Commit
·
a34ba20
1
Parent(s):
3dfa861
Convert dataset to Parquet (#2)
Browse files- Convert dataset to Parquet (d972dc610532837ba9cfd665578f869862a082ed)
- Delete loading script (35e062508bef47c0842c2828d968eca25d6a7a3b)
- Delete legacy dataset_infos.json (ee3ee04ae885d5b1e821b3239e98fd282924290f)
- README.md +19 -10
- data/test-00000-of-00001.parquet +3 -0
- data/train-00000-of-00001.parquet +3 -0
- data/validation-00000-of-00001.parquet +3 -0
- dataset_infos.json +0 -1
- qasc.py +0 -123
README.md
CHANGED
@@ -1,15 +1,14 @@
|
|
1 |
---
|
2 |
annotations_creators:
|
3 |
- crowdsourced
|
4 |
-
language:
|
5 |
-
- en
|
6 |
language_creators:
|
7 |
- found
|
|
|
|
|
8 |
license:
|
9 |
- cc-by-4.0
|
10 |
multilinguality:
|
11 |
- monolingual
|
12 |
-
pretty_name: Question Answering via Sentence Composition (QASC)
|
13 |
size_categories:
|
14 |
- 1K<n<10K
|
15 |
source_datasets:
|
@@ -21,6 +20,7 @@ task_ids:
|
|
21 |
- extractive-qa
|
22 |
- multiple-choice-qa
|
23 |
paperswithcode_id: qasc
|
|
|
24 |
dataset_info:
|
25 |
features:
|
26 |
- name: id
|
@@ -44,17 +44,26 @@ dataset_info:
|
|
44 |
- name: formatted_question
|
45 |
dtype: string
|
46 |
splits:
|
47 |
-
- name: test
|
48 |
-
num_bytes: 393683
|
49 |
-
num_examples: 920
|
50 |
- name: train
|
51 |
-
num_bytes:
|
52 |
num_examples: 8134
|
|
|
|
|
|
|
53 |
- name: validation
|
54 |
-
num_bytes:
|
55 |
num_examples: 926
|
56 |
-
download_size:
|
57 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
---
|
59 |
|
60 |
# Dataset Card for "qasc"
|
|
|
1 |
---
|
2 |
annotations_creators:
|
3 |
- crowdsourced
|
|
|
|
|
4 |
language_creators:
|
5 |
- found
|
6 |
+
language:
|
7 |
+
- en
|
8 |
license:
|
9 |
- cc-by-4.0
|
10 |
multilinguality:
|
11 |
- monolingual
|
|
|
12 |
size_categories:
|
13 |
- 1K<n<10K
|
14 |
source_datasets:
|
|
|
20 |
- extractive-qa
|
21 |
- multiple-choice-qa
|
22 |
paperswithcode_id: qasc
|
23 |
+
pretty_name: Question Answering via Sentence Composition (QASC)
|
24 |
dataset_info:
|
25 |
features:
|
26 |
- name: id
|
|
|
44 |
- name: formatted_question
|
45 |
dtype: string
|
46 |
splits:
|
|
|
|
|
|
|
47 |
- name: train
|
48 |
+
num_bytes: 4891878
|
49 |
num_examples: 8134
|
50 |
+
- name: test
|
51 |
+
num_bytes: 390534
|
52 |
+
num_examples: 920
|
53 |
- name: validation
|
54 |
+
num_bytes: 559180
|
55 |
num_examples: 926
|
56 |
+
download_size: 2349698
|
57 |
+
dataset_size: 5841592
|
58 |
+
configs:
|
59 |
+
- config_name: default
|
60 |
+
data_files:
|
61 |
+
- split: train
|
62 |
+
path: data/train-*
|
63 |
+
- split: test
|
64 |
+
path: data/test-*
|
65 |
+
- split: validation
|
66 |
+
path: data/validation-*
|
67 |
---
|
68 |
|
69 |
# Dataset Card for "qasc"
|
data/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:495cfbd17abc1720b54785cdce68825104aaf60d7b8bdb2acac62157a31eb517
|
3 |
+
size 158241
|
data/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9a297b5ab55f1605c7682ffbb7042c26d7ecb9ff1e1aa5a820d4e791c8302d1
|
3 |
+
size 1967904
|
