Upload urban_tree_canopy_in_durham2.py
Browse files- urban_tree_canopy_in_durham2.py +298 -0
urban_tree_canopy_in_durham2.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Urban_Tree_Canopy_in_Durham2
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1X59zPtI7ydiX10ZnfjsNGvnKNTXgwrWs
|
8 |
+
"""
|
9 |
+
|
10 |
+
! pip install datasets
|
11 |
+
import csv
|
12 |
+
import json
|
13 |
+
import os
|
14 |
+
from typing import List
|
15 |
+
import datasets
|
16 |
+
import logging
|
17 |
+
from datasets import DatasetBuilder, DownloadManager, SplitGenerator, Split
|
18 |
+
|
19 |
+
import zipfile
|
20 |
+
import json
|
21 |
+
import pandas as pd
|
22 |
+
import geopandas as gpd
|
23 |
+
|
24 |
+
class Urban_Tree_Canopy_in_Durham(DatasetBuilder):
|
25 |
+
# Define the `_info` method, which provides dataset metadata
|
26 |
+
def _info(self):
|
27 |
+
return DatasetInfo(
|
28 |
+
description="A description of the dataset.",
|
29 |
+
features=Features(
|
30 |
+
{
|
31 |
+
"objectid": Value("int32"),
|
32 |
+
"streetaddr": Value("string"),
|
33 |
+
"city_x": Value("string"),
|
34 |
+
"zipcode_x": Value("string"),
|
35 |
+
"facilityid_x": Value("string"),
|
36 |
+
"present_x": Value("string"),
|
37 |
+
"genus_x": Value("string"),
|
38 |
+
"species_x": Value("string"),
|
39 |
+
"commonname_x": Value("string"),
|
40 |
+
"plantingda": Value("datetime"),
|
41 |
+
"diameterin_x": Value("float"),
|
42 |
+
"heightft_x": Value("float"),
|
43 |
+
"condition_x": Value("string"),
|
44 |
+
"contractwo": Value("string"),
|
45 |
+
"neighborho": Value("string"),
|
46 |
+
"program_x": Value("string"),
|
47 |
+
"plantingw_x": Value("string"),
|
48 |
+
"plantingco": Value("string"),
|
49 |
+
"underpwerl": Value("string"),
|
50 |
+
"matureheig": Value("float"),
|
51 |
+
"globalid_x": Value("string"),
|
52 |
+
"created_us": Value("string"),
|
53 |
+
"created_da": Value("datetime"),
|
54 |
+
"last_edite": Value("string"),
|
55 |
+
"last_edi_1": Value("datetime"),
|
56 |
+
"isoprene_x": Value("float"),
|
57 |
+
"monoterpen": Value("float"),
|
58 |
+
"vocs_x": Value("float"),
|
59 |
+
"coremoved_": Value("float"),
|
60 |
+
"coremove_1": Value("float"),
|
61 |
+
"o3removed_": Value("float"),
|
62 |
+
"o3remove_1": Value("float"),
|
63 |
+
"no2removed": Value("float"),
|
64 |
+
"no2remov_1": Value("float"),
|
65 |
+
"so2removed": Value("float"),
|
66 |
+
"so2remov_1": Value("float"),
|
67 |
+
"pm10remove": Value("float"),
|
68 |
+
"pm10remo_1": Value("float"),
|
69 |
+
"pm25remove": Value("float"),
|
70 |
+
"o2producti": Value("float"),
|
71 |
+
"replaceval": Value("float"),
|
72 |
+
"carbonstor": Value("float"),
|
73 |
+
"carbonst_1": Value("float"),
|
74 |
+
"grosscarse": Value("float"),
|
75 |
+
"grosscar_1": Value("float"),
|
76 |
+
"avoidrunof": Value("float"),
|
77 |
+
"avoidrun_1": Value("float"),
|
78 |
+
"polremoved": Value("float"),
|
79 |
+
"polremov_1": Value("float"),
|
80 |
+
"totannbene": Value("float"),
|
81 |
+
"leafarea_s": Value("float"),
|
82 |
+
"potevapotr": Value("float"),
|
83 |
+
"evaporatio": Value("float"),
|
84 |
+
"transpirat": Value("float"),
|
85 |
+
"h2ointerce": Value("float"),
|
86 |
+
"avoidrunva": Value("float"),
|
87 |
+
"avoidrun_2": Value("float"),
|
88 |
+
"carbonavoi": Value("float"),
|
89 |
+
"carbonav_1": Value("float"),
|
90 |
+
"heating_mb": Value("float"),
|
91 |
+
