. H. On Language Review Section R of Chapter 1, and pursue one or more of the options suggested. In exercises first write (or at least sketch out) the result of each sentence without using the computer; then enter the sentence on the computer to check your answer. Exercises A1 q=:1 1&(*/) q 1 2 1 32 Arithmetic r=:+//.@q r 1 2 1 r 1 r r 1 r^:(5) 1 r^:(i.6 ) A2 Experiment with the dyad ! for various cases, such as 3!5 and 4!5 and (i.6)!5. A3 (i.6)!5 !/~i.6 !~/~i.6 (!~/~i.6)=(r^:(i.6) 1) B1 (2*i.3){2 3 5 7 11 13 17 0 2 3 1{i.4 4 2{0 2 3 1{i.4 4 B2 cl=:i.&1@< 6 cl 2 3 5 7 11 13 5 cl 2 3 5 7 11 13 4 cl 2 3 5 7 11 13 B3 Experiment with negative left arguments to {. and }. and { D1 3|7 7|3 3|i.10 |/~i.7 E1 text=:'i sing of olaf glad and big' /: text (/:text){text text{~/:text text/:text F1 <\'abcdefg' <\.'abcdefg' a=:3 4$'abcde' <\a <\.a 33 Chapter 4 Representation of Integers A. Introduction Because we are so familiar with the decimal number system (which extends systematically to larger and larger numbers), the matter of distinct representations of successive counting numbers did not pose an obvious problem. However, in a system such as Roman numerals, the sequence I II III IV V VI VII has no clear pattern of continuation beyond a few thousand. Although the decimal system is familiar, a careful examination of it is fruitful because it leads to simple procedures for determining the results of verbs such as addition, multiplication, and power. We begin by expressing the relationship of a single number (such as the number of days in a year) to the list of decimal digits that represent it: n=:365 10^e 100 10 1 d*10^e 300 60 5 d=:3 6 5 e=:2 1 0 +/d*10^e 365 The name e was chosen for the list 2 1 0 because the right argument of the power verb is often called an exponent. It could have been expressed using the verb i. as follows: i. -3 2 1 0 +/d*10^i.-3 365 The foregoing expression is, of course, suitable only for a list d of three items. To write a more general expression for any list d it is necessary to use a verb that yields the number of items of its list argument. Thus: #d 3 d=:1 7 7 6 +/d*10^i.-#d +/d*10^i.-#d 365 34 Arithmetic 1776 The foregoing is an example of determining the base-10 value of a list of digits, and similar expressions apply for other number bases or radices. Thus: +/d*8^i.-#d 245 b=:1 1 0 1 +/b*2^i.-#b 13 10#.d 365 8#.d 245 2#.b 13 The last three sentences show the use of the dyad #. (called base-value) for the same evaluations. B. Addition Two lists representing numbers in decimal may be added to produce a representation of their sum, as illustrated below: year=:3 6 5 agnes=: 3 0 4 base10=:10&#. year + agnes 6 6 9 base10 (year + agnes) 669 (base10 year) + (base10 agnes) 669 year+year 6 12 10 base10 (year+year) 730 (base10 year)+(base10 year) 730 Although the sum year+year yields the correct sum when evaluated by base10, it is not in the usual normal form with each item in the list lying in the interval from 0 to 9. It Chapter 4 Representation of Integers 35 can be brought to normal form by subtracting 10 from each of the last two items and “carrying” ones to the preceding items to obtain the result 7 3 0 in normal form. Since a zero can be appended to the beginning of a list without changing its decimal value, lists of different lengths can be added by appending leading zeros to the shorter. For example: dozen=:1 2 base10 0,dozen 12 year+0,dozen 3 7 7 C. Multiplication A procedure for multiplication will first be stated, and its validity will then be examined: a1=:3 6 5 b1=: 1 7 7 6 (base10 a1)*(base10 b1) 648240 over=: ({.;}.)@":@, by=: ' '&;@,.@[,.] a1 by b1 over a1*/b1 +-+----------+ | |1 7 7 6| +-+----------+ |3|3 21 21 18| |6|6 42 42 36| |5|5 35 35 30| +-+----------+ a1*/b1 3 21 21 18 6 42 42 36 5 35 35 30 ]p=:+//.a1*/b1 3 27 68 95 71 30 base10 p 648240 Normalization of p by carries gives 6 4 8 2 4 0 and: base10 6 4 8 2 4 0 648240 The foregoing procedure for multiplication comprises three steps: 1. Form the multiplication table of the lists of digits. 2. Sum the diagonals of the table. 3. Normalize the sums. 36 Arithmetic The method is less error-prone than the one commonly taught, which distributes the normalization process through both the multiplication and summation phases. The validity of the process may be discerned from the following examples: b1=:1 7 7 6 b2=:10^3 2 1 0 b=:b1*b2 b 1000 700 70 6 a1=:3 6 5 a2=:10^2 1 0 a=:a1*a2 a 300 60 5 (+/a)*(+/b) 648240 a*/b 300000 210000 21000 1800 60000 42000 4200 360 5000 3500 350 30 +/a*/b 365000 255500 25550 2190 +/+/a*/b 648240 The fact that the product of the sums +/a and +/b can be expressed as the sum of products arises from two properties: 1. Multiplication distributes over addition. 2. Summation (+/) is symmetric. In the expression a*/b, the arguments are themselves products and, because multiplication is both associative and commutative, a*/b can also be expressed as the product of two tables as follows: a1*/b1 3 21 21 18 6 42 42 36 5 35 35 30 a2*/b2 100000 10000 1000 100 10000 1000 100 10 1000 100 10 1 (a1*/b1)*(a2*/b2) 300000 210000 21000 1800 60000 42000 4200 360 5000 3500 350 30 a*/b 300000 210000 21000 1800 60000 42000 4200 360 5000 3500 350 30 Each element of the table a1*/b1 is multiplied by the corresponding element from the “powers of ten” table a2*/b2, and those elements of a1*/b1 multiplied by the same power of ten can be first summed and then multiplied by it. Since equal powers lie on Chapter 4 Representation of Integers 37 diagonals, p=:+//.a1*/b1 used in describing the multiplication procedure. the sums are made along these diagonals, as in the expression The reason that equal powers lie on diagonals can be made clear by noting that a2 equals 10^e=:2 1 0, that b2 equals 10^f=:3 2 1 0, and that a2*/b2 equals 10^e+/f : e+/f 5 4 3 2 4 3 2 1 3 2 1 0 10^e+/f 100000 10000 1000 100 10000 1000 100 10 1000 100 10 1 D. Normalization The normalization process used in Section B can be expressed more formally. We first define the main verbs to be used, and illustrate their use: base10=:10&#. residue=: 10&| tithe=: 10&*^:_1 n=: 98 45 19 24 base10 n 102714 remainder=: residue n remainder 8 5 9 4 n-remainder 90 40 10 20 carry=: tithe n-remainder carry 9 4 1 2 carry ,: remainder (,: laminates lists to form a table) 9 4 1 2 8 5 9 4 +//. carry ,: remainder 9 12 6 11 4 base10 +//. carry ,: remainder 102714 We begin by specifying a “temporary” name t, and repeatedly re-assign to it the result of the process illustrated above: t=: n t=:+//. (tithe t-residue t) ,: residue t t 9 12 6 11 4 base10 t 102714 38 Arithmetic t=:+//. (tithe t-residue t) ,: residue t t 0 10 2 7 1 4 base10 t 102714 t=:+//. (tithe t-residue t) ,: residue t base10 t 102714 We will now use trains of isolated verbs (to be discussed below) to capture the foregoing process in a single verb, as follows: reduce=: +//.@ ((tithe @ (] - residue)) ,: residue) reduce n 9 12 6 11 4 reduce ^:3 n 0 1 0 2 7 1 4 reduce^:4 n 0 0 1 0 2 7 1 4 Because further repetitions of reduce continue to append leading zeros, we will instead use trim@reduce, where trim is defined to trim off a leading zero: trim=:0&=@(0&{) }. ] (trim @ reduce)^:3 n 1 0 2 7 1 4 norm=: trim@reduce^:_ Three repetitions suffice for the argument n, but in general the number required is unknown. However, since the process v^:k stops when the successive results stop changing, it suffices to use a sufficiently large value of k, preferably infinity. We now consider the trains used in the definitions of reduce and trim. The phrase ] - residue occurring in the former has an obvious meaning, as illustrated below: ] - residue n _8 _5 _9 _4 However, the same sequence of three verbs isolated by parentheses (as they are in the definition of reduce) is called a train, and has the meaning illustrated below: (] - residue) n 90 40 10 20 (]n) - (residue n) 90 40 10 20 (3&< <. 9&>) i. 15 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 Chapter 4 Representation of Integers 39 (3&< i.15) <. (9&> i.15) 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 Thus, the middle verb in a train of three applies dyadically to the results of the outer verbs. Such a train also has a dyadic meaning defined similarly. For example: 3 (+*-) 7 _40 (3+7)*(3-7) _40 3 (< >. =) 2 3 4 5 0 1 1 1 3<:2 3 4 5 0 1 1 1 E. Mixed Bases The base-value dyad #. used in Section A with the simple bases 10 and 8 and 2 can also be used with a mixed base defined by a list. For example: base=: 7 24 60 60 base #. 0 1 2 3 3723 # of seconds in 0 days, 1 hour, 2 minutes, 3 seconds a=:i. 2 4 a 0 1 2 3 4 5 6 7 base #. a 3723 363967 base #: 3723 0 1 2 3 base#: base #. a 0 1 2 3 4 5 6 7 The last results illustrate the fact that the dyad #: provides an inverse to the base value, and can be used to produce the list representations of integers in any base. For example: 2 2 2 #: i. 8 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 40 Arithmetic 1 1 0 1 1 1 10 10 10 #: 24 60 365 0 2 4 0 6 0 3 6 5 fbase=: 3-i. 3 fbase 3 2 1 fbase #: i.!3 0 0 0 0 1 0 1 0 0 1 1 0 2 0 0 2 1 0 The final example employs an unusual “factorial” base, that will be used in the discussion of permutations in Chapter 7. F. Experimentation The verb mag=: ] >. - yields the magnitude of its argument; for example, mag 9 _9 yields 9 9. However, the monad | does the same. Although it is probably unwise to spend time memorizing bits of notation before they arise in context, it is worthwhile to experiment with the monadic cases of dyads already encountered (and conversely), and to adopt those that appear useful. The language summary at the back of the book can be used to suggest further experiments. It is also worthwhile to experiment with the use of tables and other higher-rank arrays such as the rank-3 array i. 2 3 4 and the rank-4 array i. 2 3 4 5. Three matters merit attention: 1. Just as the insertion +/ inserts the verb + between items of a list, so does it between items of a higher rank array: between the rows of a table, and between the planes of a rank-3 array. Consequently, +/ applied to a table adds one row to another. For example: i. 3 4 0 1 2 3 4 5 6 7 8 9 10 11 +/i. 3 4 12 15 18 21 2. Expressions such as a */ b, already used to form tables when applied to lists, also apply to higher-rank arrays. For example: 2 3 5 */ i. 2 4 0 2 4 6 8 10 12 14 0 3 6 9 12 15 18 21 Chapter 4 Representation of Integers 41 0 5 10 15 20 25 30 35 1+i.2 3 1 2 3 4 5 6 *// (1+i.2 3) 4 5 6 8 10 12 12 15 18 3. The rank conjunction " determines the rank of the sub-array to which a verb applies. For example: sum=:+/ ]a=:i. 2 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 sum a sum"2 a sum"1 a 12 14 16 18 12 15 18 21 6 22 38 20 22 24 26 48 51 54 57 54 70 86 28 30 32 34 G. Summary of Notation Notation introduced in this chapter comprises isolated trains of verbs (as indicated in the diagrams at the right); one conjunction (rank ") ; f h f h | | / \ / \ and four verbs -- base value and its inverse, y y x y x y laminate, and magnitude (#. #: ,: |). g g / \ / \ Exercises A1 base10=: 10&#. base8=: 8&#. base2=: 2&#. a=:1 0 1 0 1 base2 a base8 a base10 a base2 -a base8 -a base10 -a C1 Compare the multiplication process described at the beginning of Section C with the commonly-taught process for multiplying 365 by 1776 by actually performing both. C2 Repeat Exercise C1 for various arguments, and note particularly the relative difficulties of reviewing the work for suspected errors. E1 What is the result of applying the verb norm to a single number such as 1776? 42 Arithmetic E2 Enter t=: ?4 2$10 to define a table t of decimal digits. Then define a verb sum such that sum t gives the list representation of the integers represented by the rows of t. Check your result by applying base10 to it and +/base10 to t. Answer: sum=: norm@(+/) E3 Write an expression that gives the list representation of the product of the integers represented by the rows of t. Answer: norm +//."2^:(<:#t) *//t F1 Enter #: i. 8 and compare the result with the use of the dyad #: in Section E. Use further experiments to determine and state the definition of the monad #: . Answer: #:x is equivalent to (n#2)#:x , where n is chosen just large enough to represent the largest element of x. F2 Define t=: ,"1~&0 , ,"1~&1 . Then enter ]b=:i.2 1 and t b and t t b, and so on, and compare the results with the results of #:i.2^k for various values of k . Chapter 5 Proofs A. Introduction A proof is an exposition intended to convince a reader that a certain relation is true, and perhaps to provide some insight into why it is true. For example, Section O of Chapter 1 provided, in passing, an illustration that the sum of the first six odd numbers was equal to six times six, that is, the square of six. Thus: odds=:1+2*i. k=:6 odds 1 3 5 7 9 11 +/odds 36 k*k 36 *:k 36 *:#odds 36 This relation for the case of six odds suggests that a similar relation might hold for any number, and the prefix scan (\) provides a convenient test: d=:1+i.15 d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 odds=:1+2*i.15 odds 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 +/\odds 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 44 *:d 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 This result provides rather strong evidence that the sum +/1+2*i.k equals the square of k for any value of k, but it provides no insight into why this should be so. The following numbered sequence of sentences begins and ends with the pair whose equivalence is to be established. The intermediate sentences differ in simple ways that can provide insight into why the relations would hold true for any value of k: S1 odds=:1+2*i.k=:10 odds 1 3 5 7 9 11 13 15 17 19 S2 +/odds 100 S3 S4 S5 S6 S7 S8 S9 |.odds 19 17 15 13 11 9 7 5 3 1 +/|.odds 100 -: (+/odds) + (+/|.odds) (-: halves its argument) 100 -: +/ (odds+|.odds) 100 +/ -: (odds+|.odds) 100 odds+|.odds 20 20 20 20 20 20 20 20 20 20 -: odds+|.odds 10 10 10 10 10 10 10 10 10 10 S10 k#k 10 10 10 10 10 10 10 10 10 10 S11 +/k#k S12 S13 100 k*k 100 *:k 100 Sentences S2 and S4 to S7 show that the sum of the first ten odds can be written in several equivalent ways, but really demonstrate it only for the specific case of k=:10. 