data/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1ae34ae13c5fce2c55305372c203c6cdb789728d0d7e5ea2956d55bc33f40ae
|
3 |
+
size 223553
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "\nQASC is a question-answering dataset with a focus on sentence composition. It consists of 9,980 8-way multiple-choice \nquestions about grade school science (8,134 train, 926 dev, 920 test), and comes with a corpus of 17M sentences.\n", "citation": "@article{allenai:qasc,\n author = {Tushar Khot and Peter Clark and Michal Guerquin and Peter Jansen and Ashish Sabharwal},\n title = {QASC: A Dataset for Question Answering via Sentence Composition},\n journal = {arXiv:1910.11473v2},\n year = {2020},\n}\n", "homepage": "https://allenai.org/data/qasc", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "choices": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "answerKey": {"dtype": "string", "id": null, "_type": "Value"}, "fact1": {"dtype": "string", "id": null, "_type": "Value"}, "fact2": {"dtype": "string", "id": null, "_type": "Value"}, "combinedfact": {"dtype": "string", "id": null, "_type": "Value"}, "formatted_question": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qasc", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 393683, "num_examples": 920, "dataset_name": "qasc"}, "train": {"name": "train", "num_bytes": 4919377, "num_examples": 8134, "dataset_name": "qasc"}, "validation": {"name": "validation", "num_bytes": 562352, "num_examples": 926, "dataset_name": "qasc"}}, "download_checksums": {"http://data.allenai.org/downloads/qasc/qasc_dataset.tar.gz": {"num_bytes": 1616514, "checksum": "a7b3f2244f768974c609fd621346c931a72715609f171cb5544fc1da2a2ad55c"}}, "download_size": 1616514, "dataset_size": 5875412, "size_in_bytes": 7491926}}
|
|
|
|
qasc.py
DELETED
@@ -1,123 +0,0 @@
|
|
1 |
-
"""TODO(qasc): Add a description here."""
|
2 |
-
|
3 |
-
|
4 |
-
import json
|
5 |
-
|
6 |
-
import datasets
|
7 |
-
|
8 |
-
|
9 |
-
# TODO(qasc): BibTeX citation
|
10 |
-
_CITATION = """\
|
11 |
-
@article{allenai:qasc,
|
12 |
-
author = {Tushar Khot and Peter Clark and Michal Guerquin and Peter Jansen and Ashish Sabharwal},
|
13 |
-
title = {QASC: A Dataset for Question Answering via Sentence Composition},
|
14 |
-
journal = {arXiv:1910.11473v2},
|
15 |
-
year = {2020},
|
16 |
-
}
|
17 |
-
"""
|
18 |
-
|
19 |
-
# TODO(qasc):
|
20 |
-
_DESCRIPTION = """
|
21 |
-
QASC is a question-answering dataset with a focus on sentence composition. It consists of 9,980 8-way multiple-choice
|
22 |
-
questions about grade school science (8,134 train, 926 dev, 920 test), and comes with a corpus of 17M sentences.
|
23 |
-
"""
|
24 |
-
_URl = "http://data.allenai.org/downloads/qasc/qasc_dataset.tar.gz"
|
25 |
-
|
26 |
-
|
27 |
-
class Qasc(datasets.GeneratorBasedBuilder):
|
28 |
-
"""TODO(qasc): Short description of my dataset."""
|
29 |
-
|
30 |
-
# TODO(qasc): Set up version.
|
31 |
-
VERSION = datasets.Version("0.1.0")
|
32 |
-
|
33 |
-
def _info(self):