"heating_do": Value("float"),
|
92 |
+
"heating_kw": Value("float"),
|
93 |
+
"heating__1": Value("float"),
|
94 |
+
"cooling_kw": Value("float"),
|
95 |
+
"cooling_do": Value("float"),
|
96 |
+
"totalenerg": Value("float"),
|
97 |
+
"geometry_x": Value("string"),
|
98 |
+
"x": Value("float"),
|
99 |
+
"y": Value("float"),
|
100 |
+
"streetaddress_x": Value("string"),
|
101 |
+
"city_y": Value("string"),
|
102 |
+
"zipcode_y": Value("string"),
|
103 |
+
"facilityid_y": Value("string"),
|
104 |
+
"present_y": Value("string"),
|
105 |
+
"genus_y": Value("string"),
|
106 |
+
"species_y": Value("string"),
|
107 |
+
"commonname_y": Value("string"),
|
108 |
+
"plantingdate_x": Value("datetime"),
|
109 |
+
"diameterin_y": Value("float"),
|
110 |
+
"heightft_y": Value("float"),
|
111 |
+
"condition_y": Value("string"),
|
112 |
+
"contractwork_x": Value("string"),
|
113 |
+
"neighborhood_x": Value("string"),
|
114 |
+
"program_y": Value("string"),
|
115 |
+
"plantingw_y": Value("string"),
|
116 |
+
"plantingcond_x": Value("string"),
|
117 |
+
"underpwerlins_x": Value("string"),
|
118 |
+
"matureheight_x": Value("float"),
|
119 |
+
"globalid_y": Value("string"),
|
120 |
+
"created_user_x": Value("string"),
|
121 |
+
"created_date_x": Value("datetime"),
|
122 |
+
"last_edited_user_x": Value("string"),
|
123 |
+
"last_edited_date_x": Value("datetime"),
|
124 |
+
"isoprene_y": Value("float"),
|
125 |
+
"monoterpene_x": Value("float"),
|
126 |
+
"vocs_y": Value("float"),
|
127 |
+
"coremoved_ozperyr_x": Value("float"),
|
128 |
+
"coremoved_dolperyr_x": Value("float"),
|
129 |
+
"o3removed_ozperyr_x": Value("float"),
|
130 |
+
"o3removed_dolperyr_x": Value("float"),
|
131 |
+
"no2removed_ozperyr_x": Value("float"),
|
132 |
+
"no2removed_dolperyr_x": Value("float"),
|
133 |
+
"so2removed_ozperyr_x": Value("float"),
|
134 |
+
"so2removed_dolperyr_x": Value("float"),
|
135 |
+
"pm10removed_dolperyr_y":Value("float"),
|
136 |
+
"pm25removed_ozperyr_y":Value("float"),
|
137 |
+
"o2production_lbperyr_y":Value("float"),
|
138 |
+
"replacevalue_dol_y":Value("float"),
|
139 |
+
"carbonstorage_lb_y":Value("float"),
|
140 |
+
"carbonstorage_dol_y":Value("float"),
|
141 |
+
"grosscarseq_lbperyr_y":Value("float"),
|
142 |
+
"grosscarseq_dolperyr_y":Value("float"),
|
143 |
+
"avoidrunoff_ft2peryr":Value("float"),
|
144 |
+
|
145 |
+
}
|
146 |
+
),
|
147 |
+
supervised_keys=None,
|
148 |
+
homepage="https://github.com/AuraMa111/Urban_Tree_Canopy_in_Durham",
|
149 |
+
citation="A citation or reference to the source of the dataset.",
|
150 |
+
)
|
151 |
+
|
152 |
+
# ... (include _info method here)
|
153 |
+
|
154 |
+
def _split_generators(self, dl_manager: DownloadManager):
|
155 |
+
def _split_generators(self, dl_manager: tfds.download.DownloadManager):
|
156 |
+
# Download the source data
|
157 |
+
downloaded_files = dl_manager.download_and_extract({
|
158 |
+
"csv": "https://raw.githubusercontent.com/AuraMa111/Urban_Tree_Canopy_in_Durham/main/Trees_%2526_Planting_Sites.csv",
|
159 |
+
"geojson_zip": "https://raw.githubusercontent.com/AuraMa111/Urban_Tree_Canopy_in_Durham/main/Trees_%2526_Planting_Sites.geojson.zip",
|
160 |
+
"zip": "https://raw.githubusercontent.com/AuraMa111/Urban_Tree_Canopy_in_Durham/main/TreesPlanting_Sites.zip"
|
161 |
+
})
|
162 |
+
|
163 |
+
# Return split generators
|
164 |
+
return [
|
165 |
+
