XXXXRT666 commited on
Commit
1de27a5
·
1 Parent(s): d5f531d
Files changed (1) hide show
  1. train_vit.py +52 -27
train_vit.py CHANGED
@@ -1,5 +1,5 @@
1
  from datasets import Dataset, DatasetDict, load_dataset, load_from_disk
2
- from transformers import ViTForImageClassification, ViTImageProcessor, Trainer, TrainingArguments
3
  from PIL import Image
4
  from torch.optim import AdamW
5
  from torch.optim.lr_scheduler import StepLR
@@ -9,23 +9,35 @@ from sklearn.metrics import f1_score, accuracy_score, recall_score, precision_sc
9
  import os
10
 
11
 
12
- MODEL_NAME = "/Users/XXXXRT/vit_pretrain/vit-base-patch16-384"
13
  SIZE = "base"
14
  PATCH = 16
15
- IMAGE_SIZE = 384
16
- BATCH_SIZE = 8
17
  OPTIMIZER = "AdamW"
18
  SCHEDULER = "StepLR"
 
19
 
20
- IMAGE_PATH = '/Users/XXXXRT/ISIC-2019'
21
- TRAIN_CSV_PATH = '/Users/XXXXRT/ISIC-2019/train_labels.csv'
22
- TEST_CSV_PATH = '/Users/XXXXRT/ISIC-2019/test_labels.csv'
23
 
24
- processed_dataset_path = f"/Users/XXXXRT/ISIC-2019/dataset-{IMAGE_SIZE}"
25
- processed_dataset_path = f"/Volumes/T9 APFS/ML Dataset/dataset-{IMAGE_SIZE}"
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
28
- device = torch.device("mps")
29
 
30
  processor = ViTImageProcessor.from_pretrained(MODEL_NAME)
31
 
@@ -48,11 +60,11 @@ def preprocess_image_test(example):
48
  return example
49
 
50
  if os.path.exists(processed_dataset_path):
51
- dataset = load_from_disk(processed_dataset_path)
52
  print("LOADED")
53
  else:
54
- train_dataset = load_dataset('csv', data_files=TRAIN_CSV_PATH)["train"]
55
- test_dataset = load_dataset('csv', data_files=TEST_CSV_PATH)["train"]
56
 
57
  train_dataset = train_dataset.map(preprocess_image_train, batched=False, num_proc=2)
58
  test_dataset = test_dataset.map(preprocess_image_test, batched=False, num_proc=2)
@@ -69,24 +81,35 @@ test_dataset = dataset['test']
69
 
70
  num_labels = 9
71
 
72
- model = ViTForImageClassification.from_pretrained(
73
- MODEL_NAME,
74
- num_labels=num_labels,
75
- problem_type="multi_label_classification"
76
- ).to(device)
 
 
 
 
 
 
 
77
 
 
 
78
 
79
  training_args = TrainingArguments(
80
- output_dir=f"/Users/XXXXRT/ISIC-2019/logs/vit-{SIZE}-patch{PATCH}-{IMAGE_SIZE}-bs{BATCH_SIZE}-{OPTIMIZER}-{SCHEDULER}-lables-{num_labels}",
81
  evaluation_strategy="epoch",
82
  learning_rate=5e-5,
83
  per_device_train_batch_size=BATCH_SIZE,
84
  per_device_eval_batch_size=BATCH_SIZE,
85
- num_train_epochs=5,
86
  save_strategy="epoch",
87
- logging_dir=f"/Users/XXXXRT/ISIC-2019/logs/vit-{SIZE}-patch{PATCH}-{IMAGE_SIZE}-bs{BATCH_SIZE}-{OPTIMIZER}-{SCHEDULER}-lables-{num_labels}/logs",
88
- logging_steps=50,
89
- report_to="tensorboard"
 
 
90
  )
91
 
92
 
@@ -107,10 +130,10 @@ def compute_metrics(pred):
107
 
108
  learning_rate = 5e-5
109
  weight_decay = 0.01
110
- step_size = 100
111
  gamma = 0.1
112
  optimizer = AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
113
- scheduler = StepLR(optimizer, step_size=step_size, gamma=gamma)
114
 
115
 
116
  trainer = Trainer(
@@ -119,8 +142,10 @@ trainer = Trainer(
119
  train_dataset=train_dataset,
120
  eval_dataset=test_dataset,
121
  compute_metrics=compute_metrics,
122
- optimizers=(optimizer, scheduler)
 
123
  )
124
 
125
 
126
- trainer.train()
 
 
1
  from datasets import Dataset, DatasetDict, load_dataset, load_from_disk
2
+ from transformers import ViTForImageClassification, ViTImageProcessor, Trainer, TrainingArguments, ViTConfig
3
  from PIL import Image
4
  from torch.optim import AdamW
5
  from torch.optim.lr_scheduler import StepLR
 
