|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""WordSim-353 for Yoruba""" |
|
|
|
|
|
import csv |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
A translation of the word pair similarity dataset wordsim-353 to Yorùbá. |
|
|
|
The dataset was presented in the paper |
|
Alabi et al.: Massive vs. Curated Embeddings for Low-Resourced |
|
Languages: the Case of Yorùbá and Twi (LREC 2020). |
|
""" |
|
|
|
_CITATION = """\ |
|
@inproceedings{alabi-etal-2020-massive, |
|
title = "Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of {Y}or{\\`u}b{\\'a} and {T}wi", |
|
author = "Alabi, Jesujoba and |
|
Amponsah-Kaakyire, Kwabena and |
|
Adelani, David and |
|
Espa{\\~n}a-Bonet, Cristina", |
|
booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference", |
|
month = may, |
|
year = "2020", |
|
address = "Marseille, France", |
|
publisher = "European Language Resources Association", |
|
url = "https://www.aclweb.org/anthology/2020.lrec-1.335", |
|
pages = "2754--2762", |
|
language = "English", |
|
ISBN = "979-10-95546-34-4", |
|
} |
|
""" |
|
|
|
_DOWNLOAD_URL = "https://raw.githubusercontent.com/ajesujoba/YorubaTwi-Embedding/master/Yoruba/wordSim353_yo.csv" |
|
|
|
|
|
class YorubaWordsim353(datasets.GeneratorBasedBuilder): |
|
"""WordSim-353 for Yoruba.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"english1": datasets.Value("string"), |
|
"english2": datasets.Value("string"), |
|
"yoruba1": datasets.Value("string"), |
|
"yoruba2": datasets.Value("string"), |
|
"similarity": datasets.Value("float32"), |
|
} |
|
), |
|
homepage="https://github.com/ajesujoba/YorubaTwi-Embedding", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
test_path = dl_manager.download_and_extract(_DOWNLOAD_URL) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Generate WordSim-353 for Yoruba examples.""" |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.DictReader(csv_file, delimiter=",") |
|
for id_, row in enumerate(csv_reader): |
|
yield id_, { |
|
"english1": row["English1"], |
|
"english2": row["English2"], |
|
"yoruba1": row["Yoruba1"], |
|
"yoruba2": row["Yoruba2"], |
|
"similarity": row["EngSim"], |
|
} |
|
|