tfds.core.SplitGenerator(
|
166 |
+
name=tfds.Split.TRAIN,
|
167 |
+
gen_kwargs={
|
168 |
+
"file_path_csv": downloaded_files["csv"],
|
169 |
+
"file_path_zip": downloaded_files["zip"],
|
170 |
+
"file_path_geojson_zip": downloaded_files["geojson_zip"],
|
171 |
+
},
|
172 |
+
),
|
173 |
+
# Add other splits if necessary
|
174 |
+
]
|
175 |
+
|
176 |
+
def _generate_examples(self, file_path_csv, file_path_zip, file_path_geojson_zip):
|
177 |
+
# Generate examples from CSV
|
178 |
+
csv_df = self.process_csv_file(file_path_csv)
|
179 |
+
|
180 |
+
# Generate examples from Shapefiles within ZIP
|
181 |
+
shp_gdf = self.process_zip_shapefiles(file_path_zip)
|
182 |
+
|
183 |
+
# Generate examples from GeoJSON within ZIP
|
184 |
+
geojson_gdf = self.process_zip_geojson(file_path_geojson_zip)
|
185 |
+
|
186 |
+
# Merge the DataFrames
|
187 |
+
combined_gdf = self.merge_dataframes(csv_df, shp_gdf, geojson_gdf)
|
188 |
+
|
189 |
+
# Generate final examples
|
190 |
+
for idx, example in self.generate_examples_from_merged_data(combined_gdf):
|
191 |
+
yield idx, example
|
192 |
+
|
193 |
+
def process_csv_file(self, file_path):
|
194 |
+
with open(file_path, 'r') as f:
|
195 |
+
csv_df = pd.read_csv(f)
|
196 |
+
csv_df.drop_duplicates(inplace=True)
|
197 |
+
csv_df.fillna(method='bfill', inplace=True)
|
198 |
+
csv_df.columns = csv_df.columns.str.lower().str.replace(' ', '_')
|
199 |
+
csv_df['objectid'] = csv_df['objectid'].astype(int)
|
200 |
+
return csv_df
|
201 |
+
|
202 |
+
def process_zip_shapefiles(self, file_path):
|
203 |
+
with zipfile.ZipFile(file_path, 'r') as z:
|
204 |
+
for file_name in z.namelist():
|
205 |
+
if file_name.endswith(".shp"):
|
206 |
+
with z.open(file_name) as file:
|
207 |
+
shp_gdf = gpd.read_file(file)
|
208 |
+
shp_gdf.columns = shp_gdf.columns.str.lower().str.replace(' ', '_')
|
209 |
+
shp_gdf['objectid'] = shp_gdf['objectid'].astype(int)
|
210 |
+
return shp_gdf
|
211 |
+
|
212 |
+
def process_zip_geojson(self, file_path):
|
213 |
+
with zipfile.ZipFile(file_path, 'r') as z:
|
214 |
+
for file_name in z.namelist():
|
215 |
+
if file_name.endswith(".geojson"):
|
216 |
+
with z.open(file_name) as file:
|
217 |
+
geojson_data = json.load(file)
|
218 |
+
geojson_gdf = gpd.GeoDataFrame.from_features(geojson_data['features'])
|
219 |
+
geojson_gdf.columns = geojson_gdf.columns.str.lower().str.replace(' ', '_')
|
220 |
+
geojson_gdf['objectid'] = geojson_gdf['objectid'].astype(int)
|
221 |
+
return geojson_gdf
|
222 |
+
|
223 |
+
def merge_dataframes(self, csv_df, shp_gdf, geojson_gdf):
|
224 |
+
combined_gdf = shp_gdf.merge(csv_df, on='objectid', how='inner')
|
225 |
+
combined_gdf = combined_gdf.merge(geojson_gdf, on='objectid', how='left')
|
226 |
+
return combined_gdf
|
227 |
+
|
228 |
+
def generate_examples_from_merged_data(self, combined_gdf):
|
229 |
+
for idx, row in combined_gdf.iterrows():
|
230 |
+
example = row.to_dict()
|
231 |
+
|
232 |
+
if 'geometry' in row and row['geometry'] is not None:
|
233 |
+
example['geometry'] = json.loads(gpd.GeoSeries([row['geometry']]).to_json())['features'][0]['geometry']
|
234 |
+
|
235 |
+
yield idx, example
|
236 |
+
def plot_spatial_distribution(self, gdf, lat_col='latitude', lon_col='longitude', color_col='species', hover_col='species'):
|
237 |
+
"""
|
238 |
+
Visualize the spatial distribution of the data using Plotly.