45 However, we may see reasons to believe that the relations between successive sentences should hold for other values of k. For example, because +/ is symmetric (as defined in Section 2 E), and because the monad |. permutes its argument, S2 and S4 agree for any list odds . Further, in S5, one- half of the sum of two equal things is equal to either one of them, and similarly simple arguments can establish the equality of the pairs S6, S7; S7, S11; S11, S12; and S12, S13. In particular, S12 agrees with S11 because their agreement expresses the definition of multiplication. We will call a sequence such as S1-S13 an informal proof; it provides insight but leaves to the reader the task of providing precise reasons for the equivalence of certain pairs of sentences. A formal proof is one in which each sentence is annotated by a clear statement of the reasons for its equivalence with an earlier sentence. An informal proof is satisfactory only if the relations between successive sentences are obvious to the reader. If so, why is it ever desirable to make formal a good informal proof? Firstly, what is obvious to one reader may not be to another. A second, more serious, reason is that obvious reasons for relations may, in fact, be wrong, or at least incomplete. For example, does +/1+2*i.k equal k*k for the case k=:0 ? The answer is yes, but this does not follow from the arguments given thus far, since they took no account of the definition of the summation of an empty list. A complete proof would require examination of the definition of identity elements in Section 2 I. In the foregoing example the conclusion remained correct even though the reasons provided were incomplete, but unexamined proofs and definitions can also lead to errors or contradictions. For example, the prime numbers illustrated in Exercise O1 of Chapter 1 have the important property that any counting number greater than one can be expressed as a product of one or more primes, and that this factorization is unique. For example, using the first five elements of the list obtained in the cited exercise: pr=:2 3 5 7 11 e=:2 0 2 1 0 pr^e 4 1 25 7 1 */pr^e 700 Thus, the exponents 2 0 2 1 0 specify the prime factorization of the integer 700, and no other factorization in primes is possible. We turn now to a definition of primes that is commonly used in high-school: A prime is an integer that is divisible only by itself and one. The integers in the list pr satisfy this condition, but so does the integer 1. We now consider a list of “primes” that includes 1, and see that the factorization of the integer 700 in terms of it is not unique: p=:pr,1 p 2 3 5 7 11 1 */p^2 0 2 1 0 0 700 */p^2 0 2 1 0 3 46 700 The loss of unique factorization clearly lies in a definition of primes that admits 1 as a member. We turn to an informal development of primes that leads to a suitable definition: i=:>:i.8 i 1 2 3 4 5 6 7 8 rem=: i|/i rem 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 2 0 1 2 0 1 2 1 2 3 0 1 2 3 0 1 2 3 4 0 1 2 3 1 2 3 4 5 0 1 2 1 2 3 4 5 6 0 1 1 2 3 4 5 6 7 0 +/div 1 2 2 3 2 4 2 4 2=+/div 0 1 1 0 1 0 1 0 (2=+/div)#i 2 3 5 7 div=: 0= i|/i div 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 The table rem is the table of remainders (or residues), and div is a divisibility table that identifies zero remainders. The sum +/div sums the columns of div to yield the number of divisors of each of the integers i, and the final sentence selects those integers that have exactly two distinct divisors. It furnishes a suitable definition: A prime is an integer that has exactly two distinct divisors. We conclude this section with an example of an informal development designed to clarify some matters of elementary algebra. The expression a3 is commonly used to denote what we denote here by a^3, and is defined by saying that it is the product of three factors a (which we would write as a*a*a) but also by continuing to define a0 as 1. What is meant by a product of no factors, and why should its result be 1 ? Somewhat less mysteriously, what is a product of one factor (a1), and why should it yield a ? The definitions of expressions such as a^n and !n are commonly extended to arguments that do not fall under the initial definition, by extending them so as to maintain certain significant “patterns” or “identities”. These patterns can often be made clear by applying functions to lists (such as i.n) that themselves maintain simple patterns. For example: a=:4 e=:3 4 5 a^e 47 64 256 1024 To evaluate the next in sequence (that is, a^6), one might perform the calculation 4*4*4*4*4*4 or, more efficiently, note that the result is simply 4 times the preceding case a^5. In other words, the pattern extends to the right by multiplication by 4. Consequently, and more interestingly, it proceeds to the left by division by 4. Thus, since 4^3 is 64, it follows that 4^2 is 16, that 4^1 is 4, and that 4^0 is 1. These last two results provide some insight into why a^1 and a^0 are defined as a and 1 for any a, including the case where a itself is zero. It is worth noting that some college texts state that 0^0 is undefined, even though the result 1 is clearly needed to make it possible to evaluate the general form of the polynomial in x with coefficients c, namely, +/c*x^i.#c. Going, for a moment, outside the domain of the integers, we may also note that the pattern continues through negative and fractional values. Thus: a=:4 e=:3 4 5 a^e 64 256 1024 e=:3-~i.7 e _3 _2 _1 0 1 2 3 4^e 0.015625 0.0625 0.25 1 4 16 64 f=:-:i.6 f 0 0.5 1 1.5 2 2.5 4^f 1 2 4 8 16 32 In the final example, there are two steps rather than one between successive integers of the equally-spaced elements of the exponent f, and 4^f must therefore exhibit a pattern of multiplication by a factor which applied twice produces multiplication by 4; in other words, a factor that is the square root of 4. B. Formal and Informal Proofs Although topics in mathematics are often presented deductively, as a sequence of formal proofs that appear to lead to collections of indisputable facts, we will continue to use an informal approach that emphasizes the use of expressions (such as the pair +/\odds and *:d of Section A) that suggest relations, and sequences of expressions (such as S1-S13) that outline a proof. The reasons for adopting such an informal approach are rooted mainly in the view of mathematics expressed clearly and entertainingly in the dialogue in Lakatos’ Proofs and Refutations [5] (discussed briefly in Section C), but also in the characteristics of the 48 notation used here; characteristics that make it easy to express patterns in lists and tables, and to display them accurately and effortlessly by entering the expressions on a computer. To appreciate these characteristics the reader should attempt to render various expressions in this text clearly and completely in more conventional notation. For example, +/odds may be expressed by using sigma notation, but +/\odds would probably be expressed as: i ci = Σ oddsi j=1 an expression that does not yield an entire list as does +/\odds, but specifies it indirectly by specifying each of the elements of some list denoted by c. In a similar vein, it might be assumed that the sigma notation used for +/odds would also serve for +/|.odds as follows: n Σ oddsi i=1 1 Σ oddsi i=n However, the summation from n to 1 is normally taken to denote summation over an empty set, since no summation from j to k could otherwise denote the empty case. It might also be noted that the symbol n commonly used in sigma notation has no clear connection to the number of elements in the argument, and cannot be expressed as a function of the argument without introducing some notation analogous to #odds. C. Proofs and Refutations Of his Proofs and Refutations [4], Lakatos says “Its modest aim is to elaborate the point that informal, quasi-empirical, mathematics does not grow through the monotonous increase of the number of indubitably established theorems but through the incessant improvement of guesses by speculation and criticism, by the logic of proofs and refutations.” He goes on to say that there is a simple pattern of mathematical discovery - or of the growth of informal mathematical theories - that consists of the following stages (also quoted from [4]): 1. Primitive conjecture 2. Proof (a rough thought-experiment or argument, decomposing the primitive conjecture into sub-conjectures or lemmas). 3. ‘Global’ counterexamples (counterexamples to the primitive conjecture) emerge. 4. Proof re-examined: the ‘guilty lemma’ to which the global counter-example is a ‘local’ counterexample is spotted. This ‘guilty’ lemma may have previously remained ‘hidden’ or may have been misidentified. Now it is made explicit, and built into the primitive conjecture as a condition. The theorem - the improved conjecture - supersedes the primitive conjecture with the new proof-generated concept as its paramount new feature. 49 As a result, “Counterexamples are turned into new examples - new fields of inquiry open up.” Lakatos illustrates this process by following a simple conjecture through surprising twists and turns, citing positions held by dozens of eminent mathematicians. To quote from a review cited on the cover, “The whole book, as well as being a delightful read, is of immense value to anyone concerned with mathematical education at any level.” We will illustrate the process briefly. Having counted the number of vertices v, edges e, and faces f of various polyhedra (bounded by multiple flat faces, surfaces, or “seats” as suggested by the root hedra), a class arrives at the conjecture that the expression f+v-e yields 2 for any polyhedron. For example: Tetrahedron Square-base pyramid Cube f 4 5 6 v 4 5 8 e 6 8 12 f+v-e 2 2 2 The teacher provides the following proof or “thought-experiment” to establish the validity of the relation for all polyhedra: 1. Triangulate each face by (repeatedly) drawing a line between some pair of vertices not already joined by an edge. [In the square-based pyramid this requires one diagonal on the base; in the cube it requires one diagonal on each face.] Since each line drawn adds one edge and one face (splitting one existing face into two), the triangulation does not change the result of f+v-e. 2. Remove one face, leaving a hole bounded by three edges. 3. Dismantle the body triangle-by-triangle until only one remains, removing at each step one edge and one face, or one vertex, two edges, and one face. Either action leaves f+v-e unchanged. 