Datasets:
Tasks:
Question Answering
Modalities:
Text
Sub-tasks:
closed-domain-qa
Languages:
English
Size:
1K - 10K
ArXiv:
License:
File size: 5,950 Bytes
3234a60 7bde7e4 3234a60 7bde7e4 3234a60 7bde7e4 3234a60 7bde7e4 3234a60 7bde7e4 3234a60 7bde7e4 3234a60 7bde7e4 3234a60 7114a9c 3234a60 7114a9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# coding=utf-8
# Copyright 2022 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Qasper: A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers."""
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{Dasigi2021ADO,
title={A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers},
author={Pradeep Dasigi and Kyle Lo and Iz Beltagy and Arman Cohan and Noah A. Smith and Matt Gardner},
year={2021}
}
"""
_LICENSE = "CC BY 4.0"
_DESCRIPTION = """\
A dataset containing 1585 papers with 5049 information-seeking questions asked by regular readers of NLP papers, and answered by a separate set of NLP practitioners.
"""
_HOMEPAGE = "https://allenai.org/data/qasper"
_URL_TRAIN_DEV = "https://qasper-dataset.s3.us-west-2.amazonaws.com/qasper-train-dev-v0.3.tgz"
_URL_TEST = "https://qasper-dataset.s3.us-west-2.amazonaws.com/qasper-test-and-evaluator-v0.3.tgz"
_DATA_FILES = {"train": "qasper-train-v0.3.json",
"dev": "qasper-dev-v0.3.json",
"test": "qasper-test-v0.3.json"}
_VERSION = "0.3.0"
class Qasper(datasets.GeneratorBasedBuilder):
"""Qasper: A Dataset of Information-Seeking Q&A Anchored in Research Papers."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="qasper",
version=datasets.Version(_VERSION),
description=_DESCRIPTION,
)
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value("string"),
"full_text": datasets.features.Sequence(
{
"section_name": datasets.Value("string"),
"paragraphs": [datasets.Value("string")],
}
),
"qas": datasets.features.Sequence(
{
"question": datasets.Value("string"),
"question_id": datasets.Value("string"),
"nlp_background": datasets.Value("string"),
"topic_background": datasets.Value("string"),
"paper_read": datasets.Value("string"),
"search_query": datasets.Value("string"),
"question_writer": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"answer": {
"unanswerable": datasets.Value("bool"),
"extractive_spans": datasets.features.Sequence(datasets.Value("string")),
"yes_no": datasets.Value("bool"),
"free_form_answer": datasets.Value("string"),
"evidence": datasets.features.Sequence(datasets.Value("string")),
"highlighted_evidence": datasets.features.Sequence(datasets.Value("string")),
},
"annotation_id": datasets.Value("string"),
"worker_id": datasets.Value("string"),
}
),
}
),
"figures_and_tables": datasets.features.Sequence(
{
"caption": datasets.Value("string"),
"file": datasets.Value("string"),
}
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
archive_train_dev, archive_test = dl_manager.download((
_URL_TRAIN_DEV, _URL_TEST)
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": _DATA_FILES["train"],
"files": dl_manager.iter_archive(archive_train_dev)},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": _DATA_FILES["dev"],
"files": dl_manager.iter_archive(archive_train_dev)},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": _DATA_FILES["test"],
"files": dl_manager.iter_archive(archive_test)},
),
]
def _generate_examples(self, filepath, files):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
for path, f in files:
if path == filepath:
qasper = json.loads(f.read().decode("utf-8"))
for id_ in qasper:
qasper[id_]["id"] = id_
yield id_, qasper[id_]
break
|