|
239 |
+
|
240 |
+
Parameters:
|
241 |
+
- gdf: GeoDataFrame to be visualized.
|
242 |
+
- lat_col: String, name of the column with latitude values.
|
243 |
+
- lon_col: String, name of the column with longitude values.
|
244 |
+
- color_col: String, name of the column to determine the color of points.
|
245 |
+
- hover_col: String, name of the column to show when hovering over points.
|
246 |
+
"""
|
247 |
+
center_lat = gdf[lat_col].mean()
|
248 |
+
center_lon = gdf[lon_col].mean()
|
249 |
+
|
250 |
+
fig = px.scatter_mapbox(gdf,
|
251 |
+
lat=lat_col,
|
252 |
+
lon=lon_col,
|
253 |
+
color=color_col,
|
254 |
+
hover_name=hover_col,
|
255 |
+
center={"lat": center_lat, "lon": center_lon},
|
256 |
+
zoom=10,
|
257 |
+
height=600,
|
258 |
+
width=800)
|
259 |
+
|
260 |
+
fig.update_layout(mapbox_style="open-street-map")
|
261 |
+
fig.show()
|
262 |
+
def plot_correlation_heatmap(self, gdf, columns, figsize=(10, 8), cmap='coolwarm'):
|
263 |
+
"""
|
264 |
+
Plot a heatmap of the correlation matrix for selected columns in the GeoDataFrame.
|
265 |
+
|
266 |
+
Parameters:
|
267 |
+
- gdf: GeoDataFrame containing the data.
|
268 |
+
- columns: List of columns to include in the correlation matrix.
|
269 |
+
- figsize: Tuple of figure size dimensions (width, height).
|
270 |
+
- cmap: Colormap for the heatmap.
|
271 |
+
"""
|
272 |
+
# Select only the columns with environmental data
|
273 |
+
env_data = gdf[columns]
|
274 |
+
|
275 |
+
# Compute the correlation matrix
|
276 |
+
corr = env_data.corr()
|
277 |
+
|
278 |
+
# Set up the matplotlib figure
|
279 |
+
plt.figure(figsize=figsize)
|
280 |
+
|
281 |
+
# Generate a heatmap
|
282 |
+
sns.heatmap(corr, annot=True, fmt=".2f", cmap=cmap, square=True, linewidths=.5, cbar_kws={"shrink": .5})
|
283 |
+
|
284 |
+
# Optional: Adjust the layout
|
285 |
+
plt.tight_layout()
|
286 |
+
|
287 |
+
# Show the plot
|
288 |
+
plt.show()
|
289 |
+
# Usage example:
|
290 |
+
# data_processor = DataProcessor()
|
291 |
+
# for key, example in data_processor._generate_examples(csv_path, zip_path, geojson_zip_path):
|
292 |
+
# # Do something with key and example
|
293 |
+
# Usage example:
|
294 |
+
# data_processor = DataProcessor()
|
295 |
+
# for key, example in data_processor._generate_examples(csv_path, zip_path, geojson_zip_path):
|
296 |
+
# # Do something with key and example
|
297 |
+
# combined_gdf = data_processor.merge_dataframes(csv_df, shp_gdf, geojson_gdf)
|
298 |
+
# data_processor.plot_spatial_distribution(combined_gdf, lat_col='y', lon_col='x', color_col='species_x', hover_col='species_x')
|