4. For the final triangle, f+v-e is 1+3-3 (that is, 1), which, together with the face removed in step 2, gives a result of 2 for f+v-e. The validity of each step of the process is challenged by students who enter the dialogue, and the validity of the conjecture itself is challenged by counterexamples, including one provided by a body formed by fitting together into a square “picture frame” four identical moldings (polyhedra) having the following end and side views: __ __________________________ / \ / \ / \ / \ A direct count gives 16+16-32 or 0, contradicting the conjecture. Attempts are first made to sharpen the definition of a polyhedron so as to save the conjecture by barring the picture frame from consideration (as a “monster”), and later to revise the conjecture so as to account for such a monster. One such revision is based on the observation that the “well-behaved” polyhedra shared the property that (if constructed of elastic surfaces) they could be inflated to a sphere, but the picture frame could not. Moreover, a single cut through one limb of the frame (which 50 would appear as a vertical line in the side view above) would form a body with two new faces, eight new vertices, and eight new edges, restoring the result of 2 for f+v-e, and producing a body that could be inflated to a sphere. A revised conjecture taking into account the “connectedness” or “number of cuts needed to produce a ‘spherical’ body” can therefore be formulated; but it again is subject to further criticism and refinement. We conclude this section with an extended quotation from Lakatos (page 73): TEACHER: No! Facts do not suggest conjectures and do not support them either! BETA: Then what suggested 2=f+v-e to me if not the facts, listed in my table? TEACHER: I shall tell you. You yourself said you failed many times to fit them into a formula. Now what happened was this: you had three or four conjectures which in turn were quickly refuted. Your table was built up in the process of testing and refuting these conjectures. These dead and now forgotten conjectures suggested the facts, not the facts the conjectures. Naive conjectures are not inductive conjectures: we arrive at them by trial and error, through conjectures and refutations. But if you - wrongly - believe that you arrived at them inductively, from your tables, if you believe that the longer the table, the more conjectures it will suggest, and later support, you may waste your time compiling unnecessary data. Also, being indoctrinated that the path of discovery is from facts to conjecture, and from conjecture to proof (the myth of induction), you may completely forget about the heuristic alternative: deductive guessing. D. Proofs Throughout this text we will present examples intended to stimulate the formulation of conjectures, but will not develop proofs. However, the reader is encouraged to provide formal and informal proofs for any conjectures that suggest themselves. The present section will provide examples of proofs of identities that are familiar in elementary mathematics, but are often treated in more limited forms. In this section we will use the name X to denote a single element (or scalar), and other names to denote lists (or vectors). We will write one sentence below another to indicate that they are equivalent. Thus: Thm1: +/X*W X*+/W asserts that the sum over a scalar times a list is equivalent to the scalar times the sum over the list, and labels the identity as Thm1 (Theorem 1) for future reference. A formal proof of a theorem is provided by annotating each sentence after the first with the reason that it is equivalent to the sentence preceding it. Thus: Thm1: +/X*W X*+/W X&* distributes over + (Section 2 D) If values are assigned to the names used in a theorem, then each sentence may be entered and executed as a test for the case of the particular values assigned. Thus: 51 X=: 3 W=: 3 1 4 1 +/X*W 27 X*+/W 27 This executability is reassuring in developing an identity or proof, because a mis- statement will very likely produce a different result. For example: Thm2: V=: 2 4 6 +/V*/W 36 12 48 12 (+/V)*W 36 12 48 12 Thm1 applied for each element of W (since +/V is a scalar) A sequence of equivalent sentences implies that the first sentence is equivalent to the last. Hence the following is a formal proof that the sum of the column sums of the multiplication table V*/W equals the product of the sums +/V and +/W: Thm3: +/+/V*/W +/V*(+/W) Thm2 and commutativity of * (+/V)*(+/W) Thm1 (with +/W for X and V for W) and commutativity of *. The following theorem can be proved formally by showing that the element of column j of row i of the first table is equal to the corresponding element of the second table: Thm4: (A*P)*/(B*Q) (A*/B)*(P*/Q) It can be illustrated as follows: A=:2 3 5 B=: 3 1 4 1 P=: 4 3 2 Q=: 2 7 1 8 (A*P)*/(B*Q) 48 56 32 64 54 63 36 72 60 70 40 80 (A*/B)*(P*/Q) 48 56 32 64 54 63 36 72 60 70 40 80 52 Since x^n is defined by */n#x, it is easy to show that (x^n)*(x^m) is equivalent to x^(m+n). This result can be used in the proof of the following theorem: Thm5: (X^A)*/(X^B) X^(A+/B) The foregoing theorems will be used in an exercise in Section B of Chapter 9 to prove that the product of two polynomials with coefficients C and D is equivalent to a polynomial with coefficients +//.C*/D. The fact that multiplication distributes over addition is commonly extended to a product of sums and expressed in conventional notation as: LHS= (a+A)(b+B) RHS= (ab)+(aB)+(Ab)+(AB) the left-hand side LHS being equivalent to the right-hand side RHS. This identity can be extended to a product over any number of sums as follows: LHS=(a+A)(b+B)(c+C) RHS=(abc)+(abC)+(aBc)+(aBC)+(Abc)+(AbC)+(ABc)+(ABC) LHS=(a+A)(b+B) ... (z+Z) The last expression above uses the informal three-dot notation to suggest continuation of the same form to arbitrary lengths. To appreciate the difficulties of such informal notation, the reader should attempt its use in a clear definition of the corresponding right-hand side. The use of vectors (lists) makes the expression of the left-hand side simple: */v1+v2 , where (in the three-element case above), v1=:a,b,c and v2=:A,B,C. To clarify the pattern of the right-hand side, we will use explicit values for v1 and v2, thus allowing the direct evaluation of every expression. We will also use numbers less than ten in v1, and greater than ten in v2 to make patterns easier to recognize. Thus: v1=:2 3 4 v2=:12 13 14 v1+v2 14 16 18 ]LHS=: */v1+v2 4032 ]RHS=:(2*3*4)+(2*3*14)+(2*13*4)+(2*13*14)+(12*3*4)+ (12*3*14)+(12*13*4)+(12*13*14) 4032 The pattern in the expression for RHS can be better seen in the following table: M=:>2 3 4;2 3 14;2 13 4;2 13 14;12 3 4;12 3 14; 12 13 4;12 13 14 53 M 2 3 4 2 3 14 2 13 4 2 13 14 12 3 4 12 3 14 12 13 4 12 13 14 */"1 M 24 84 104 364 144 504 624 2184 +/*/"1 M 4032 Because the items of v2 exceed 10, the pattern in M can be displayed more clearly as booleans: ]b1=: M<10 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 ]b2=: M>10 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 The right-hand side can now be expressed in either of two ways: ]RHS=: +/(*/"1 v1^b1)*(*/"1 v2^b2) 4032 ]RHS=: +/*/"1 (v1,v2)^(b1,.b2) 4032 The details of these expressions can be explored by displaying the partial results. For example, the rows of v1^b1 contain the appropriate elements from v1 with the elements from v2 being replaced by ones (the identity element of *), and the product over the rows multiplied by the product over the rows of v2^b2 yields the products to be summed. Thus: v1^b1 2 3 4 2 3 1 2 1 4 2 1 1 1 3 4 1 3 1 1 1 4 v2^b2 1 1 1 1 1 14 1 13 1 1 13 14 12 1 1 12 1 14 12 13 1 54 1 1 1 12 13 14 */"1 v1^b1 24 6 8 2 12 3 4 1 */"1 v2^b2 1 14 13 182 12 168 156 2184 (*/"1 v1^b1)*(*/"1 v2^b2) 24 84 104 364 144 504 624 2184 +/(*/"1 v1^b1)*(*/"1 v2^b2) 4032 Comparison of b2 with the result of #:i.2^3 in Exercise F1 of Chapter 4 should make it clear that #:i.2^n is the table appropriate to any list v of n elements. Moreover, as illustrated the verb t=: ,"1~&0, ,"1~&1 applied to #:i.2^n yields the table for a list of one more element. in Exercise F2 of Chapter 4, The foregoing facts can be used to formalize the following proof of the equality of general functions for the results illustrated above for LHS and RHS. We first define the functions: lhs=:*/@(+"1) rhs=:+/@(f*g) g=:*/"1@(]^T)@] f=:*/"1@(]^0&=@T)@[ T=: #:@i.@(2&^)@# For lists V and W of one element each, the results of V lhs W and V rhs W can easily be shown to be equivalent. We now present an inductive proof in which we assume that V lhs W and V rhs W are equivalent for any lists of n elements, and then use that induction hypothesis to prove that they are equivalent for lists on n+1 elements. Thus: (x,V) rhs (y,W) +/(x,V) (f*g) (y,W) +/(L=:(x,V)f(y,W))*(x,V)g(y,W) +/L**/"1(y,W)^T (y,W) Def of rhs Def of fork Def of g +/L**/"1(y,W)^(0,"1 U),(1,"1 U=:T W) Structure of T +/L*((y^0)*Q),(y^1)*Q=:*/"1 W^U +/L*Q,y*Q +/((x*P),P=:*/"1 V^0=U)*Q,y*Q +/(x*P*Q),y*P*Q (x+y)*+/P*Q (x+y)*V lhs W (x+y)**/V+W */(x,V)+(y,W) Analogous treatment of L Induction hypothesis 55 (x,V) lhs (y,W) 57 Chapter 6 Logic A. Domain and Range As stated in Section 1 D, the domain of a verb is the collection of arguments to which it can apply. For example, the integer 4 is in the domain of >:, but the characters '!' and 'b' and '4' are not. Similarly, the range of a verb is the collection of results that it can produce. The verb >: can produce any integer, and so its range is the same as its domain. This agreement of range and domain also holds for verbs such as + and *; but not for %, which can produce fractions or rational numbers, and so has a wider range as discussed in Chapter 9. A verb may also have a range more limited than its domain. For example, the verb 4&| applies to any integer, but its results all fall in the finite list i.4, that is,0 1 2 3. It is sometimes useful to examine the properties of a verb when it is applied only to a restricted part of its domain, particularly if it is restricted to its range. For example, when restricted to the domain i.4, the verbs: pm4=: 4&|@* sm4=: 4&|@+ (Product modulo 4) (Sum modulo 4) have the following tables: pm4/~ i.4 0 0 0 0 0 1 2 3 0 2 0 2 0 3 2 1 sm4/~ i.4 0 1 2 3 1 2 3 0 2 3 0 1 3 0 1 2 We will use the phrase “v on d” to refer to the verb resulting from restricting the verb v to the domain d. For example, “4&|@* on i.4” refers to the product mod 4 restricted to the domain 0 1 2 3, and “* on i.2” refers to the boolean and, to be discussed in Section C. 58 Arithmetic B. Propositions A proposition or truth-function is any statement which can be judged to be either true or false, and is therefore a verb having a range of two elements. Following Boole (the father of symbolic logic), we will denote these elements by 1 (for true) and 0 (for false). For example: p=: <&5 p 3 1 p a=:i.8 1 1 1 1 1 0 0 0 (p a)#a 0 1 2 3 4 2=+/0=|/~ a 0 0 1 1 0 1 0 1 a#~2=+/0=|/~ a 2 3 5 7 C. Booleans The nouns 0 and 1 (the range of propositions) are called booleans, and a verb whose domain and range are boolean is called a boolean function, or boolean. For example, * limited to booleans might be called and; its table would appear as follows: and=:* and/~ b=:0 1 0 0 0 1 ]c=:i.8 0 1 2 3 4 5 6 7 (>&2 c) and (<&5 c) 0 0 0 1 1 0 0 0 (>&2 and <&5) c 0 0 0 1 1 0 0 0 c #~ (>&2 and <&5) c 3 4 (] #~ >&2 and <&5) c 3 4 The sentence (>&2 and <&5) is a “compound” proposition whose result is true if the proposition >&2 is true and the proposition <&5 is true. A verb or may be defined similarly: or=: *@+ or/~b 0 1 Chapter 6 Logic 59 1 1 (=&7 c) or (<&5 c) 1 1 1 1 1 0 0 1 Note that the dyad + may produce non-boolean results, from which the monad * (called signum) produces booleans. Thus: * _2 0 2 _1 0 1 +/~ b * +/~b 0 1 1 2 0 1 1 1 The booleans and and or are exceedingly useful. For example: dof10=: 0&=@(|&10) dof10 c =: 1+i. 20 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 c#~dof10 c 1 2 5 10 dof15=: 0&=@(|&15) c#~dof15 c 1 3 5 15 Divisors of ten Divisors of fifteen c#~ (dof10 and dof15) c 1 5 Common divisors of ten and fifteen >./c#~ (dof10 and dof15) c 5 GCD of 10 and 15 10 15 |~/ c 0 0 1 2 0 4 3 2 1 0 10 10 10 10 10 10 10 10 10 10 0 1 0 3 0 3 1 7 6 5 4 3 2 1 0 15 15 15 15 15 0=10 15 |~/ c 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 and/0=10 15 |~/ c 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c #~ and/0=10 15 |~/ c 1 5 >./c #~ and/0=10 15 |~/ c 5 GCD of ten and fifteen 60 Arithmetic The dyad +. is defined to yield the greatest common divisor of its arguments: 10 +. 15 5 +./ 10 15 5 The least common multiple is denoted by *. as illustrated below: 10 *. 15 30 (10*15) % 10+.15 30 D. Primitives Verbs (such as * and + and *. and i.) that are denoted by single words are called primitives, to distinguish them from derived verbs produced by phrases such as that (*@+) used to define the boolean or in Section C. Since primitives and derived verbs are treated identically, this distinction is of little consequence except to the designer of a language, who must choose what primitives to provide. Should new primitives be added for such important cases as the boolean and and or? Not if primitives already exist that give the appropriate results when restricted to the boolean domain. The dyads <. and >. (min and max) might be tested for this purpose. Thus: and=: * or=: *@+ b=: 0 1 <./~b 0 0 0 1 and/~b 0 0 0 1 >./~b 0 1 1 1 or/~b 0 1 1 1 But do min and max provide the appropriate identity elements? The identity element for or should be 0, and for and should be 1, as illustrated below: 0 or b 0 1 1 and b 0 1 However, the identity elements of min and max are infinities. Thus: <./i.0 _ >./i.0 __ Other candidates for or and and when restricted to booleans are the greatest common divisor (+.) and the least common multiple (*.) introduced in the preceding section. Thus: +./~b 0 1 1 1 *./~b 0 0 0 1 +./i.0 0 *./i.0 1 Hereafter, these primitives will be used for or and and. It may be noted that Boole also represented or and and by then-current symbols for plus and times, but without the appended dot used here to distinguish them from these verbs. Chapter 6 Logic 61 E. Boolean Dyads Are there any other boolean dyads in addition to *. and +. (and and or)? If so, how many? To answer these questions we first display the tables for *. and +., together with the ravel of each produced by the monad , : *./~ b=:0 1 0 0 0 1 ,*./~b 0 0 0 1 +./~ b=:0 1 0 1 1 1 ,+./~b 0 1 1 1 We then observe that each table must contain four elements, each of which must belong to the range 0 1. Since each element may have either of two values, there are 2*2*2*2, or 2^4, or 16 possible tables which, when ravelled to form a four-element list, must agree with one of the columns in the following transposed table: |:T 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 For example, columns 1 and 7 represent *. and +. : 1{"1 T 0 0 0 1 and=: 1 b. and/~ 0 1 0 0 0 1 and/i. 0 1 7{"1 T 0 1 1 1 or=: 7 b. or/~ 0 1 0 1 1 1 or/i. 0 0 As illustrated in the foregoing, the adverb b. applies to any of the indices (0 to 15) of the table T to produce the corresponding boolean dyad. It may be noted that the base-2 value of any row yields its index; for example, 2#.7{T is 7. 