File size: 14,379 Bytes
2fccbb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77e4739
2fccbb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications"""


import glob
import json
import os

import datasets


_CITATION = """\
@inproceedings{kang18naacl,
  title = {A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications},
  author = {Dongyeop Kang and Waleed Ammar and Bhavana Dalvi and Madeleine van Zuylen and Sebastian Kohlmeier and Eduard Hovy and Roy Schwartz},
  booktitle = {Meeting of the North American Chapter of the Association for Computational Linguistics (NAACL)},
  address = {New Orleans, USA},
  month = {June},
  url = {https://arxiv.org/abs/1804.09635},
  year = {2018}
}
"""

_DESCRIPTION = """\
PearRead is a dataset of scientific peer reviews available to help researchers study this important artifact. The dataset consists of over 14K paper drafts and the corresponding accept/reject decisions in top-tier venues including ACL, NIPS and ICLR, as well as over 10K textual peer reviews written by experts for a subset of the papers.
"""

_HOMEPAGE = "https://github.com/allenai/PeerRead"

_LICENSE = "Creative Commons Public License"

_URLs = {
    "dataset_repo": "https://github.com/allenai/PeerRead/archive/master.zip",
}


class PeerRead(datasets.GeneratorBasedBuilder):
    """A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications"""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="parsed_pdfs",
            version=VERSION,
            description="Research paper drafts",
        ),
        datasets.BuilderConfig(
            name="reviews",
            version=VERSION,
            description="Accept/reject decisions in top-tier venues including ACL, NIPS and ICLR",
        ),
    ]

    @staticmethod
    def _get_paths(data_dir, domain):
        paths = {"train": [], "test": [], "dev": []}
        conference_paths = glob.glob(os.path.join(data_dir, "PeerRead-master/data/*"))
        for conference_path in conference_paths:
            for dtype in ["test", "train", "dev"]:
                file_paths = glob.glob(os.path.join(conference_path, dtype, domain, "*.json"))
                for file_path in file_paths:
                    paths[dtype].append(file_path)
        return paths

    @staticmethod
    def _parse_histories(histories):
        if histories is None:
            return [[]]
        if isinstance(histories, str):
            return [[histories]]
        return histories

    @staticmethod
    def _parse_reviews(data):
        reviews = []
        for review in data.get("metadata", {}).get("reviews", []):
            if isinstance(review, dict):
                reviews.append(
                    {
                        "date": str(review.get("date", "")),
                        "title": str(review.get("title", "")),
                        "other_keys": str(review.get("other_keys", "")),
                        "originality": str(review.get("originality", "")),
                        "comments": str(review.get("comments", "")),
                        "is_meta_review": str(review.get("is_meta_review", "")),
                        "is_annotated": str(review.get("is_annotated", "")),
                        "recommendation": str(review.get("recommendation", "")),
                        "replicability": str(review.get("replicability", "")),
                        "presentation_format": str(review.get("presentation_format", "")),
                        "clarity": str(review.get("clarity", "")),
                        "meaningful_comparison": str(review.get("meaningful_comparison", "")),
                        "substance": str(review.get("substance", "")),
                        "reviewer_confidence": str(review.get("reviewer_confidence", "")),
                        "soundness_correctness": str(review.get("soundness_correctness", "")),
                        "appropriateness": str(review.get("appropriateness", "")),
                        "impact": str(review.get("impact")),
                    }
                )
        return reviews

    @staticmethod
    def _decode(text):
        return str(text).encode("utf-8", "replace").decode("utf-8")

