BredForCompanionship
commited on
Update metric.py
Browse files
metric.py
CHANGED
@@ -1,18 +1,46 @@
|
|
1 |
import openai
|
2 |
openai.api_key = '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'
|
3 |
|
4 |
-
|
|
|
|
|
|
|
5 |
public_score = 0
|
6 |
private_score = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
response = openai.Completion.create(
|
9 |
engine="text-davinci-003",
|
10 |
-
prompt=
|
11 |
temperature=0,
|
12 |
max_tokens=1,
|
13 |
)
|
14 |
|
15 |
public_score = int(response.choices[0].text.strip())
|
|
|
16 |
|
17 |
metric_dict = {
|
18 |
"public_score": {"metric1": public_score},
|
|
|
1 |
import openai
|
2 |
openai.api_key = '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'
|
3 |
|
4 |
+
import pandas as pd
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
|
7 |
+
def compute(params):
|
8 |
public_score = 0
|
9 |
private_score = 0
|
10 |
+
|
11 |
+
solution_file = hf_hub_download(
|
12 |
+
repo_id=params.competition_id,
|
13 |
+
filename="solution.csv",
|
14 |
+
token=params.token,
|
15 |
+
repo_type="dataset",
|
16 |
+
)
|
17 |
+
|
18 |
+
solution_df = pd.read_csv(solution_file)
|
19 |
+
|
20 |
+
submission_filename = f"submissions/{params.team_id}-{params.submission_id}.csv"
|
21 |
+
submission_file = hf_hub_download(
|
22 |
+
repo_id=params.competition_id,
|
23 |
+
filename=submission_filename,
|
24 |
+
token=params.token,
|
25 |
+
repo_type="dataset",
|
26 |
+
)
|
27 |
+
submission_df = pd.read_csv(submission_file)
|
28 |
+
|
29 |
+
submitted_answer = str(submission_df.iloc[0]['pred'])
|
30 |
+
gt = str(solution_df.iloc[0]['pred'])
|
31 |
+
|
32 |
+
prompt=f"Give me a score from 1 to 10 (higher is better) judging how similar these two captions are. Caption one: {submitted_answer}. Caption two:
|
33 |
+
{gt}\nScore:"
|
34 |
|
35 |
response = openai.Completion.create(
|
36 |
engine="text-davinci-003",
|
37 |
+
prompt=prompt,
|
38 |
temperature=0,
|
39 |
max_tokens=1,
|
40 |
)
|
41 |
|
42 |
public_score = int(response.choices[0].text.strip())
|
43 |
+
private_score = public_score
|
44 |
|
45 |
metric_dict = {
|
46 |
"public_score": {"metric1": public_score},
|