62 Arithmetic F. Boolean Monads A monad that negates a boolean argument is equivalent to subtraction from 1; it is called not, and is denoted by -. . There are in all four boolean monads as illustrated below: b 0 1 -. b 1 0 ] b 0 1 ~:~ b 0 0 =~ b 1 1 G. Generators In English, compound propositions are commonly expressed using only or, and, and not. For example, using p, q, and r to denote propositions, and using parentheses to express the punctuation clearly: p and q not (p and q) (p or q) and not (p and q) not p and (not q) (p or q) or (p or not q) (p and q) and (p and not q) (1 b.) (14 b.) (6 b.) (13 b.) (15 b.) (0 b.) Exclusive-or Implication True False Each of the foregoing phrases can be restated as definitions of verbs. For example: exclor=: +. *. -.@*. exclor/~ 0 1 0 1 1 0 Can all of the sixteen booleans be expressed using only or, and, and not ? The answer is yes, and for this reason the collection of verbs +. *. -. is said to be a set of generators of the booleans. For example, the case 0 b. (which yields 0 for every pair of arguments) can be expressed as (p and q) and (p and not q), and 15 b. as not (p and q) and (p and not q). Chapter 6 Logic 63 Is +. *. -. a minimal set of generators, or could one of them be omitted? This is easily answered by showing that *. itself can be expressed in terms of +. and -. and can therefore be omitted: and is not (not p) or (not q) The foregoing relation is sometimes expressed as “and is the dual of or (with respect to negation).” The use of or and not as the only generators can lead to cumbersome expressions for some of the booleans, but all can be expressed in terms of them. Can a single boolean serve as generator? It can be shown that either 8 b. (not-or or nor) or 14 b. (not-and or nand) will serve. This matter is developed in exercises. H. Boolean Primitives The primitives +. and *. (gcd and lcm) when restricted to the boolean domain provide the important boolean verbs or and and. Others are provided by similarly restricting relations: < <: = >: > ~: 4 b. 13 b. 9 b. 11 b. 2 b. 6 b. Implication Identity Exclusive-or Finally, +: and *: denote nor and nand, that is, 8 b. and 14 b. . I. Summary of Notation The notation introduced in this chapter comprises one adverb boolean (b.); five dyads or, and, nor, nand, and not-equal (+. *. +: *: ~:); three monads not, signum, and ravel (-. * ,). Exercises A1 Predict and test the results of n | (i. n) +/ (i. n) and of n | (i. n) */ (i. n) for various values of n including 10. A2 Define monads S and P such that S n and P n yield the tables of Exercise A1. Answer: S=: ] | i. +/ i. and P=:]|i.*/i. B1 Predict and test the result of applying to an integer n the verb PR=: i. #~ T@(+/)@(0&=)@(|/~)@i. for the cases T=:2&= and T=:2&< and T=:3&= . B2 Define and test a verb IN such that a IN b yields 1 if a lies in the interval between the smallest and largest elements of b. 64 Arithmetic Answer: IN=: (<./@] < [)*.(>./@] > [) B3 Define a verb L such that a L b lists the elements of a that lie in the interval defined by b. Answer: L=: IN#[ C1 Explain the equivalence of the dyads *. and *%+. and test it in expressions such as (?7#100) (*. = * % +.)/ (? 10#100) . E1 The verbs 1 b. and 7 b. may be called and and or. Recall or invent suitable names for as many of the remaining fourteen boolean functions as you can. G1 Using only NAND=: 14 b. define a monad called NOT that is equivalent to the monad -. on the boolean domain. Answer: NOT=: NAND~ G2 Using only NAND=: 14 b.and NOT define dyads AND and OR that are equal to *. and +. on the boolean domain. Answer: AND=: NOT@NAND OR=:NOT@(NOT AND NOT) G3 Repeat Exercises G1, G2 using NOR=: 8 b. instead of NAND. 65 Chapter 7 Permutations A. Introduction Permute is a verb meaning “to change the order of”, and |. is an example of a permutation: |. 'abcdef' fedcba |. i. 5 4 3 2 1 0 Indexing provides arbitrary permutations. For example: 2 0 1 5 4 3 { 'abcdef' cabfed A list of indices to { that produces a permutation is called a permutation vector, or permutation, and one that contains n elements is called a permutation of order n. A permutation of order n is itself a permutation of the list i. n. To enumerate all permutations of order n, it is best to list them in ascending order (ascending when considered as the digits representing an integer), as illustrated in the following tables: p2 0 1 1 0 p1 0 p3 0 1 2 0 2 1 1 0 2 1 2 0 2 0 1 2 1 0 i=:i.!3 66 Arithmetic i{p4 (6+i){p4 (12+i){p4 (18+i){p4 0 1 2 3 1 0 2 3 2 0 1 3 3 0 1 2 0 1 3 2 1 0 3 2 2 0 3 1 3 0 2 1 0 2 1 3 1 0 3 2 2 1 0 3 3 1 0 2 0 2 3 1 1 2 3 0 2 1 3 0 3 1 2 0 0 3 1 2 1 3 0 2 2 3 0 1 3 2 0 1 0 3 2 1 1 3 2 0 2 3 1 0 3 2 1 0 A row (or rows) of any one of these tables can be applied to index (and therefore to permute) a list of the appropriate number of items. For example: 3{p4 0 2 3 1 (3{p4){'abcd' acdb (3 4{p4){'abcd' acdb adbc (3 4{p4){i.4 0 2 3 1 0 3 1 2 p3{'abc' abc acb bac bca cab cba 3 A. 'abcd' acdb 3 4 A. 'abcd' acdb adbc p2{'ab' ab ba The last examples illustrate the use of the dyad A. in which i A. y permutes y by a permutation of order #y, the permutation being row i of the corresponding table of all permutations of that order. The index i in the phrase i A. y can be thought of as an atomic (that is, single-element) representation of the permutation vector it applies, thus providing a mnemonic for the word A. . From these examples it should be clear that the phrase (i.!n)A.i.n will produce the complete table of !n permutations of order n. Thus: PT=: i.@! A. i. Chapter 7 Permutations 67 PT 2 0 1 1 0 PT 1 0 PT 3 0 1 2 0 2 1 1 0 2 1 2 0 2 0 1 2 1 0 B. Arrangements Any selection of k different items from a list is called an arrangement, or k-arrangement. For example, 0 1{a and 1 0{a and 3 1{a are 2-arrangements from the list a=:'abcd'. Any k columns of a permutation table will contain all k-arrangements, each arrangement appearing !k times. For example: CLAR2 ab ac ad ba bc bd ca cb cd da db dc AR2 ALL=: (PT #a) { a=:'abcd' AR2=: 2 {."1 ALL CLAR2=: ~. AR2 ALL abcd abdc acbd acdb adbc adcb bacd badc bcad bcda bdac bdca cabd cadb cbad cbda cdab cdba dabc dacb dbac dbca dcab dcba ab ab ac ac ad ad ba ba bc bc bd bd ca ca cb cb cd cd da da db db dc dc The table ALL contains all permutations of the list a; the table AR2 contains all 2- arrangements, with each arrangement appearing twice; the table CLAR2 is the “clean” table of arrangements with redundant items suppressed. The suppression of redundant items is performed by the monad ~. (called nub). 68 Arithmetic C. Combinations The arrangement 'ca' that occurs in the table CLAR2 is a permutation of the arrangement 'ac', and the two cases therefore represent the same combination of elements from the list a=: 'abcd'. We may obtain a table of all 2-combinations of a by first sorting each row of CLAR2, and then taking the nub of the sorted table: ~./:~"1 CLAR2 ab ac ad bc bd cd /:~"1 CLAR2 ab ac ad ab bc bd ac bc cd ad bd cd The steps in the development of combinations can now be assembled to define a verb C such that k C n produces the table of all k-combinations of order n: nub=: ~. rtake=: {."1 rsort=: /:~"1 C=: nub@rsort@nub@([ rtake (PT@])) 2 C 4 0 1 0 2 0 3 1 2 1 3 2 3 ab ac ad bc bd cd (2 C #a){a=: 'abcd' 3 C 3 0 1 2 1 C 3 0 1 2 2 C 5 0 1 0 2 0 3 0 4 1 2 1 3 1 4 2 3 2 4 2 C 3 0 1 0 2 1 2 3 C 5 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 Chapter 7 Permutations 69 3 4 2 3 4 $ 2 C 5 10 2 $ 3 C 5 10 3 (!5)%(!2)*(!5-2) 10 (!5)%(!3)*(!5-3) 10 The foregoing definition of C shows clearly the relation of combinations to the permutations of the corresponding order. However, it is highly inefficient in the sense that k C n generates and sorts a large table (of r=:!n rows and n columns) in order to select from it a smaller table (of r%(!k)*(!n-k) rows and k columns). A more efficient alternative is developed in Exercise J10 of Chapter 9. As illustrated by the preceding examples, the number of k-combinations of order n is given by (!n)%(!k)*(!n-k). The number of combinations is a commonly-useful result; so important that the corresponding verb is treated as a primitive. For example: 2!5 10 (i.6)!5 1 5 10 10 5 1 !/~i.6 1 1 1 1 1 1 0 1 2 3 4 5 0 0 1 3 6 10 0 0 0 1 4 10 0 0 0 0 1 5 0 0 0 0 0 1 The last result is called the table of binomial coefficients; when transposed and displayed without the relevant sub-diagonal zeros it is also called Pascal’s triangle. D. Products of Permutations If p is a permutation vector, then the verb p&{ is a permutation. For example: p=: 2 3 4 1 0 5 P=:p&{ P a=:'abcdef' cdebaf P^:2 a ebadcf P P a ebadcf P^:0 1 2 3 4 5 6 7 8 a abcdef cdebaf ebadcf adcbef cbedaf edabcf P^:(i.9) i.6 0 1 2 3 4 5 2 3 4 1 0 5 4 1 0 3 2 5 0 3 2 1 4 5 2 1 4 3 0 5 4 3 0 1 2 5 70 Arithmetic abcdef cdebaf ebadcf 0 1 2 3 4 5 2 3 4 1 0 5 4 1 0 3 2 5 In the foregoing it may be noted that the sixth power of the permutation P agrees with its original argument, and the pattern therefore repeats thereafter. The period of this particular permutation is therefore said to be 6. E. Cycles Column 3 of the tables produced by the power of the permutation P of Section D shows that position 3 of successive powers is occupied by the elements 'd', and 'b' (or 3 1) in a repeating cycle of length two. Column 1 shows the same cycle displaced. Similarly, column 4 shows the length-3 cycle 4 0 2, and columns 0 and 2 show the same cycle displaced; column 5 shows the 1-cycle 5. The permutation P could therefore be represented unambiguously by its cycles as follows: c=: 3 1 ; 4 0 2 ; 5 c +---+-----+-+ |3 1|4 0 2|5| +---+-----+-+ The dyad C. produces permutations specified in cycle form. Thus: c C. a=:'abcdef' cdebaf p { a cdebaf p C. a cdebaf As illustrated by the last example, the dyad C. also accepts permutation vectors as the left argument, and in that case is equivalent to the dyad { . Finally, the monad C. provides a self-inverse transformation between the cycle and permutation-vector representations of a permutation. Thus: C. c 2 3 4 1 0 5 C. C. c +---+-----+-+ |3 1|4 0 2|5| +---+-----+-+ PT=: i.@! A. i. (PT 3);(C. PT 3);(C. C. PT 3) +-----+-------------+-----+ | |+-----+---+-+| | | || 0 | 1 |2|| | | |+-----+---+-+| | |0 1 2|| 0 |2 1| ||0 1 2| |0 2 1|+-----+---+-+|0 2 1| |1 0 2|| 1 0 | 2 | ||1 0 2| |1 2 0|+-----+---+-+|1 2 0| Chapter 7 Permutations 71 |2 0 1||2 0 1| | ||2 0 1| |2 1 0|+-----+---+-+|2 1 0| | ||2 1 0| | || | | |+-----+---+-+| | | || 1 |2 0| || | | |+-----+---+-+| | +-----+-------------+-----+ From columns 0 and 1 of the table of Section D it may be seen that the return to an identity permutation can occur only when the two cycles (of lengths 2 and 3) complete at the same time, in this case after 2*3 applications of the permutation. The period of the permutation is therefore 6. In general, the period of a permutation is the least common multiple of the lengths of its cycles. This will be illustrated further by a permutation of order 20 : p20=:17 4 9 7 12 14 18 13 0 6 15 1 16 10 2 8 3 19 5 11 ]c20=:C. p20 +-------------+-----------------------------------+ |18 5 14 2 9 6|19 11 1 4 12 16 3 7 13 10 15 8 0 17| +-------------+-----------------------------------+ #@> c20 6 14 p20&{^:18 a=: 'abcdefghijklmnopqrst' bdcphfgiljrqnaotkesm *./#@> c20 42 p20&{^:(i.19) 'abcdefghijklmnopqrst' abcdefghijklmnopqrst rejhmosnagpbqkcidtfl tmgnqcfkrsiedpjahlob lqskdjoptfamhigrnbce bdfphgcilorqnastkejm ehoinsjabctdkrflpmgq mncakfgrejlhptobiqsd qkjrpostmgbnilceadfh dpgticflqsekabjmrhon hislajobdfmpregqtnck nafbrgcehoqitmsdlkjp kroetsjmncdalqfhbpgi ptcmlfgqkjhrbdoneisa iljqbosdpgntehckmafr abgdecfhisklmnjpqrot reshmjonafpbqkgidtcl tmfnqgckroiedpsahljb lqokdsjptcamhifrnbge bdcphfgiljrqnaotkesm F. Reduced Representation There are exactly !n permutations of order n, and the “factorial” base n-i.n introduced in Section 4 E can be seen to provide exactly !n distinct lists of n integers, each belonging to i.n: R=: (]-i.) #: i.