    def _info(self):
        if (
            self.config.name == "parsed_pdfs"
        ):  # This is the name of the configuration selected in BUILDER_CONFIGS above
            features = datasets.Features(
                {
                    "name": datasets.Value("string"),
                    "metadata": {
                        "source": datasets.Value("string"),
                        "title": datasets.Value("string"),
                        "authors": datasets.features.Sequence(datasets.Value("string")),
                        "emails": datasets.features.Sequence(datasets.Value("string")),
                        "sections": datasets.features.Sequence(
                            {
                                "heading": datasets.Value("string"),
                                "text": datasets.Value("string"),
                            }
                        ),
                        "references": datasets.features.Sequence(
                            {
                                "title": datasets.Value("string"),
                                "author": datasets.features.Sequence(datasets.Value("string")),
                                "venue": datasets.Value("string"),
                                "citeRegEx": datasets.Value("string"),
                                "shortCiteRegEx": datasets.Value("string"),
                                "year": datasets.Value("int32"),
                            }
                        ),
                        "referenceMentions": datasets.features.Sequence(
                            {
                                "referenceID": datasets.Value("int32"),
                                "context": datasets.Value("string"),
                                "startOffset": datasets.Value("int32"),
                                "endOffset": datasets.Value("int32"),
                            }
                        ),
                        "year": datasets.Value("int32"),
                        "abstractText": datasets.Value("string"),
                        "creator": datasets.Value("string"),
                    },
                }
            )
        else:
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "conference": datasets.Value("string"),
                    "comments": datasets.Value("string"),
                    "subjects": datasets.Value("string"),
                    "version": datasets.Value("string"),
                    "date_of_submission": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "authors": datasets.features.Sequence(datasets.Value("string")),
                    "accepted": datasets.Value("bool"),
                    "abstract": datasets.Value("string"),
                    "histories": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))),
                    "reviews": datasets.features.Sequence(
                        {
                            "date": datasets.Value("string"),
                            "title": datasets.Value("string"),
                            "other_keys": datasets.Value("string"),
                            "originality": datasets.Value("string"),
                            "comments": datasets.Value("string"),
                            "is_meta_review": datasets.Value("bool"),
                            "is_annotated": datasets.Value("bool"),
                            "recommendation": datasets.Value("string"),
                            "replicability": datasets.Value("string"),
                            "presentation_format": datasets.Value("string"),
                            "clarity": datasets.Value("string"),
                            "meaningful_comparison": datasets.Value("string"),
                            "substance": datasets.Value("string"),
                            "reviewer_confidence": datasets.Value("string"),
                            "soundness_correctness": datasets.Value("string"),
                            "appropriateness": datasets.Value("string"),
                            "impact": datasets.Value("string"),
                        }
                    ),
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        url = _URLs["dataset_repo"]
        data_dir = dl_manager.download_and_extract(url)
        paths = self._get_paths(
            data_dir=data_dir,
            domain=self.config.name,
        )

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepaths": paths["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepaths": paths["test"], "split": "test"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepaths": paths["dev"],
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, filepaths, split):
        """Yields examples."""
        for id_, filepath in enumerate(sorted(filepaths)):
            with open(filepath, encoding="utf-8", errors="replace") as f:
                data = json.load(f)
                if self.config.name == "parsed_pdfs":
                    metadata = data.get(
                        "metadata",
                        {
                            "source": "",
                            "authors": [],
                            "title": [],
                            "sections": [],
                            "references": [],
                            "referenceMentions": [],
                            "year": "",
                            "abstractText": "",
                            "creator": "",
                        },
                    )
                    metadata["sections"] = [] if metadata["sections"] is None else metadata["sections"]
                    metadata["sections"] = [
                        {
                            "heading": self._decode(section.get("heading", "")),
                            "text": self._decode(section.get("text", "")),
                        }
                        for section in metadata["sections"]
                    ]
                    metadata["references"] = [] if metadata["references"] is None else metadata["references"]
                    metadata["references"] = [
                        {
                            "title": reference.get("title", ""),
                            "author": reference.get("author", []),
                            "venue": reference.get("venue", ""),
                            "citeRegEx": reference.get("citeRegEx", ""),
                            "shortCiteRegEx": reference.get("shortCiteRegEx", ""),
                            "year": reference.get("year", ""),
                        }
                        for reference in metadata["references"]
                    ]
                    metadata["referenceMentions"] = (
                        [] if metadata["referenceMentions"] is None else metadata["referenceMentions"]
                    )
                    metadata["referenceMentions"] = [
                        {
                            "referenceID": self._decode(reference_mention.get("referenceID", "")),
                            "context": self._decode(reference_mention.get("context", "")),
                            "startOffset": self._decode(reference_mention.get("startOffset", "")),
                            "endOffset": self._decode(reference_mention.get("endOffset", "")),
                        }
                        for reference_mention in metadata["referenceMentions"]
                    ]

                    yield id_, {
                        "name": data.get("name", ""),
                        "metadata": metadata,
                    }
                elif self.config.name == "reviews":
                    yield id_, {
                        "id": str(data.get("id", "")),
                        "conference": str(data.get("conference", "")),
                        "comments": str(data.get("comments", "")),
                        "subjects": str(data.get("subjects", "")),
                        "version": str(data.get("version", "")),
                        "date_of_submission": str(data.get("date_of_submission", "")),
                        "title": str(data.get("title", "")),
                        "authors": data.get("authors", [])
                        if isinstance(data.get("authors"), list)
                        else ([data.get("authors")] if data.get("authors") else []),
                        "accepted": str(data.get("accepted", "")),
                        "abstract": str(data.get("abstract", "")),
                        "histories": self._parse_histories(data.get("histories", [])),
                        "reviews": self._parse_reviews(data),
                    }