|
34 |
-
# TODO(qasc): Specifies the datasets.DatasetInfo object
|
35 |
-
return datasets.DatasetInfo(
|
36 |
-
# This is the description that will appear on the datasets page.
|
37 |
-
description=_DESCRIPTION,
|
38 |
-
# datasets.features.FeatureConnectors
|
39 |
-
features=datasets.Features(
|
40 |
-
{
|
41 |
-
"id": datasets.Value("string"),
|
42 |
-
"question": datasets.Value("string"),
|
43 |
-
"choices": datasets.features.Sequence(
|
44 |
-
{"text": datasets.Value("string"), "label": datasets.Value("string")}
|
45 |
-
),
|
46 |
-
"answerKey": datasets.Value("string"),
|
47 |
-
"fact1": datasets.Value("string"),
|
48 |
-
"fact2": datasets.Value("string"),
|
49 |
-
"combinedfact": datasets.Value("string"),
|
50 |
-
"formatted_question": datasets.Value("string"),
|
51 |
-
# These are the features of your dataset like images, labels ...
|
52 |
-
}
|
53 |
-
),
|
54 |
-
# If there's a common (input, target) tuple from the features,
|
55 |
-
# specify them here. They'll be used if as_supervised=True in
|
56 |
-
# builder.as_dataset.
|
57 |
-
supervised_keys=None,
|
58 |
-
# Homepage of the dataset for documentation
|
59 |
-
homepage="https://allenai.org/data/qasc",
|
60 |
-
citation=_CITATION,
|
61 |
-
)
|
62 |
-
|
63 |
-
def _split_generators(self, dl_manager):
|
64 |
-
"""Returns SplitGenerators."""
|
65 |
-
# TODO(qasc): Downloads the data and defines the splits
|
66 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
67 |
-
# download and extract URLs
|
68 |
-
archive = dl_manager.download(_URl)
|
69 |
-
return [
|
70 |
-
datasets.SplitGenerator(
|
71 |
-
name=datasets.Split.TRAIN,
|
72 |
-
# These kwargs will be passed to _generate_examples
|
73 |
-
gen_kwargs={
|
74 |
-
"filepath": "/".join(["QASC_Dataset", "train.jsonl"]),
|
75 |
-
"files": dl_manager.iter_archive(archive),
|
76 |
-
},
|
77 |
-
),
|
78 |
-
datasets.SplitGenerator(
|
79 |
-
name=datasets.Split.TEST,
|
80 |
-
# These kwargs will be passed to _generate_examples
|
81 |
-
gen_kwargs={
|
82 |
-
"filepath": "/".join(["QASC_Dataset", "test.jsonl"]),
|
83 |
-
"files": dl_manager.iter_archive(archive),
|
84 |
-
},
|
85 |
-
),
|
86 |
-
datasets.SplitGenerator(
|
87 |
-
name=datasets.Split.VALIDATION,
|
88 |
-
# These kwargs will be passed to _generate_examples
|
89 |
-
gen_kwargs={
|
90 |
-
"filepath": "/".join(["QASC_Dataset", "dev.jsonl"]),
|
91 |
-
"files": dl_manager.iter_archive(archive),
|
92 |
-
},
|
93 |
-
),
|
94 |
-
]
|
95 |
-
|
96 |
-
def _generate_examples(self, filepath, files):
|
97 |
-
"""Yields examples."""
|
98 |
-
# TODO(qasc): Yields (key, example) tuples from the dataset
|
99 |
-
for path, f in files:
|
100 |
-
if path == filepath:
|
101 |
-
for row in f:
|
102 |
-
data = json.loads(row.decode("utf-8"))
|
103 |
-
answerkey = data.get("answerKey", "")
|
104 |
-
id_ = data["id"]
|
105 |
-
question = data["question"]["stem"]
|
106 |
-
choices = data["question"]["choices"]
|
107 |
-
text_choices = [choice["text"] for choice in choices]
|
108 |
-
label_choices = [choice["label"] for choice in choices]
|
109 |
-
fact1 = data.get("fact1", "")
|
110 |
-
fact2 = data.get("fact2", "")
|
111 |
-
combined_fact = data.get("combinedfact", "")
|
112 |
-
formatted_question = data.get("formatted_question", "")
|
113 |
-
yield id_, {
|
114 |
-
"id": id_,
|
115 |
-
"answerKey": answerkey,
|
116 |
-
"question": question,
|
117 |
-
"choices": {"text": text_choices, "label": label_choices},
|
118 |
-
"fact1": fact1,
|
119 |
-
"fact2": fact2,
|
120 |
-
"combinedfact": combined_fact,
|
121 |
-
"formatted_question": formatted_question,
|
122 |
-
}
|
123 |
-
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|