File size: 6,527 Bytes
0233002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import pydicom
from PIL import Image
import numpy as np
import io
import datasets
import gdown
import re
import s3fs
import random

example_manifest_url = "https://drive.google.com/uc?id=1JBkQTXeieyN9_6BGdTF_DDlFFyZrGyU6"
example_manifest_file = gdown.download(example_manifest_url, 'manifest_file.s5cmd', quiet = False)
full_manifest_url = "https://drive.google.com/uc?id=1KP6qxcQoPF4MJdEPNwW7J6BlL_sUJ17j"
full_manifest_file = gdown.download(full_manifest_url, 'full_manifest_file.s5cmd', quiet = False)
fs = s3fs.S3FileSystem(anon=True)

_DESCRIPTION = "This is the description"
_HOMEPAGE = "https://imaging.datacommons.cancer.gov/"
_LICENSE = "https://fairsharing.org/FAIRsharing.0b5a1d"
_CITATION = "National Cancer Institute Imaging Data Commons (IDC) Collections was accessed on DATE from https://registry.opendata.aws/nci-imaging-data-commons"


class ColonCancerCTDataset(datasets.GeneratorBasedBuilder):
  """TODO: Short description of my dataset."""
  VERSION = datasets.Version("1.1.0")

  BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="example", version=VERSION, description="This is a subset of the full dataset for demonstration purposes"),
        datasets.BuilderConfig(name="full_data", version=VERSION, description="This is the complete dataset"),
    ]
  DEFAULT_CONFIG_NAME = "example"

  def _info(self):
    return datasets.DatasetInfo(
        description=_DESCRIPTION,
        features=datasets.Features(
            {
                "image": datasets.Image(),
                "ImageType": datasets.Sequence(datasets.Value('string')), 
                "StudyDate": datasets.Value('string'), 
                "SeriesDate": datasets.Value('string'),
                "Manufacturer": datasets.Value('string'),
                "StudyDescription": datasets.Value('string'),
                "SeriesDescription": datasets.Value('string'),
                "PatientSex": datasets.Value('string'),
                "PatientAge": datasets.Value('string'),
                "PregnancyStatus": datasets.Value('string'),
                "BodyPartExamined": datasets.Value('string'),
            }),
        homepage = _HOMEPAGE,
        license = _LICENSE,
        citation = _CITATION
        
    )

  def _split_generators(self, dl_manager):
    """Returns SplitGenerators."""
    # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the
    s3_series_paths = []
    s3_individual_paths = []
    if self.config.name == 'example':
        manifest_file = example_manifest_file
    else:
        manifest_file = full_manifest_file
    
    with open(manifest_file, 'r') as file:
        for line in file:
            match = re.search(r'cp (s3://[\S]+) .', line)
            if match:
                s3_series_paths.append(match.group(1)[:-2]) # Deleting the '/*' in directories
    for series in s3_series_paths:
        for content in fs.ls(series):
            s3_individual_paths.append(fs.info(content)['Key'])

    random.shuffle(s3_individual_paths)

    # Define the split sizes
    train_size = int(0.7 * len(s3_individual_paths))
    val_size = int(0.15 * len(s3_individual_paths))
    # Split the paths into train, validation, and test sets
    train_paths = s3_individual_paths[:train_size]
    val_paths = s3_individual_paths[train_size:train_size + val_size]
    test_paths = s3_individual_paths[train_size + val_size:]

    return [
        datasets.SplitGenerator(
            name=datasets.Split.TRAIN,
            gen_kwargs={
                "paths": train_paths,
                "split": "train"
            },
        ),
        datasets.SplitGenerator(
            name=datasets.Split.VALIDATION,
            gen_kwargs={
                "paths": val_paths,
                "split": "dev"
            },
        ),
        datasets.SplitGenerator(
            name=datasets.Split.TEST,
            gen_kwargs={
                "paths": test_paths,
                "split": "test"
            },
        ),
    ]

  def _generate_examples(self, paths, split):
    """Yields examples."""
    # TODO: This method will yield examples, i.e. rows in the dataset.
    for path in paths:
      key = path
      with fs.open(path, 'rb') as f:
        dicom_data = pydicom.dcmread(f)
        pixel_array = dicom_data.pixel_array
        # Adjust for MONOCHROME1 to invert the grayscale values
        if dicom_data.PhotometricInterpretation == "MONOCHROME1":
          pixel_array = np.max(pixel_array) - pixel_array
        # Normalize or scale 16-bit or other depth images to 8-bit
        if pixel_array.dtype != np.uint8:
            pixel_array = (np.divide(pixel_array, np.max(pixel_array)) * 255).astype(np.uint8)
        # Convert to RGB if it is not already (e.g., for color images)
        if len(pixel_array.shape) == 2:
            im = Image.fromarray(pixel_array, mode="L")  # L mode is for grayscale
        elif len(pixel_array.shape) == 3 and pixel_array.shape[2] in [3, 4]:
            im = Image.fromarray(pixel_array, mode="RGB")
        else:
            raise ValueError("Unsupported DICOM image format")
        with io.BytesIO() as output:
            im.save(output, format="PNG")
            png_image = output.getvalue()
        # Extracting metadata
        ImageType = dicom_data.get("ImageType", "")
        StudyDate = dicom_data.get("StudyDate", "")
        SeriesDate = dicom_data.get("SeriesDate", "")
        Manufacturer = dicom_data.get("Manufacturer", "")
        StudyDescription = dicom_data.get("StudyDescription", "")
        SeriesDescription = dicom_data.get("SeriesDescription", "")
        PatientSex = dicom_data.get("PatientSex", "")
        PatientAge = dicom_data.get("PatientAge", "")
        PregnancyStatus = dicom_data.get("PregnancyStatus", "")
        if PregnancyStatus == None:
           PregnancyStatus = "None"
        else:
           PregnancyStatus = "Yes"
        BodyPartExamined = dicom_data.get("BodyPartExamined", "")
        yield key, {"image": png_image, 
                    "ImageType": ImageType, 
                    "StudyDate": StudyDate, 
                    "SeriesDate": SeriesDate, 
                    "Manufacturer": Manufacturer, 
                    "StudyDescription": StudyDescription, 
                    "SeriesDescription": SeriesDescription,
                    "PatientSex": PatientSex, 
                    "PatientAge": PatientAge, 
                    "PregnancyStatus": PregnancyStatus, 
                    "BodyPartExamined": BodyPartExamined}