llava-pretrain-vi / instruct500k_vi.py
Duy1332002's picture
Update instruct500k_vi.py
8e52119 verified
import os
import datasets
from huggingface_hub import HfFileSystem
logger = datasets.logging.get_logger(__name__)
fs = HfFileSystem()
_CITATION = """
"""
_DESCRIPTION = """
"""
_HOMEPAGE = "https://github.com/FPT-VVU/ViVidBot"
_REPO_ID = "datasets/Vividbot/instruct500k_vi"
_REPO_URL = f"https://huggingface.co/{_REPO_ID}/resolve/main"
_URLS = {
"meta": f"{_REPO_URL}/instruct500k_vi.json",
"image": f"{_REPO_URL}/images/" + "{shard}.zip",
}
_CONFIGS = ["all"]
if fs.exists(_REPO_ID + "/images"):
_CONFIGS.extend([
os.path.basename(file_name).split(".")[0]
for file_name in fs.listdir(_REPO_ID + "/images", detail=False)
if file_name.endswith(".zip")
])
class Instruct500k_ViConfig(datasets.BuilderConfig):
"""BuilderConfig for Instruct500k_ViConfig."""
def __init__(self, name, **kwargs):
"""
:param name: Name of subset.
:param kwargs: Arguments.
"""
super().__init__(
name=name,
version=datasets.Version("1.0.0"),
description=_DESCRIPTION,
**kwargs,
)
class Instruck500k_Vi(datasets.GeneratorBasedBuilder):
"""Instruct500k Vi dataset."""
BUILDER_CONFIGS = [Instruct500k_ViConfig(name) for name in _CONFIGS]
def _info(self) -> datasets.DatasetInfo:
features = datasets.Features(
{
"id": datasets.Value("string"),
"image": datasets.Value("binary"),
"conversations": [{'from': datasets.Value("string"), 'value': datasets.Value("string")}],
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> list[datasets.SplitGenerator]:
"""
Get splits.
:param dl_manager: Download manager.
:return: Splits.
"""
config_names = _CONFIGS[1:] if self.config.name == "all" else [self.config.name]
metadata_paths = dl_manager.download(_URLS["meta"])
dataset = datasets.load_dataset(
"json",
data_files=metadata_paths,
split="train",
)
dataset = dataset.train_test_split(test_size=0.1, shuffle=True, seed=42)
train_set = dataset["train"]
val_test_set = dataset["test"].train_test_split(test_size=0.5)
val_set = val_test_set["train"]
test_set = val_test_set["test"]
split_dict = {
datasets.Split.TRAIN: train_set,
datasets.Split.VALIDATION: val_set,
datasets.Split.TEST: test_set,
}
image_dirs = dl_manager.download_and_extract(
[_URLS["image"].format(shard=shard) for shard in config_names]
)
image_dict = {
shard: image_dir
for shard, image_dir in zip(config_names, image_dirs)
}
return [
datasets.SplitGenerator(
name=name,
gen_kwargs={
"split": split,
"image_dict": image_dict,
},
)
for name, split in split_dict.items()
]
def _generate_examples(
self,
split: datasets.Dataset,
image_dict: dict,
) -> tuple[int, dict]:
"""
Generate examples.
:param split: Split.
:param image_dict: Paths to directory containing image files.
:return: Example.
"""
for i, sample in enumerate(split):
shard = sample["image"].split("/")[0]
image_path = os.path.join(
image_dict[shard], shard, sample["image"].split("/")[1]
)
yield i, {
"id": sample["id"],
"image": self.__get_binary_data(image_path),
"conversations": sample["conversations"],
}
def __get_binary_data(self, path: str) -> bytes:
"""
Get binary data from path.
:param path: Path to file.
:return: Binary data.
"""
with open(path, "rb") as f:
return f.read()
def __get_text_data(self, path: str) -> str:
"""
Get transcript from path.
:param path: Path to transcript.
:return: Transcript.
"""
with open(path, "r", encoding="utf-8") as f:
return f.read().strip()