@! R 3 0 0 0 0 1 0 72 Arithmetic 1 0 0 1 1 0 2 0 0 2 1 0 These lists can be used to represent the permutations in what we will call a reduced representation, as distinguished from the “direct” representation used thus far: D=: i.@! A. i. D 3 0 1 2 0 2 1 1 0 2 1 2 0 2 0 1 2 1 0 We will now define a verb RFD to yield the reduced representation from the direct, and an inverse DFR: RFD=: +/@({.>}.)\."1 DFR=: /:^:2@,/"1 For example: RFD D 3 0 0 0 0 1 0 1 0 0 1 1 0 2 0 0 2 1 0 DFR R 3 0 1 2 0 2 1 1 0 2 1 2 0 2 0 1 2 1 0 The definitions of these verbs will be discussed in exercises. G. Summary of Notation The notation introduced in this chapter comprises five verbs: atomic permutation, cycle, nub, number of combinations, and random (A. C. ~. ! ?). Exercises A1 Using as argument a list of four items, test the assertion that the monad |. is a permutation, and determine the value of k such that k&A. is equivalent to |. . A2 Repeat Exercise A1 for the cases of lists of two, three, and five items. A3 Test the assertion that a rotation such as r&|. is a permutation, and repeat Exercises A1 and A2 using rotations instead of reversal. A4 Apply the monad A. to various permutation vectors, and state its definition. A5 Experiment with k A. 'abcd' for negative values of k. B1 Write an expression for the number of k-arrangements of order n. C1 Define a monad BC such that BC n gives the table of binomial coefficients up to Chapter 7 Permutations 73 order n-1. Answer: BC=: !/~@i. C2 Without using ! or BC define a monad CS that gives the column sums of BC n. Answer: CS=: 2&^@i. D1 Determine the power of the permutation p=: 4824 A. i. 7. Hint: Examine the table produced by p&{^:(i.20) i.7 D2 Determine the power of the random permutation q=: 5?5. E1 Predict and test the results of C. k A. i.n for various values of k and n. E2 Predict and test the result of C. 1 3;2 0 4. E3 Repeat Exercise E2 for various boxed arguments of C. . E4 Use various permutations p to test the assertion that the power of p is the least common multiple of the lengths of the cycles in its cycle representation. E5 Define a monad PER to give the power of a permutation p. Answer: PER=: *./@(#@>@C.) E6 What is the maximum period of a permutation of order n ? F1 Predict and test the results of R 4 and D 4 and RFD D 4 and DFR R 4 and (RFD@D = R) 4. F2 Define rfd equivalent to RFD except that it will apply only to a single permutation and not to a table of permutations. Answer: Omit "1 from RFD. F3 Analyze the definition of rfd of the preceding exercise by defining and individually applying two functions such that f @ (g \.) is equivalent to rfd. Answer: f=:+/ g=: {.<}. F4 Analyze DFR. 75 Chapter 8 Classification and Sets A. Introduction It is often necessary to separate a collection of objects into several classes, and then perform some operation upon each of the classes. The operation performed is often trivial compared to the complexity of the classification procedure itself, and classification is therefore an important matter. Indeed, most computation involves some classification, even though the classification process may be implicit rather than explicit. As an example of the use of classification, consider a set of transactions that are recorded as a list of account numbers and a corresponding list of credits to the accounts. Thus: an=: 1010 1040 1030 1030 1020 1010 1040 1040 1050 cr=: 131 755 458 532 218 47 678 679 934 A summary should therefore post the sum 131+47 to account 1010 and 218 to account 1020, and so on. If: all=: 1010 1020 1030 1040 1050 is the list of all account numbers, then c=: all =/ an is the classification table, and: c=: all =/ an c 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 c*cr 131 0 0 0 0 47 0 0 0 0 0 0 0 218 0 0 0 0 0 0 458 532 0 0 0 0 0 0 755 0 0 0 0 678 679 0 0 0 0 0 0 0 0 0 934 +/"1 c*cr 76 Arithmetic 178 218 990 2112 934 The classification represented by the table c is both complete (each element being assigned to some class) and disjoint (each element being assigned to no more than one class). Classifications that arise from the expression a =/ b are disjoint if the elements of a are all distinct, and are complete if every element of b belongs to a. A boolean table B represents a complete disjoint classification if and only if each of its column sums is equal to 1; that is, if *./1=+/B . Since a table provides such a convenient representation of a classification, we will henceforth speak (rather loosely) of the table itself as a classification, or as an n-way classification, where n=:#B. Meaningful classifications need not be disjoint. For example, the letters of the alphabet may be classified phonetically by a 27-column table as follows: a=:'abcdefghijklmnopqrstuvwxyz ' PH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 (0{PH)#a sz a#~1{PH fv a#~2{PH bdpt a#~3{PH aeiouy Sibilants Fricatives Plosives Vowels a#~4{PH bcdfghjklmnpqrstvwxz Consonants a#~ >/4 2{PH cfghjklmnqrsvwxz Consonants that are not plosives Moreover, if t is any text, then (a i. t){"1 PH provides classifications of it: t=: 'i sing of olaf' a i. t 8 26 18 8 13 6 26 14 5 26 14 11 0 5 (a i. t) {"1 PH 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 ((a i. t) {"1 PH) # t s ff Chapter 8 Classification And Sets 77 iiooa sngflf Incomplete classifications are also useful. For example, the classification provided by PH is incomplete because the space belongs to none of the classes. Indeed, every n-way classification B implicitly defines a further class (which might be called other) defined by the expression -.+./B; that is, not the or over the classes. Any classification table may therefore be completed by applying the verb comp=: ] , -.@(+./) . Related classifications can be obtained from a table. Thus: ]M=:>1 0 0 1 0;0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 M *."0 1 PH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 sovfop=: +./"2 M *."0 1 PH sovfop 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 ((a i. t) {"1 sovfop) # t isiooa ff The first row of the resulting classification table sovfop includes sibilants or vowels; the second includes fricatives or plosives. For any classification table B, a corresponding disjoint classification can be obtained by suppressing from each column any 1 except the first. This is achieved by the expression </\B. For example: </\PH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 78 Arithmetic The last class of the resulting table represents “all consonants that do not fall in the earlier classes”. B. Sets A set is a one-way classification, and is therefore defined by a proposition. For example: GT10=: >&10 L=: 2 3 5 7 MEML=: +./@(L&(=/)) GT10 2 3 5 7 11 13 17 0 0 0 0 1 1 1 VOW=: +./@('aeiouy'&(=/)) III=: (]=<.) *. >&8 *. <&75 VOW 'happy those early days' 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 MEML i.15 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 III 6 7 +/ 2%~i.10 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 Thus, VOW defines “The set of all vowels”, MEML defines “The set of all members of the list L (a parameter that may be changed) ”, and III defines “The set of all integers in an interval”. The proposition that defines a set is often itself defined in terms of the list of elements that belong to the set, as was done directly in the proposition VOW, and indirectly in the proposition MEML. Although we often speak loosely of the set as the list itself (as in “The set 'aeiouy'”, or “The set L”), it is important to remember that the definition of the set is the entire proposition, that the ordering of the elements of the list therefore imposes no ordering on the members of the set, and that the repetition of elements in the defining list does not affect the definition of the set. A set is completely determined by the proposition that defines it, and we will sometimes speak loosely of “the set P” rather than “the set defined by P”. The defining proposition is often compound, and these compound propositions are often given special names. Thus: PI=: P1 *. P2 The intersection of P1 and P2 PU=: P1 +. P2 The union of P1 and P2 PD=: P1 > P2 The difference of P1 and P2 PSD=: P1 ~: P2 The symmetric difference of P1 and P2 Although a proposition defining a set may have an infinite domain (such as all numbers), it is also useful to consider propositions restricted to a finite list of arguments. We will denote such lists by names beginning with U (for universe of discourse). For example, some or all of the letters of the alphabet might be assigned to colours, as in Acquamarine, Blue, Cyan, Dun, ... Orange, Pink, Quercitron, Red, ... Yellow, and Zaffer. The universe is then defined by: U=:'ABCDEFGHIJKLMNOPQRSTUVWXYZ' Chapter 8 Classification And Sets 79 and the sets of primary and secondary pigment colours might be defined by the propositions: P=: +./@(1 17 24&(=/)@(U&i.)) S=: +./@(6 14 21&(=/)@(U&i.)) For example: (P U)#U BRY U#~S U GOV cv=: P U cv 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 ]ml=: cv # U BRY The vectors cv and ml defined above are the characteristic vector and member list of the set defined by the proposition P on the universe U. The set P could alternatively be defined in terms of them: P1=: {&cv@(U&i.) P2=: +./@(ml&(=/)) U#~P1 U BRY BRY U#~P2 U The table B=: #: i. 2^# U (whose rows are the base-2 representations of successive integers) provides an exhaustive classification of the universe U, including the empty set (represented by a characteristic vector of zeros), and the complete set (represented by a characteristic vector of ones). For example: ]EC=: #: i. 2^# U=: 2 3 5 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 This exhaustive classification is very useful. For example, the sums and products over all subsets of U can be obtained as follows: +/"1 U*EC 0 5 3 8 2 7 5 10 */"1 U^EC 1 5 3 15 2 10 6 30 Moreover, since EC is exhaustive, any collection of subsets can be obtained by selecting rows from it. For example: 80 Arithmetic 5 1 2{EC (2=+/"1 EC)#EC 1 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 C. Nub Classification The nub of an argument contains all of its distinct items. Thus: nub=: ~. text=: 'mississippi' nub misp ]i=:nub i. text 0 1 2 2 1 2 2 1 3 3 1 i{nub mississippi A classification of an argument in terms of its nub will be called a nub or self or auto classification. For example: nub =/ text 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 +/"1 = text 1 4 4 2 = text 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 The table on the right shows the use of the nub-classification monad = ; the expression +/"1 = text gives the distribution of the items of its argument, that is, a frequency count of its distinct items. D. Interval Classification A list of integers L may be classified according to its interval, that is, the list of successive integers beginning with the largest element of L and continuing through the smallest. Thus: ' *' {~ (INT L) =/ L (INT=: >./ - i.@>:@(>./ - <./)) L=:8 3 0 _1 0 3 8 8 7 6 5 4 3 2 1 0 _1 (INT L) =/ L 1 0 0 0 0 0 1 * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 * * 0 0 0 1 0 0 0 * If the list L is the result of some function, then the foregoing classification is called a graph of the function. For example, if: Chapter 8 Classification And Sets 81 PARABOLA=: -&2 * -&4 then PARABOLA i. 7 yields the list L used above. The foregoing results can be collected to define a graphing function as follows: GRAPH=: ] =/~ >./ - i.@>:@(>./ - <./) Moreover, the expression +./\GRAPH L produces a barchart of L. Conversely, (in the case of non-integer values of L) it may be better to define a barchart function directly by substituting the comparison <:/ for the =/ used in GRAPH: BARCHART=: ] <:/~ >./ - i.@>:@(>./ - <./) A graph may then be provided by the expression </\ BARCHART L. Finally, it may be remarked that a barchart is a classification of its argument, and that the phrase </\ applied to it produces the corresponding disjoint classification used as a graph. E. Membership Classification The functions VOW and MEML of Section B provide examples of defining a classification according to membership in a list, using an or over equality, as in MEML=: +./@(L&(=/)) . Membership in a list is important enough to be accorded a primitive, denoted in mathematics by the Greek letter epsilon, and here by e. . For example, the function MEML could be defined by e.