9
  import os
10
 
11
 
12
+ MODEL_NAME = "google/vit-base-patch16-224"
13
  SIZE = "base"
14
  PATCH = 16
15
+ IMAGE_SIZE = 224
16
+ BATCH_SIZE = 128
17
  OPTIMIZER = "AdamW"
18
  SCHEDULER = "StepLR"
19
+ NAME = 'no-pretrain'
20
 
21
+ IMAGE_PATH = '/root/autodl-tmp/ISIC-2019'
22
+ TRAIN_CSV_PATH = '/root/autodl-tmp/ISIC-2019/train_labels.csv'
23
+ TEST_CSV_PATH = '/root/autodl-tmp/ISIC-2019/test_labels.csv'
24
 
25
+ checkpoint_dir = "/root/autodl-tmp/ISIC-2019/logs/vit-base-patch16-224-bs128-AdamW-StepLR-lables-9"
26
+
27
+ if os.path.isdir(checkpoint_dir) and any(os.scandir(checkpoint_dir)):
28
+ checkpoint = max([os.path.join(checkpoint_dir, d) for d in os.listdir(checkpoint_dir) if "checkpoint" in d], key=os.path.getctime)
29
+ else:
30
+ checkpoint = None
31
+
32
+ checkpoint = "/root/autodl-tmp/ISIC-2019/logs/vit-base-patch16-224-bs128-AdamW-StepLR-lables-9-train-linear/checkpoint-895"
33
+ checkpoint = None
34
+ print(f"从检查点 {checkpoint} 恢复训练")
35
+
36
+ processed_dataset_path = f"/root/autodl-tmp/ISIC-2019/dataset-{IMAGE_SIZE}"
37
+ # processed_dataset_path = f"/root/autodl-tmp/dataset-{IMAGE_SIZE}"
38
 
39
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
40
+ # device = torch.device("mps")
41
 
42
  processor = ViTImageProcessor.from_pretrained(MODEL_NAME)
43
 
 
60
  return example
61
 
62
  if os.path.exists(processed_dataset_path):
63
+ dataset = load_from_disk(processed_dataset_path,keep_in_memory=True)
64
  print("LOADED")
65
  else:
66
+ train_dataset = load_dataset('csv', data_files=TRAIN_CSV_PATH, keep_in_memory=True)["train"]
67
+ test_dataset = load_dataset('csv', data_files=TEST_CSV_PATH, keep_in_memory=True)["train"]
68
 
69
  train_dataset = train_dataset.map(preprocess_image_train, batched=False, num_proc=2)
70
  test_dataset = test_dataset.map(preprocess_image_test, batched=False, num_proc=2)
 
81
 
82
  num_labels = 9
83
 
84
+ # model = ViTForImageClassification.from_pretrained(
85
+ # MODEL_NAME,
86
+ # num_labels=num_labels,
87
+ # problem_type="multi_label_classification",
88
+ # ignore_mismatched_sizes=True
89
+ # ).to(device)
90
+
91
+ # for param in model.parameters():
92
+ # param.requires_grad = False
93
+
94
+ # for param in model.classifier.parameters():
95
+ # param.requires_grad = True
96
 
97
+ config = ViTConfig(image_size=IMAGE_SIZE, num_labels=num_labels, problem_type="multi_label_classification", patch_size = PATCH)
98
+ model = ViTForImageClassification(config)
99
 
100
  training_args = TrainingArguments(
101
+ output_dir=f"/root/autodl-tmp/ISIC-2019/logs/vit-{SIZE}-patch{PATCH}-{IMAGE_SIZE}-bs{BATCH_SIZE}-{OPTIMIZER}-{SCHEDULER}-lables-{num_labels}-{NAME}",
102
  evaluation_strategy="epoch",
103
  learning_rate=5e-5,
104
  per_device_train_batch_size=BATCH_SIZE,
105
  per_device_eval_batch_size=BATCH_SIZE,
106
+ num_train_epochs=20,
107
  save_strategy="epoch",
108
+ logging_dir=f"/root/autodl-tmp/ISIC-2019/logs/vit-{SIZE}-patch{PATCH}-{IMAGE_SIZE}-bs{BATCH_SIZE}-{OPTIMIZER}-{SCHEDULER}-lables-{num_labels}-{NAME}/logs",
109
+ logging_steps=10,
110
+ report_to="tensorboard",
111
+ fp16=True,
112
+ dataloader_num_workers = 8
113
  )
114
 
115
 
 
130
 
131
  learning_rate = 5e-5
132
  weight_decay = 0.01
133
+ step_size = 1000
134
  gamma = 0.1
135
  optimizer = AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
136
+ # scheduler = StepLR(optimizer, step_size=step_size, gamma=gamma)
137
 
138
 
139
  trainer = Trainer(
 
142
  train_dataset=train_dataset,
143
  eval_dataset=test_dataset,
144
  compute_metrics=compute_metrics,
145
+ optimizers=(optimizer,None)
146
+ # optimizers=(optimizer, scheduler)
147
  )
148
 
149
 
150
+ # trainer.train()
151
+ trainer.train(resume_from_checkpoint=checkpoint)