XXXXRT666 commited on
Commit
926ab7d
·
1 Parent(s): 640cb29
Files changed (8) hide show
  1. .gitattributes +5 -0
  2. .gitignore +12 -0
  3. README.md +3 -3
  4. dataset-224.zip +3 -0
  5. dataset-384.zip +3 -0
  6. test_labels.csv +3 -0
  7. train_labels.csv +3 -0
  8. train_vit.py +126 -0
.gitattributes CHANGED
@@ -56,3 +56,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
56
  # Video files - compressed
57
  *.mp4 filter=lfs diff=lfs merge=lfs -text
58
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
56
  # Video files - compressed
57
  *.mp4 filter=lfs diff=lfs merge=lfs -text
58
  *.webm filter=lfs diff=lfs merge=lfs -text
59
+ README.md filter=lfs diff=lfs merge=lfs -text
60
+ processed_dataset filter=lfs diff=lfs merge=lfs -text
61
+ test_labels.csv filter=lfs diff=lfs merge=lfs -text
62
+ train_labels.csv filter=lfs diff=lfs merge=lfs -text
63
+
.gitignore ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ test
2
+ train
3
+ logs
4
+ .DS_Store
5
+ test/*
6
+ train/*
7
+ dataset-224
8
+ dataset-384
9
+ dataset-224/*
10
+ dataset-384/*
11
+ train_lable.zip
12
+ test_lable.zip
README.md CHANGED
@@ -1,3 +1,3 @@
1
- ---
2
- license: mit
3
- ---
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8d7a46d41a1a37fe4f0a5f637bf55c649310185329127d8a2204632e480be17
3
+ size 24
dataset-224.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dbaf986e1523eb8b94f3030ae256775bcfe6473cd9cb6929c299e3337b66355
3
+ size 3110989729
dataset-384.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:932c66d2e656d85e1799b49bbf9f49511988a7a091a81650796380ff498caf32
3
+ size 8499981466
test_labels.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7e2868130702fede9a9d1e7163a898675b80a3a9ade62b697c6245af4fbb83e
3
+ size 136934
train_labels.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de31cdbbe45a5a99999d53614a8a734b0452ca3bf2c2361f853813ea5ad5e2c5
3
+ size 1230577
train_vit.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import Dataset, DatasetDict, load_dataset, load_from_disk
2
+ from transformers import ViTForImageClassification, ViTImageProcessor, Trainer, TrainingArguments
3
+ from PIL import Image
4
+ from torch.optim import AdamW
5
+ from torch.optim.lr_scheduler import StepLR
6
+ import torch
7
+ import numpy as np
8
+ from sklearn.metrics import f1_score, accuracy_score, recall_score, precision_score
9
+ import os
10
+
11
+
12
+ MODEL_NAME = "/Users/XXXXRT/vit_pretrain/vit-base-patch16-384"
13
+ SIZE = "base"
14
+ PATCH = 16
15
+ IMAGE_SIZE = 384
16
+ BATCH_SIZE = 8
17
+ OPTIMIZER = "AdamW"
18
+ SCHEDULER = "StepLR"
19
+
20
+ IMAGE_PATH = '/Users/XXXXRT/ISIC-2019'
21
+ TRAIN_CSV_PATH = '/Users/XXXXRT/ISIC-2019/train_labels.csv'
22
+ TEST_CSV_PATH = '/Users/XXXXRT/ISIC-2019/test_labels.csv'
23
+
24
+ processed_dataset_path = f"/Users/XXXXRT/ISIC-2019/dataset-{IMAGE_SIZE}"
25
+ processed_dataset_path = f"/Volumes/T9 APFS/ML Dataset/dataset-{IMAGE_SIZE}"
26
+
27
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
28
+ device = torch.device("mps")
29
+
30
+ processor = ViTImageProcessor.from_pretrained(MODEL_NAME)
31
+
32
+ def preprocess_image_train(example):
33
+ image = Image.open(os.path.join(IMAGE_PATH,'train', example["image"])).convert("RGB")
34
+ example["pixel_values"] = processor(images=image, return_tensors="pt")["pixel_values"].squeeze(0).numpy()