&L . Membership can be used to define a form of plotting that supplements the barcharts and graphs provided by the interval classification in Section D. If B is a boolean table, then B{' *' gives a plot of the points indicated by the ones in B: B 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 B{' *' *** * * * * *** Such a table can be specified by the coordinates of its ones; for example, the coordinates defining B are the columns of the table: b=:0 1 2 0 2 0 2 0 1 2,:0 0 0 1 1 2 2 3 3 3 Laminate (,:) forms a table from list arguments: b 0 1 2 0 2 0 2 0 1 2 0 0 0 1 1 2 2 3 3 3 If A is a table of all coordinates of B, then B itself can be specified in terms of the index list b by using membership (e.) in the expression A e. boxcol b, where boxcol 82 Arithmetic boxes the columns of its argument. We first define a function to generate all indices of a table, using the catalogue function { that forms boxed lists by choosing an element from each of the boxes in its argument: ]w=:'ABC';'abcd' +---+----+ |ABC|abcd| +---+----+ {w +--+--+--+--+ |Aa|Ab|Ac|Ad| +--+--+--+--+ |Ba|Bb|Bc|Bd| +--+--+--+--+ |Ca|Cb|Cc|Cd| +--+--+--+--+ (i.&.>"1) 4 6 +-------+-----------+ |0 1 2 3|0 1 2 3 4 5| +-------+-----------+ ALLIX=: {@(i.&.>"1) ALLIX 4 6 +---+---+---+---+---+---+ |0 0|0 1|0 2|0 3|0 4|0 5| +---+---+---+---+---+---+ |1 0|1 1|1 2|1 3|1 4|1 5| +---+---+---+---+---+---+ |2 0|2 1|2 2|2 3|2 4|2 5| +---+---+---+---+---+---+ |3 0|3 1|3 2|3 3|3 4|3 5| +---+---+---+---+---+---+ We now use ALLIX to form the lists of coordinates in the usual form; that is, with the x- coordinate first and increasing from left to right, and with the y-coordinate increasing from bottom to top: ALLCO=: |.&.>@:|.@:ALLIX@:>: ALLCO 4 6 +---+---+---+---+---+---+---+ |0 4|1 4|2 4|3 4|4 4|5 4|6 4| +---+---+---+---+---+---+---+ |0 3|1 3|2 3|3 3|4 3|5 3|6 3| +---+---+---+---+---+---+---+ |0 2|1 2|2 2|3 2|4 2|5 2|6 2| +---+---+---+---+---+---+---+ |0 1|1 1|2 1|3 1|4 1|5 1|6 1| +---+---+---+---+---+---+---+ |0 0|1 0|2 0|3 0|4 0|5 0|6 0| +---+---+---+---+---+---+---+ plot=: {&' *'@(ALLCO@[ e. boxcol@]) boxcol=: <"1@|: 4 6 plot b Chapter 8 Classification And Sets 83 *** * * * * *** A function equivalent to plot can also be defined by replacing all of its component functions by the expressions that define them: PLOT=:{&' *'@(|.&.>@|.@({@(i.&.>"1))@>:@[e.<"1@|:@]) If f and g are two functions, then a plot of the points with x-coordinate f k{a and y- coordinate g k{a will be called a plot of f with g or, alternatively, a plot of g versus f. Thus: f=: *: (f ,: g) a 0 1 4 9 0 2 4 6 g=: +: a=:0 1 2 3 7 10 PLOT (f ,: g) a * * * * F. Summary of Notation The monads self-classification and catalogue (= and {), and the dyads membership and laminate (e. and ,:) were introduced in Sections C and E. Exercises A1 Enter b=: ?5 7$2 to produce a random boolean table, and n=:(7#2) #. b to produce the base-2 values of its rows. Then enter (7#2)#: n and compare the result with b . A2 The base -2 value of the rows of the phonetic classification table PH is given by: n=: 258 2097184 41945216 71569476 62648250 Use this fact to enter the table PH and then experiment with its use. B1 Define two or three propositions, and experiment with their intersection, union, and differences. B2 Predict and enter the complete classification table for four elements, and select from it the classification table for all subsets of two elements. C1 Experiment with nub-classification on various arguments, including the boxed list ;:'A rose is a rose is a rose.' D1 Enter the verbs defined in Section D, and experiment with them. E1 Predict and verify the result of {'ht';'ao';'gtw' 84 Arithmetic E2 Plot -&2*-&4 versus ] on i.7, and compare the result with the parabola in Section D. E3 Plot 2&^ versus ^&2 85 Chapter 9 Polynomials A. Introduction A polynomial is a weighted sum of non-negative integer powers of its argument. For example: x=:1 2 3 4 5 e=: 0 1 2 3 c=: 1 3 3 1 x^/e 1 1 1 1 1 2 4 8 1 3 9 27 1 4 16 64 1 5 25 125 +/"1 c*x^/e 8 27 64 125 216 c*x^/e 1 3 3 1 1 6 12 8 1 9 27 27 1 12 48 64 1 15 75 125 The final result is the value of a polynomial with exponents e and weights (or coefficients) c applied to an argument list x. A zero coefficient effectively suppresses the effect of the corresponding exponent (e.g., +/"1 (0 0 1 2)*x^/0 1 2 3 is equivalent to +/"1 (1 2)*x^/2 3 ); it is therefore convenient to express a polynomial only in terms of its coefficients c, and to assume that the corresponding exponents are i.#c : POL=: +/"1 @ ([ * ] ^/ i.@#@[) c POL x 8 27 64 125 216 The discussion in Sections A-D will be limited to polynomials with integer coefficients, but general polynomials admit real and complex numbers, as discussed in Section F. Because a general polynomial admits an arbitrary number of arbitrary coefficients, polynomials can be designed to approximate almost any function of practical interest. 86 Arithmetic Although its utility rests largely on its potential for approximation, the polynomial has other important characteristics that can be discussed in the restricted context of integers: the following four functions are themselves polynomials: 1. The sum or difference of polynomials. 2. The product of polynomials. 3. The derivative (or “rate of change”) of a polynomial. 4. The integral of (or “area under”) a polynomial. Although the coefficients of the polynomials for cases 3 and 4 are trivial to compute (}.c*i.#c and 0,c%>:i.#c), their treatment will be deferred to Section H. B. Sums and Products The cases of the sum and product may be illustrated as follows: d=: 1 2 1 x=: 0 1 2 3 4 5 c=: 1 3 3 1 c POL x 1 8 27 64 125 216 d POL x 1 4 9 16 25 36 (c POL x) + (d POL x) 2 12 36 80 150 252 (c+d,0) POL x 2 12 36 80 150 252 (c POL x) * (d POL x) 1 32 243 1024 3125 7776 TIMES=: +//. @ (*/) c TIMES d 1 5 10 10 5 1 (c TIMES d) POL x 1 32 243 1024 3125 7776 It will be more illuminating to discuss the sum and product of polynomials in terms of a table of an arbitrary number of coefficients. For example: ]TC=: >1 3 3 1 ; 1 2 1 ; 1 1 1 3 3 1 1 2 1 0 1 1 0 0 +/TC 3 6 4 1 (+/TC) POL x Chapter 9 Polynomials 87 3 14 39 84 155 258 TIMES/TC 1 6 15 20 15 6 1 0 0 0 (TIMES/TC) POL x 1 64 729 4096 15625 46656 TC POL"1 x 1 8 27 64 125 216 1 4 9 16 25 36 1 2 3 4 5 6 */TC POL"1 x 1 64 729 4096 15625 46656 It should be noted that the final zeros appended to coefficients in forming the table TC do not change their effects as coefficients. However, it may be convenient to trim redundant trailing zeros from a result such as TIMES/TC above. Thus: trim=: +./\.@* # ] trim TIMES/TC 1 6 15 20 15 6 1 (i.7)!6 1 6 15 20 15 6 1 C. Roots If a function f applied to an argument a yields 0, then a is said to be a zero or root of f. A function is sometimes defined in terms of its roots. For example: PIR=: */@(-~/) r=: 2 3 5 x=: 0 1 2 3 4 5 6 r PIR x _30 _8 0 0 _2 0 12 r&PIR x _30 _8 0 0 _2 0 12 (x-2)*(x-3)*(x-5) _30 _8 0 0 _2 0 12 The monad r&PIR is also said to be a polynomial (or polynomial in terms of roots) because it can be shown to be equivalent to a polynomial c&POL for appropriate coefficients c. This is best demonstrated by defining a function CFR that produces the coefficients from the roots. Thus: AS=: #:@i.@(2&^)@# AS r 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 POAS=: */"1@(-^AS) POAS r 1 _5 _3 15 _2 10 6 _30 Boolean table of all subsets of #r items. Product over all subsets of -r. 88 Arithmetic CLBN=: =@(+/"1@AS) CLBN r 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 Classification by number of elements in set. CFR=: +/"1@|.@(CLBN*POAS) CFR r _30 31 _10 1 Coefficients from roots. (CFR r) POL x _30 _8 0 0 _2 0 12 r PIR x _30 _8 0 0 _2 0 12 D. Expansion If the polynomial d&POL is equivalent to c&POL x+1, then the coefficients d are said to be the expansion of the coefficients c. More formally, d is the expansion of c if d&POL and c&POL@>: are equivalent. For example: x=: i. 6 ]d=: +/ c * !~/~i.#c 10 15 10 2 c=:3 1 4 2 d POL x 10 37 96 199 358 585 c POL x+1 10 37 96 199 358 585 EXP=: +/@(] * !~/~@i.@#) EXP c 10 15 10 2 EXP^:4 c 199 129 28 2 (EXP^:4 c) POL x 199 358 585 892 1291 1794 c POL x+4 199 358 585 892 1291 1794 The definition of the function EXP will be analyzed in exercises. Although the function EXP and its non-negative powers can produce expansions for c POL x+i for any non-negative integer i, it must be modified to handle the general case for fractional values of i such as 0.1. This matter will be addressed in Section F, after the introduction of real numbers. Chapter 9 Polynomials 89 E. Graphs And Plots Graphs and barcharts of functions with non-integer results can be produced by the methods of Section 8 D.We first define a uniform grid of a specified number of intervals, and use it to classify the non-integer results. Thus: space=:(>./ - <./)@] % [ grid=: <./@] + space * i.@>:@[ graph=: {&' *'@ (</\@|.@ (grid </ ] + -:@space)) 10 graph %: i. 40 **** ******* ******* ***** ***** **** *** ** ** * The plots of Section 8 E may be extended similarly: GPLOT=: [ PLOT |.@([ classify"0 1 ]) classify=: <:@(+/@(grid </ ] + -:@space)) PLOT=:{&' *'@(|.&.>@|.@({@(i.&.>"1))@>:@[e.<"1@|:@]) 6 10 GPLOT (*:,:+:) i.5 * * * * * F. Real And Complex Numbers In order to discuss further uses of polynomials, it will be necessary to extend the domains of our primitives beyond the integers to which they have been restricted thus far. Just as the inverse of the successor led to results outside of the counting numbers, so do inverses of certain functions on integers lead outside the domain of integers. For example: a=: 1 2 3 4 *&2 ^:_1 a 0.5 1 1.5 2 %&2 a 0.5 1 1.5 2 Rational numbers 90 Arithmetic %&2 -a _0.5 _1 _1.5 _2 ^&2 ^:_1 a 1 1.41421 1.73205 2 %: a 1 1.41421 1.73205 2 Irrational numbers %: -a Imaginary numbers 0j1 0j1.41421 0j1.73205 0j2 a+%:-a Complex numbers 1j1 2j1.41421 3j1.73205 4j2 The rationals include the integers and, together with the irrationals, they comprise the real numbers. The informal extension of primitives to the real domain is straightforward; they are extended so as to maintain the properties discussed in Chapter 2. The imaginary and complex numbers are treated similarly, but merit further discussion. Since the square of any real number is non-negative, the square root of _1 must be a new number outside the domain of reals. It will be denoted by 0j1. The product of 0j1 with any real number shares the property that its square is a negative number. This follows from the normal properties of multiplication: b=: 1 2 3 4 5 b*0j1 0j1 0j2 0j3 0j4 0j5 (b*0j1) * (b*0j1) _1 _4 _9 _16 _25 b*b * 0j1*0j1 _1 _4 _9 _16 _25 (b*b) * (0j1 * 0j1) _1 _4 _9 _16 _25 (b*b) * _1 _1 _4 _9 _16 _25 If a and b and c and d are real numbers, then a+0j1*b and c+0j1*d are complex numbers. Moreover, their sum can be derived from the familiar properties of addition and multiplication: a=: 1+b=: 1+c=: 1+d=: 1 a,b,c,d 4 3 2 1 Chapter 9 Polynomials 91 (a+0j1*b) + (c+0j1*d) 6j4 (a+c) + 0j1*(c+d) 6j3 (a+c) + 0j1*(b+d) 6j4 6+0j1*4 6j4 The product of complex numbers can be derived similarly: (a+0j1*b) * (c+0j1*d) 5j10 ((a*c)+(0j1*0j1*b*d)) + (0j1*((a*d)+(b*c))) 5j10 ((a*c)+(_1*b*d)) + (0j1*((a*d)+(b*c))) 5j10 ((a*c)-(b*d)) + (0j1*((a*d)+(b*c))) 5j10 These processes can be described succinctly by representing each complex number by a two-element list, and using the primitive j. defined as follows: j. y is 0j1*y x j. y is x+j.y j. b 0j3 4j3 a j. b j./a,b 4j3 The “complex plus” and “complex times” functions on two-element lists can now be defined as follows: cplus=: + ctimes=: -/@:* , +/@([ * |.@]) m=: 3 4 n=: 5 2 j./m 3j4 j./n 5j2 ]sum=: m cplus n 8 6 ]prod=: m ctimes n 7 26 j./prod 7j26 (j./m)*(j./n) 7j26 Although a collection of complex numbers could be represented by the rows of a two- column table, it is more convenient to adopt an atomic representation, obtained by boxing each list. Thus: M=:<m 92 Arithmetic N=:<n M,N +---+---+ |3 4|5 2| +---+---+ < (>M) ctimes (>N) +----+ |7 26| +----+ As illustrated above, the verb cplus can be applied to these representations only by first applying > (open), and the corresponding atomic representation is obtained by applying the inverse < (box). The whole can be achieved by the conjunction &. in which the verb u &. v first applies v, applies u to that, and finally applies v^:_1. The conjunction &. is called under, because u is applied “under” v in the sense that surgery is performed under anaesthetic, the patient being restored from its effects at the end of the operation: M ctimes&.> N +----+ |7 26| +----+ M,N,M +---+---+---+ |3 4|5 2|3 4| +---+---+---+ ctimes&.>/ M,N,M +-------+ |_83 106| +-------+ CPLUS=: cplus&.> CTIMES=: ctimes&.> M CPLUS N CTIMES M +-----+ |10 30| +-----+ The monad magnitude (|) is extended to complex numbers to yield the square root of the sum of the squares of its imaginary parts: | _5 5 | 3j4 5 %:+/*:3 4 5 In other words, the magnitude is the distance of a point from the origin when the imaginary part is plotted against the real part. G. General Expansion The function EXP of Section D has the property that (EXP c) POL x is equivalent to c POL x+1. We will now define a more general expansion such that (y GEXP c) POL x is equivalent to c POL x+y: Chapter 9 Polynomials 93 x=: i. 6 y=: 0.1 c=: 3 1 4 2 GEXP=: +/@(] * !