Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -4,25 +4,25 @@ language: en
|
|
4 |
size_categories:
|
5 |
- n<1K
|
6 |
task_categories:
|
7 |
-
-
|
8 |
task_ids: []
|
9 |
pretty_name: 2025.01.16.10.33.04
|
10 |
tags:
|
11 |
- fiftyone
|
12 |
-
- image-classification
|
13 |
- video
|
14 |
-
dataset_summary:
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
-
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 335
|
|
|
20 |
|
21 |
|
22 |
## Installation
|
23 |
|
24 |
|
25 |
-
If you haven'
|
26 |
|
27 |
|
28 |
```bash
|
@@ -44,7 +44,7 @@ dataset_summary: '
|
|
44 |
|
45 |
# Load the dataset
|
46 |
|
47 |
-
# Note: other available arguments include '
|
48 |
|
49 |
dataset = load_from_hub("pjramg/GMNCSA24-FO")
|
50 |
|
@@ -54,8 +54,7 @@ dataset_summary: '
|
|
54 |
session = fo.launch_app(dataset)
|
55 |
|
56 |
```
|
57 |
-
|
58 |
-
'
|
59 |
---
|
60 |
|
61 |
# Dataset Card for 2025.01.16.10.33.04
|
@@ -63,6 +62,7 @@ dataset_summary: '
|
|
63 |
This dataset is a modified version of the GMNCSA24 dataset, tailored for video classification tasks focusing on Activities of Daily Living (ADL) and fall detection in older populations. It is designed to support research in human activity recognition and safety monitoring. The dataset includes annotated video samples for various ADL and fall scenarios, making it ideal for training and evaluating machine learning models in healthcare and assistive technology applications.
|
64 |
|
65 |
|
|
|
66 |
|
67 |
|
68 |
|
@@ -110,11 +110,12 @@ session = fo.launch_app(dataset)
|
|
110 |
- **Repository:** [https://github.com/ekramalam/GMDCSA24-A-Dataset-for-Human-Fall-Detection-in-Videos]
|
111 |
- **Paper [optional]:** [E. Alam, A. Sufian, P. Dutta, M. Leo, I. A. Hameed "GMDCSA24: A Dataset for Human Fall Detection in Videos", Data in Brief (communicated)]
|
112 |
- **Blog [optional]:** [Journey with FiftyOn: Part III](https://medium.com/@paularamos_phd/journey-into-visual-ai-exploring-fiftyone-together-part-iii-preparing-a-computer-vision-e5709684ee34)
|
113 |
-
- **Notebook
|
|
|
114 |
|
115 |
## Uses
|
116 |
|
117 |
-
|
118 |
|
119 |
### Direct Use
|
120 |
|
|
|
4 |
size_categories:
|
5 |
- n<1K
|
6 |
task_categories:
|
7 |
+
- video-classification
|
8 |
task_ids: []
|
9 |
pretty_name: 2025.01.16.10.33.04
|
10 |
tags:
|
11 |
- fiftyone
|
|
|
12 |
- video
|
13 |
+
dataset_summary: >
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
+
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 335
|
19 |
+
samples.
|
20 |
|
21 |
|
22 |
## Installation
|
23 |
|
24 |
|
25 |
+
If you haven't already, install FiftyOne:
|
26 |
|
27 |
|
28 |
```bash
|
|
|
44 |
|
45 |
# Load the dataset
|
46 |
|
47 |
+
# Note: other available arguments include 'max_samples', etc
|
48 |
|
49 |
dataset = load_from_hub("pjramg/GMNCSA24-FO")
|
50 |
|
|
|
54 |
session = fo.launch_app(dataset)
|
55 |
|
56 |
```
|
57 |
+
license: mit
|
|
|
58 |
---
|
59 |
|
60 |
# Dataset Card for 2025.01.16.10.33.04
|
|
|
62 |
This dataset is a modified version of the GMNCSA24 dataset, tailored for video classification tasks focusing on Activities of Daily Living (ADL) and fall detection in older populations. It is designed to support research in human activity recognition and safety monitoring. The dataset includes annotated video samples for various ADL and fall scenarios, making it ideal for training and evaluating machine learning models in healthcare and assistive technology applications.
|
63 |
|
64 |
|
65 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63f516f6b51da4d61da6bca8/YsJoRwVLM3lqmzuyyZILR.png)
|
66 |
|
67 |
|
68 |
|
|
|
110 |
- **Repository:** [https://github.com/ekramalam/GMDCSA24-A-Dataset-for-Human-Fall-Detection-in-Videos]
|
111 |
- **Paper [optional]:** [E. Alam, A. Sufian, P. Dutta, M. Leo, I. A. Hameed "GMDCSA24: A Dataset for Human Fall Detection in Videos", Data in Brief (communicated)]
|
112 |
- **Blog [optional]:** [Journey with FiftyOn: Part III](https://medium.com/@paularamos_phd/journey-into-visual-ai-exploring-fiftyone-together-part-iii-preparing-a-computer-vision-e5709684ee34)
|
113 |
+
- **Notebook:** [fiftyOne Example](https://github.com/voxel51/fiftyone-examples/blob/master/examples/elderly_action_recognition.ipynb)
|
114 |
+
- **Readme_DataPrepartation** [Awesome_FiftyOne](https://github.com/paularamo/awesome-fiftyone/tree/main/ear-challenge)
|
115 |
|
116 |
## Uses
|
117 |
|
118 |
+
[Elderly Action Recognition Challenge](https://voxel51.com/computer-vision-events/elderly-action-recognition-challenge-wacv-2025/)
|
119 |
|
120 |
### Direct Use
|
121 |
|