35
+
36
+ labels = example.copy()
37
+ example["labels"] = np.array([labels["MEL"], labels["NV"], labels["BCC"], labels["AK"], labels["BKL"], labels["DF"], labels["VASC"], labels["SCC"], labels["UNK"]], dtype=np.float32)
38
+
39
+ return example
40
+
41
+ def preprocess_image_test(example):
42
+ image = Image.open(os.path.join(IMAGE_PATH,'test', example["image"])).convert("RGB")
43
+ example["pixel_values"] = processor(images=image, return_tensors="pt")["pixel_values"].squeeze(0).numpy()
44
+
45
+ labels = example.copy()
46
+ example["labels"] = np.array([labels["MEL"], labels["NV"], labels["BCC"], labels["AK"], labels["BKL"], labels["DF"], labels["VASC"], labels["SCC"], labels["UNK"]], dtype=np.float32)
47
+
48
+ return example
49
+
50
+ if os.path.exists(processed_dataset_path):
51
+ dataset = load_from_disk(processed_dataset_path)
52
+ print("LOADED")
53
+ else:
54
+ train_dataset = load_dataset('csv', data_files=TRAIN_CSV_PATH)["train"]
55
+ test_dataset = load_dataset('csv', data_files=TEST_CSV_PATH)["train"]
56
+
57
+ train_dataset = train_dataset.map(preprocess_image_train, batched=False, num_proc=2)
58
+ test_dataset = test_dataset.map(preprocess_image_test, batched=False, num_proc=2)
59
+
60
+ dataset = DatasetDict({
61
+ 'train': train_dataset,
62
+ 'test': test_dataset
63
+ })
64
+ dataset.save_to_disk(processed_dataset_path,num_proc=2)
65
+ print(f"SAVED TO {processed_dataset_path}")
66
+
67
+ train_dataset = dataset['train']
68
+ test_dataset = dataset['test']
69
+
70
+ num_labels = 9
71
+
72
+ model = ViTForImageClassification.from_pretrained(
73
+ MODEL_NAME,
74
+ num_labels=num_labels,
75
+ problem_type="multi_label_classification"
76
+ ).to(device)
77
+
78
+
79
+ training_args = TrainingArguments(
80
+ output_dir=f"/Users/XXXXRT/ISIC-2019/logs/vit-{SIZE}-patch{PATCH}-{IMAGE_SIZE}-bs{BATCH_SIZE}-{OPTIMIZER}-{SCHEDULER}-lables-{num_labels}",
81
+ evaluation_strategy="epoch",
82
+ learning_rate=5e-5,
83
+ per_device_train_batch_size=BATCH_SIZE,
84
+ per_device_eval_batch_size=BATCH_SIZE,
85
+ num_train_epochs=5,
86
+ save_strategy="epoch",
87
+ logging_dir=f"/Users/XXXXRT/ISIC-2019/logs/vit-{SIZE}-patch{PATCH}-{IMAGE_SIZE}-bs{BATCH_SIZE}-{OPTIMIZER}-{SCHEDULER}-lables-{num_labels}/logs",
88
+ logging_steps=50,
89
+ report_to="tensorboard"
90
+ )
91
+
92
+
93
+ def compute_metrics(pred):
94
+ logits, labels = pred
95
+ predictions = (logits >= 0.5).astype(int)
96
+ f1 = f1_score(labels, predictions, average="macro")
97
+ accuracy = accuracy_score(labels, predictions)
98
+ recall = recall_score(labels, predictions, average="macro")
99
+ precision = precision_score(labels, predictions, average="macro")
100
+ return {
101
+ "accuracy": accuracy,
102
+ "f1": f1,
103
+ "recall": recall,
104
+ "precision": precision,
105
+ }
106
+
107
+
108
+ learning_rate = 5e-5
109
+ weight_decay = 0.01
110
+ step_size = 100
111
+ gamma = 0.1
112
+ optimizer = AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
113
+ scheduler = StepLR(optimizer, step_size=step_size, gamma=gamma)
114
+
115
+
116
+ trainer = Trainer(
117
+ model=model,
118
+ args=training_args,
119
+ train_dataset=train_dataset,
120
+ eval_dataset=test_dataset,
121
+ compute_metrics=compute_metrics,
122
+ optimizers=(optimizer, scheduler)
123
+ )
124
+
125
+
126
+ trainer.train()