~/~@i.@#@] * [ ^ -/~@i.@#@]) y GEXP c 3.142 1.86 4.6 2 (y GEXP c) POL x 3.142 11.602 41.262 104.122 212.182 377.442 c POL x+y 3.142 11.602 41.262 104.122 212.182 377.442 The definition of the expansion will be analyzed in exercises. H. Slopes And Derivatives If s is a small quantity, then the difference (f x+s)-(f x) gives an indication of the change in the result of the function f in the vicinity of the point x. Moreover, the ratio s%~(f x+s)-(f x) obtained by dividing the “step size” s into this difference gives an indication of the rate at which f is changing. Because on a graph of the function this ratio is the slope of the secant line joining the points with coordinates x,f x and (x+s), f x+s, it is called the secant slope of f. For example: f=: *: x=: 4 [ s=: 2 (f x+s)-f x 20 The square function s%~(f x+s)-f x 10 ]s=: 10^-i.5 1 0.1 0.01 0.001 0.0001 s%~(f x+s)-f x 9 8.1 8.01 8.001 8.0001 We now define a dyadic function F such that s F x gives the secant slope of f at x with step size s: F=: [ %~"0 1 f@([+/,@])-f@] 2 F x=: 4 5 6 7 10 12 14 16 s F x 9 11 13 15 8.1 10.1 12.1 14.1 8.01 10.01 12.01 14.01 8.001 10.001 12.001 14.001 8.0001 10.0001 12.0001 14.0001 94 Arithmetic For a small step size, the secant slope s F x is a close approximation to the slope of the tangent to the graph of f at the point x, a value called the derivative of f at the point x. For example: Approximate derivative of square Approximate derivative of cube Approximate derivative of fourth power s=:10^_10 s F x 8 10 12 14 2*x 8 10 12 14 f=:^&3 s F x 48 75 108 147 3*x^2 48 75 108 147 f=:^&4 s F x 256 500 864 1372 4*x^3 256 500 864 1372 n=:5 f=:^&n s F x 1280 3125 6480 12005 n*x^n-1 1280 3125 6480 12005 n&([ * ] ^ <:@[) x 1280 3125 6480 12005 foregoing results suggest The function n&([ * ] ^ <:@[). This relation will be explored by displaying the terms that must be summed to produce the results used in determining the slope, that is, f x+s and f x and (f x+s)-f x and s%~(f x+s)-f x. the derivative of ^&n that the is For the power function f=:^&n and for the case n=: 3, the terms of f x+s are easily obtained from the direct expansion of the product (x+s)*(x+s)*(x+s) to the form : ((s^3)*(x^0)+(3*(s^2)*(x^1))+(3*(s^1)*(x^2))+((s^0)*(x^3)) Thus for x=:2 and s=:0.1: 1 3 3 1 * (x^0 1 2 3) * (s^3 2 1 0) 0.001 0.06 1.2 8 Terms of ^&3 x+s 0 0 0 1 * (x^0 1 2 3) 0 0 0 8 Terms of ^&3 x Chapter 9 Polynomials 95 1 3 3 0 * (x^0 1 2 3) * (s^3 2 1 0) 0.001 0.06 1.2 0 Terms of difference 1 3 3 * (x^0 1 2 ) * (s^3 2 1 ) " 0.001 0.06 1.2 1 3 3 * (x^0 1 2 ) * (s^2 1 0 ) 0.01 0.6 12 Terms of slope 1 3 3 * (x^0 1 2 ) * (0^2 1 0 ) 0 0 12 Slope for s=:0 1 3 3 * (x^0 1 2 ) * 0 0 1 0 0 12 3*x^2 12 " " In the general case of ^&n, the coefficients 1 3 3 1 and 0 0 0 1 become EXP CP n and CP n, and the difference becomes: CP=: #&0,1: EXP=: +/@(] * !~/~@i.@#) CP 4 0 0 0 0 1 EXP CP 4 1 4 6 4 1 (EXP CP 4)-CP 4 1 4 6 4 0 <@(EXP@CP - CP)"0 i. 6 +-+---+-----+-------+---------+-------------+ |0|1 0|1 2 0|1 3 3 0|1 4 6 4 0|1 5 10 10 5 0| +-+---+-----+-------+---------+-------------+ <@(_2&{.)@(EXP@CP - CP)"0 i. 7 +---+---+---+---+---+---+---+ |0 0|1 0|2 0|3 0|4 0|5 0|6 0| +---+---+---+---+---+---+---+ It appears that the last two elements of the binomial coefficients of order n are n and 1. Since the binomial coefficients are the coefficients that represent the product (x+1)^n, insight can be gained by applying the product process of Section B to the corresponding coefficients 1 1: 1 1 */ 1 1 1 1 1 1 </.1 1 */ 1 1 +-+---+-+ |1|1 1|1| +-+---+-+ ]b2=:+//. 1 1 */ 1 1 1 2 1 1 1 */ b2 1 2 1 1 2 1 96 Arithmetic </. 1 1 */ b2 +-+---+---+-+ |1|2 1|1 2|1| +-+---+---+-+ ]b3=:+//. 1 1 */ b2 1 3 3 1 I. Derivatives of Polynomials From the definition of the secant slope it is clear that the slope of a multiple of a function (m&*@f) is the same multiple of its slope, and that the slope of the function f+g is the sum of the slopes of f and g. The same relations hold for derivatives. The polynomial c&POL applied to an argument x is a sum of terms of the form (i{c)*(x^i) and (using the results of Section H) its derivative is (i{c)*i*(x^i-1). The derivative of the polynomial c&POL is therefore a polynomial with coefficients }.c*i.#c. For example, using the functions F and POL of Sections H and A: x=:1 2 3 4 5 D=: }.@(] * i.@#) D c 1 8 6 c=:3 1 4 2 (D c) POL x 15 41 79 129 191 f=:c&POL (s=: 10^-10) F x 15 41 79 129 191 J. The Exponential Family We will now examine coefficients of the form %!i.n, and their relation to the coefficients of the corresponding derivative polynomial: ]ce=: %!i.n=: 7 1 1 0.5 0.166667 0.0416667 0.00833333 0.00138889 D ce 1 1 0.5 0.166667 0.0416667 0.00833333 Except (D ce)&POL agree, and the agreement improves as n increases. final coefficient, function ce&POL and the the for its derivative The primitive monad ^ (called exponential) is the limiting value of this polynomial. It is therefore a “growth” function, whose rate of growth is equal to the function itself. For example: f=: ^ f x 2.71828 7.38906 20.0855 54.5982 148.413 s F x Chapter 9 Polynomials 97 2.71828 7.38906 20.0855 54.5982 148.413 Not only is the exponential important in its own right, but the odd and even parts of ^ and ^@j. produce the hyperbolic functions (sinh and cosh, denoted by 5&o. and 6&o.) and the circular or trigonometric functions (sine and cosine, denoted by 1&o. and 2&o.). A function f is said to be symmetric or even if it gives the same result for positive and negative arguments; that is, if f and f@- agree. In terms of its graph we may say that an even function is “reflected in the vertical axis”. A function f is skew-symmetric or odd if f equals -@f@- or, equivalently, if f equals f&.- . Its graph is reflected in the origin. The functions: e=: -:@(f+f@-) o=: -:@(f-f@-) are, respectively, even and odd functions. Moreover, e+o equals f, and they are called the even and odd parts of f. The adverbs ..- and .:- yield the even and odd parts of their arguments. For example: cosh=: ^ ..- sinh=: ^ .:- ]x=: 0.2*i.6 0 0.2 0.4 0.6 0.8 1 space must precede .. cosh x 1 1.02007 1.08107 1.18547 1.33743 1.54308 cosh -x 1 1.02007 1.08107 1.18547 1.33743 1.54308 sinh x 0 0.201336 0.410752 0.636654 0.888106 1.1752 sinh -x 0 _0.201336 _0.410752 _0.636654 _0.888106 _1.1752 5 o. x 0 0.201336 0.410752 0.636654 0.888106 1.1752 (sinh+cosh) x 1 1.2214 1.49182 1.82212 2.22554 2.71828 ^ x 1 1.2214 1.49182 1.82212 2.22554 2.71828 The function ^@j. and its odd and even parts yield further important functions. We first observe that the magnitude of any result of ^@j. is 1. Thus: 2 3 $ ^@j. x 1 0.980067j0.198669 0.921061j0.389418 0.825336j0.564642 0.696707j0.717356 0.540302j0.841471 98 Arithmetic |^@j. x 1 1 1 1 1 1 As remarked in Section F, this implies that a plot of the imaginary part against the real part of any result of ^@j. lies on a circle whose radius has a length of 1. Moreover, the even and odd parts of ^@j. are its real and imaginary parts, and therefore the plot of one of the following functions against the other forms a circle: cos=: ^@j. .. - sin=: j^:_1@ (^@j. .:-) 26 52 GPLOT (sin,:cos) 0.2*i.30 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Moreover, (cos,sin) 0 is 1 0, and the length along the circle from this base point to the point with coordinates (cos,sin) x is x. Since the monad o. multiplies its argument by pi, the circumference of the circle with unit radius is o. 2, and the sin and cos applied to the points o.4%~i.9 yield interesting results. Thus: o. 2 6.28319 sin o. 2 _8.67362e_19 clean=: **| clean sin o. 2 0 ]p=:4%~i.9 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 clean (cos,:sin) o. p 1 0.707107 0 _0.707107 _1 _0.707107 0 0.707107 1 0 0.707107 1 0.707107 0 _0.707107 _1 _0.707107 0 Chapter 9 Polynomials 99 The monad * used in the definition of clean above is called signum: *x is 0 if x is near zero, 1 if it is greater than zero, and _1 if it is less than zero. K. Summary Of Notation The notation introduced in this chapter comprises complex numbers (3j4) and the corresponding verb j. (as in 3 j. 4 and j. 4); three conjunctions under, odd and even (&. .: ..); and six monads: sine, cosine, sinh, cosh, signum, and exponential, (1 2 5 6&o. * ^). L. On Language In accord with the comments in the language section of Chapter 1, notation has been introduced sparingly, only as needed in the topics under discussion. As a consequence, many important language constructs have been ignored. This section presents a sampling of them, grouped according to contexts in which they commonly arise. Programming. Computer programming concerns the definition and use of verbs in a language executable on a computer, and programming therefore runs through this entire text. Nevertheless, it might not be recognized as such by programmers familiar with other languages, primarily because it is tacit rather than explicit. A tacit definition is one in which no explicit mention is made of the arguments to which the defined verb might apply. For example: IQ=: <.@% 317 IQ 10 31 IQ 0.166 6 Integer quotient of arguments. Integer reciprocal of argument. An explicit definition begins with an entry that includes the phrase 3 : 0, and follows with sentences that use x. and y. to denote the arguments, uses a colon alone on a line to separate the definitions of the monadic and dyadic cases, and concludes with a right parenthesis alone on a line. For example: iq=: 3 : 0 if. y. < 0 do. 0 else. %: y. end. : <. x. % y. ) iq \ 25 5 iq _25 0 100 Arithmetic 317 iq 10 31 Tacit definitions facilitate the use of structured programming, in which complicated functions are defined in terms of a hierarchy of simpler functions, each of which is useful in its own right. The following example is from statistics: Standard deviation Variance Normalization Mean std a 0.816497 mean a 4 std=: sqrt@var var=: mean@sqr@norm norm=: ] - mean mean=: +/ % # sqrt=: %: sqr=: *: a=:3 4 5 ]report=: ?3 4 5 $ 10 1 7 4 5 2 0 6 6 9 3 5 8 0 0 5 6 0 3 0 4 6 5 9 8 5 0 6 4 7 9 7 2 0 7 3 6 7 9 3 2 9 7 7 6 0 6 8 2 4 7 4 2 2 3 1 4 8 9 0 9 mean report 5.33333 6.33333 6.66667 6.33333 2.33333 2 6.66667 4 6.66667 6.33333 5.33333 4 0.666667 3.33333 3 5.33333 5 7 1 5 Mean over tables mean"1 report 3.8 4.8 3.6 2.6 6.6 5.2 3.8 5.4 5.8 5.4 2.4 6 Mean over rows std"1 report 2.13542 3.05941 3.13688 2.33238 1.62481 3.05941 2.78568 2.57682 3.05941 2.15407 1.0198 3.52136 Adverbs And Conjunctions. Adverbs and conjunctions may be defined either tacitly or explicitly. The following illustrates the tacit definition of adverbs: ]a=: 1 2 3 4 5 1 2 3 4 5 prsu=: \\. A sequence of adverbs (prefix and suffix) < prsu a +-+---+-----+-------+---------+ |1|1 2|1 2 3|1 2 3 4|1 2 3 4 5| Chapter 9 Polynomials 101 +-+---+-----+-------+---------+ |2|2 3|2 3 4|2 3 4 5| | +-+---+-----+-------+---------+ |3|3 4|3 4 5| | | +-+---+-----+-------+---------+ |4|4 5| | | | +-+---+-----+-------+---------+ |5| | | | | +-+---+-----+-------+---------+ +/ prsu a 1 3 6 10 15 2 5 9 14 0 3 7 12 0 0 4 9 0 0 0 5 0 0 0 0 iprsu=: /\\. * iprsu a 1 2 6 24 120 2 6 24 120 0 3 12 60 0 0 4 20 0 0 0 5 0 0 0 0 inverse=: ^:_1 %: inverse a 1 4 9 16 25 q=: /prsu *q a 1 2 6 24 120 2 6 24 120 0 3 12 60 0 0 4 20 0 0 0 5 0 0 0 0 A conjunction with one argument each=:&.> <\a +-+---+-----+-------+---------+ |1|1 2|1 2 3|1 2 3 4|1 2 3 4 5| +-+---+-----+-------+---------+ |. each <\a +-+---+-----+-------+---------+ |1|2 1|3 2 1|4 3 2 1|5 4 3 2 1| +-+---+-----+-------+---------+ slope=: 1 : '[%~ + -&x.f. ]' 0.000001 ^ slope i.5 1 2.71828 7.38906 20.0855 54.5982 ^ i.5 1 2.71828 7.38906 20.0855 54.5982 Explicit definition of adverb The tacit definition of conjunctions will be illustrated first by using the case adverb- conjunction-adverb, whose result can be used to provide the ordinary matrix product: dot=: /@(("0 1)("1 _)) m=:i.3 3 m 0 1 2 3 4 5 6 7 8 15 18 21 42 54 66 69 90 111 m + dot * m 102 Arithmetic A second illustration produces a conjunction that applies one of its arguments to a prefix, and the other to a suffix: ps=: 2 : '(x.@{.)`,`(y.@}.)\' f=: *: ps %: 3 f 2 3 4 5 6 4 9 16 2.23607 2.44949 f"0 1~i. 5 0 1 1.41421 1.73205 2 1 f 2 3 4 5 6 4 1.73205 2 2.23607 2.44949 0 1 1.41421 1.73205 2 0 1 1.41421 1.73205 2 f 2 3 4 5 6 4 1.73205 2 2.23607 2.44949 0 1 4 1.73205 2 0 1 4 9 2 Gerunds. The conjunction ` “ties” verbs together to form a gerund, a noun that (like the English word cooking) carries the force of a verb. Gerunds have a variety of uses, of which two are illustrated below: +`*/ 1 2 3 4 5 47 1+2*3+4*5 47 fac_or_sqr=: !`*: @. (>&5) fac_or_sqr 8 64 fac_or_sqr 5 120 fac_or_sqr"0 i. 10 1 1 2 6 24 120 36 49 64 81 Insertion of successive verbs The conjunction @.(agenda) uses the index produced by its right argument to select a member of the gerund to produce the final result. Recursion. A function that is defined in terms of itself is said to be recursively defined. For example: fac=: 1:`(] * fac@<:)@.* fac 5 120 fac"0 i.6 1 1 2 6 24 120 The 1: is the constant function that yields 1, and the monad * (signum) yields 1 if its argument is greater than 0. Controlled Iteration. If f and g are functions and h=: f ^: g, then x h y “iterates” f by applying it repeatedly as long as the result of g is non-zero. For example, an iterative determination of the square root using Newton’s method may be defined as follows: h=: (-:@(] + %))^:([ ~: *:@]) ^: _ 5 h 1 2.23607 *: 5 h 1 5 1 2 3 4 5 h"0 (1) 1 1.41421 1.73205 2 2.23607 Chapter 9 Polynomials 103 Linear Functions. The expression mp=:+/ . * uses the dot conjunction to produce the dot, inner, or matrix product mp. For example: mp=: +/ . * v=: i.3 m 0 1 2 3 4 5 6 7 8 m=: i. 3 3 m mp m 15 18 21 42 54 66 69 90 111 m mp v 5 14 23 v mp m 15 18 21 Moreover, m&mp is a linear function which (as stated in Section 2 D) distributes over addition. For example: LF=: m&mp a=: 2 3 4 LF (a+b) 14 62 110 LF (m+2*m) 45 54 63 126 162 198 207 270 333 b=: 5 1 1 (LF a)+(LF b) 14 62 110 (LF m)+(LF 2*m) 45 54 63 126 162 198 207 270 333 Any linear function LF can be represented in the form M&mp for a suitable matrix M. If LF applies to vectors of n elements, then M may be obtained by applying LF to the identity matrix =i.n. For example, if p is an arbitrary permutation vector, then the permutation function p&{ is linear and: n=: 6 LF=: p&{ x=:2 3 5 7 11 13 LF x 13 5 3 7 2 11 M=: LF =i.n M&mp x 13 5 3 7 2 11 M 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 ]p=: n?n 5 2 1 3 0 4 %. M 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 104 Arithmetic 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 (%.M) mp 13 5 3 7 2 11 2 3 5 7 11 13 M&mp^:_1 (13 5 3 7 2 11) 2 3 5 7 11 13 Exercises A1 Experiment with the expression c POL x using x=:i.7 and various coefficients c, including those from the columns of Pascal’s triangle in Section 7 C. A2 Using the value of x from Ex A1, evaluate (x+1)^n for various values of n, and compare the results with those of Exercise A1. A3 Define a function CP such that (CP n) POL x equals x^n. Answer: CP=: #&0,1: B1 Evaluate 1 1&TIMES ^:n 1 for various values of n. B2 Explore the definition of TIMES by evaluating the following: c=: 3 1 4 d=: 2 0 3 5 c */d </.c */ d +//. c */ d Also compare TIMES with multiplication of integers in Section 4 C. B3 Use theorems 3-5 of Section 5 D to prove that the product of polynomials with coefficients C and D is equivalent to the polynomial with coefficients +//.C*/D. C1 Predict and test the results of CFR n#1 for various values of n. Repeat for CFR n#_1. C2 Define a function F such that n F r gives the coefficients of a polynomial having n repeated roots r. Test it on expressions such as 5 F 1 5 F _1 5&F"0 -i. 6 F&_1"0>:i.6 Answer: F=: CFR@# D1 Predict and test the results of EXP&CP n for various values of n, where CP is from Ex A3. D2 Explore the definition of EXP by defining the functions: A=: +/"1 B=: ] * C C=: !/~@i.@#@] and then evaluating expressions such as C d=:3 1 4 2 and B d and A B d. E1 Predict and test the results of the following expressions: CTIMES/a=: 1 2;3 4;5 6 CTIMES/\a Chapter 9 Polynomials 105 a CPLUS CTIMES/a G1 Experiment with GEXP for various arguments. G2 Explore the definition of GEXP by defining the subtraction table function ST=: - ~/~@i.@#@] and evaluating ST c=: 3 1 4 2. G3 Evaluate y^ST c for various values of y, including 0. G4 Explain the equivalence of the expressions (x+y)^n and (y GEXP CP n) POL x, where CP is from Exercise A3. H1 Extend the sequence that concluded Section H. L1 Test the assertion that the scan +/\ is linear. L2 Predict and test the results of the following expressions: c=: 3 1 4 2 6 +/\c I=: =/~i.#c M=: +/\ I d=: M +/ . * c (%.M) +/ . * d (>:/~i.#c) +/ . * c L3 Look through earlier chapters for other linear functions, and re-express them as inner products. In particular, identify the cases that can employ Pascal’s triangle (!/~i.n) and Vandermonde’s matrix x^/i.#c. L4 Predict and test the results of applying the matrix inversion function %. to some of the matrices used in Exercises L2 and L3, and use them in defining linear functions. L5 Examine the matrices M and %.M of Ex L2, and note that the former produces “aggregation” or “integration”, and the latter produces “differencing”. L6 Review the discussion of combinations in Section 7 C, and enter and experiment with the following structured definition of a function for generating tables of combinations: comb=: basis`[email protected] basis=:i.@(<:,[) recur=: (count#start),.(index@count{comb&.<:) count=:<:@[!<:@[+|.@start start=:i.@-.@- index=:;@:((i.-])&.>) test=: *@[*.< [Try 3 comb 4] References 107 1. American Heritage Dictionary of the English Language, Houghton-mifflin (Any edition that includes the appendix of Indo-European roots). 2. Klein, Felix, Elementary Mathematics from an Advanced Standpoint, Dover Publications. 3. Cajori, F., A History of Mathematical Notations, Open Court Publishing Company, LaSalle, Illinois. 4. Lakatos, Imre, Proofs and Refutations: the logic of mathematical discovery, Cambridge University Press. 110088 Arithmetic Index 110099 0, 7 1, 7 action word, 3 INDEX BARCHART, 83 barcharts, 91 base-10, 36 addition, 5, 6, 10, 11, 12, 19, 35, 38, 54, 63, 92, bases, 36, 41 105 Addition, 5, 11, 36 adds, 5, 42, 51 adverb, 6, 10, 12, 13, 18, 22, 25, 26, 63, 65, 103, 104 adverbs, 3, 13, 22, 31, 99, 103 ADVERBS, 12, 25, 103 AHD, 13 alternating sum, 16 Ambivalence, 17 ambivalent, 13, 17 American Heritage Dictionary, 2, 109 and, 60, 62 annotated display, 6 are, 3 argument, 4, 5, 6, 8, 9, 10, 11, 12, 18, 19, 23, 28, 29, 35, 40, 42, 46, 47, 50, 64, 72, 75, 82, 83, 84, 87, 89, 98, 100, 101, 103, 104, 105 Arithmetic, 9 Arrangements, 69 arrays, 42, 43 associativity, 23 Associativity, 18 atomic, 68 atop, 17, 22 auto classification, 82 base-value, 36, 41 binomial coefficients, 71, 97 bond conjunction, 17 bond to, 17 Bonds, 17 Boole, 60, 63 Boolean Dyads, 63 Boolean Monads, 64 Boolean Primitives, 65 Boolean table, 89 booleans, 55 Booleans, 60 Box, 30 by, 15 carrying, 37 Catenate, 12 Characters, 29 circle, 100 circular, 99 classification, 28, 77, 78, 79, 80, 81, 82, 83, 85, 86 Classification, 77 classified, 27, 78, 82 clean, 100 coefficients, 49, 87 2 Arithmetic combinations, 108 de Morgan, 11 COMBINATIONS, 70 decimal, 26, 35, 36, 37, 44 commutative, 18, 19, 22, 38 derivative, 96 commutativity, 53 Commutativity, 18 derivative polynomial, 98 Derivatives, 95, 98 complex numbers, 22, 87, 92, 93, 94, 101 derived verbs, 62 Complex Numbers, 91 diagonal adverb, 26 computer, 1, 13, 15, 16, 22, 23, 32, 50, 101 diagonals, 38 Computer programming, 101 dialogue, 1, 50, 51 conjecture, 50 dictionary, 2 conjunction, 4, 15, 17, 22, 43, 94, 103, 104, 105 differencing, 107 conjunctions, 3, 14, 22, 101, 103, 104 Display, 20 Conjunctions, 4, 11 CONJUNCTIONS, 12, 103 Consonants, 78 constant function, 105 convolutions, 26 coordinates, 84 copula, 3, 11 COPULA, 12 copulative conjunction, 4 correlations, 26 cosh, 99 cosine, 99 distribute over, 19 distributes, 105 Distributivity, 19 division, 23, 49 divisors, 48 domain, 3, 22, 28, 29, 49, 59, 60, 62, 65, 66, 80, 91, 92 Domain, 59 dot, 105 doubling, 3 drop, 21 duplicates, 18 Counterexamples, 51 counting number, 1, 2, 3, 5, 11, 47 counting numbers, 1, 2, 3, 11, 28, 35, 91 Counting Numbers, 1 cross, 18 CYCLES, 72 cyclic repetition, 8 dyad, 17, 18, 19, 21, 22, 23, 24, 27, 29, 32, 36, 41, 42, 44, 61, 62, 63, 68, 72 dyadically, 13, 41 each item, 6, 37 elementary algebra, 48 Elementary Mathematics, 109 empty, 21, 22, 47, 50, 81 English, 3, 29, 64, 104, 109 Index 3 etymology, 2 guesses, 50 even, 2, 3, 9, 15, 16, 47, 49, 77, 99, 100, 101 higher-rank, 42 executable, 13, 101 hyperbolic functions, 99 exhaustive classification, 81 identities, 21, 22, 48, 52 Expansion, 90, 94 identity, 4, 20, 21, 22, 24, 47, 52, 53, 54, 56, 62, experiment, 1, 13, 42, 50, 51, 85, 86, 108 Experimentation, 22 EXPERIMENTATION, 42 explicit, 101 Explicit definition, 103 explore, 13 exponent, 35, 49, 87 exponential, 17, 98, 99, 101 Exponential Family, 98 exponents, 87 factorial, 10, 42, 74 false, 7 formal proof, 47, 53 fractions, 2, 22, 59 fractured, 2 Fricatives, 78 73, 105 Identity Elements, 21 Imaginary numbers, 92 in, 2 indexing, 27 Indo-European root, 2 induction hypothesis, 56 infinite, 2, 80 infinities, 62 infinity, 11, 22, 40 Infinity, 21 informal proof, 47 inner, 105 Insertion, 9 inserts, 10, 42 integer, 2, 15, 27, 28, 29, 47, 48, 59, 65, 67, 83, 87, 90, 91 function, 3, 50, 60, 83, 84, 85, 87, 89, 90, 95, 96, 98, 99, 100, 104, 105, 106, 107, 108 integers, 2, 3, 6, 7, 11, 16, 22, 23, 26, 28, 42, 44, 47, 48, 49, 74, 80, 81, 82, 88, 91, 92, 106 Generators, 64 gerund, 104 Grade, 28 GRAPH, 83 Graphs, 91 greater than, 6, 28, 47, 54, 101, 105 Greater-Of, 7 greatest common divisor, 62 Integers, 2, 35 integration, 107 Interval Classification, 82 intervals, 27, 28, 91 inverse, 2, 3, 11, 27, 28, 29, 31, 42, 43, 72, 74, 91, 94, 103 inverses, 15, 20, 23, 91 Inverses, 20 Irrational numbers, 92 4 Arithmetic is, 3 it, 3 ITERATION, 105 Klein, 109 Lakatos, 50, 51, 52, 109 Lakatos’, 50 Language, 13, 23, 32, 101 least common multiple, 62 less than, 6, 9, 28, 54, 101 Less than, 12 Lesser of, 12 Lesser-Of, 7 linear, 19, 23 linear functions, 107 LINEAR FUNCTIONS, 105 List, 7 literal characters, 29 Logic, 59 magnitude, 23, 42, 43, 94, 100 mathematical discovery, 50 mathematics, 3, 10, 13, 49, 50, 52, 83 matrices, 107 matrix product, 104, 105 max, 62 maximum, 15 Mean, 102 MEMBERSHIP CLASSIFICATION, 83 min, 62 monad, 17, 18, 19, 23, 28, 30, 31, 42, 44, 47, 61, 63, 64, 66, 70, 72, 75, 82, 89, 94, 98, 100, 101, 105 monads, 17, 21, 23, 25, 27, 31, 64, 65, 85, 101 multiplication, 10, 11, 12, 16, 28, 35, 37, 38, 39, 44, 47, 49, 53, 54, 92, 106 Multiplication, 10, 37 NAND, 66 negation, 13, 65 negative infinity, 22 negative numbers, 2, 3, 11 NOR, 66 normal form, 37 Normalization, 37, 39, 102 notation, 1, 5, 12, 13, 22, 31, 42, 50, 54, 65, 74, 101 Nouns, 3 nub, 82 NUB CLASSIFICATION, 82 odd, 15, 16, 45, 99, 100, 101 Open, 30 operator, 3 or, 62 over, 15 pads, 31 parentheses, 9, 40, 64 Parentheses, 12 partition, 31 Partitions, 21, 25 parts of speech, 3 minimum, 7, 12, 15, 19, 22 Pascal’s triangle, 71, 106, 107 Mixed Bases, 41 modulo, 29, 59 Peano, 1, 2, 5 permutation, 23, 27, 28, 67, 68, 69, 70, 71, 72, proposition, 60, 80, 81 Index 5 73, 74, 75, 105 permutation vector, 27, 67 permutations, 42 Permutations, 67 permuted, 19 permutes, 47 planes, 42 Plosives, 78 Plots, 91 polyhedra, 51 polynomial, 49, 87, 106 polynomials, 26, 54, 87, 88, 91, 106 Polynomials, 87, 98 power, 4, 11, 12, 15, 22, 35, 39, 72, 75, 96 Power, 11 power conjunction, 4, 15 predecessor, 2, 3, 5, 11, 13, 28 Predecessor, 12 prefix, 25, 104 prime numbers, 16, 47 primes, 26 primitives, 62 Primitives, 62 product, 10, 38, 44, 47, 48, 53, 54, 56, 59, 88, 92, 93, 96, 97, 104, 105, 106 Products, 88 propositions, 60 Propositions, 60 proverb, 4, 11, 20 Proverbs, 3, 20 punctuation, 9, 12, 64 Punctuation, 9 PUNCTUATION, 9 quotes, 29, 31 radices, 36 range, 10 Range, 59 rank conjunction, 43 rate, 95 rational numbers, 59 Rational numbers, 91 ravel, 63, 65 Real, 91 recursively, 104 Reduced Representation, 74 redundant, 9, 70, 89 re-entry, 13 Refutations, 50 Relations, 6 remainder, 39 remainders, 48 programming language, 13 repeated addition, 10, 12 Pronouns, 3 proofs, 47, 49, 50, 52 Proofs, 45, 50, 52 Properties Of Verbs, 17 replicates, 8 replication, 12 representation, 36 Representation, 35 6 Arithmetic residue, 29, 31, 39, 40, 41 successor, 1, 2, 3, 4, 5, 11, 28, 91 RESIDUE, 28 residues, 48 right to left, 9 Roman numerals, 35 Roots, 89 rows, 42 Running maxima, 25 Running products, 25 secant line, 95 secant slope, 95, 96, 98 selection, 26, 27, 69 Selection, 26 Selections, 25 Sets, 77, 80 Shape, 12 Sibilants, 78 signum, 61, 101 sine, 99 sinh, 99 skew-symmetric, 99 Slopes, 95 Sort, 28 spread, 10 square root, 49, 94 Standard deviation, 102 structured programming, 102 Subtotals, 25 subtraction, 5, 6, 11, 12, 13, 19, 64, 107 Subtraction, 5 subtracts, 5, 19, 23 suffix, 104 suffixes, 25 Summary, 11, 31, 43, 65, 74, 85, 101 SUMMARY, 22 Sums, 88 superscript, 11 symbolic logic, 60 symmetric, 19, 47, 99 symmetry, 23 Symmetry, 19 synonym, 3 Table, 7 tables, 6, 7, 12, 15, 26, 38, 42, 43, 50, 52, 59, 63, 65, 67, 68, 72, 102, 108 tacit, 101 tag, 2 take, 21 Tetrahedron, 51 the counting numbers, 1, 3, 11, 91 three-dot notation, 54 train, 40 trains, 40 transposed, 63, 71 trigonometric, 99 true, 7 truth-function, 60 unbounded, 2 under, 94 universe of discourse, 80 upon, 3, 11, 21, 77 Index 7 valence, 17 Valence, 17 Vandermonde’s matrix, 107 variable, 3 Verbs, 3, 17, 26 VERBS, 12 versus, 85 Vowels, 78 vectors, 52, 54, 72, 75, 81, 105 word-formation, 30, 31 verb tables, 7 Verb Tables, 5 verbs, 6, 10, 11, 12, 13, 15, 17, 18, 21, 22, 23, 25, 26, 35, 39, 40, 41, 43, 59, 62, 63, 64, 65, 66, 74, 86, 101, 104 zero, 2, 3, 4, 7, 11, 23, 37, 40, 48, 49, 87, 89, 101, 105 |