andreped commited on
Commit
43a84c4
Β·
1 Parent(s): 3f8138a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +152 -0
README.md CHANGED
@@ -1,3 +1,155 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ task_categories:
4
+ - image-segmentation
5
+ language:
6
+ - en
7
+ tags:
8
+ - medical
9
+ pretty_name: AeroPath
10
+ size_categories:
11
+ - 1B<n<10B
12
  ---
13
+
14
+ ---
15
+ title: 'LyNoS: automatic lymph node segmentation using deep learning'
16
+ colorFrom: indigo
17
+ colorTo: indigo
18
+ sdk: docker
19
+ app_port: 7860
20
+ emoji: 🫁
21
+ pinned: false
22
+ license: mit
23
+ app_file: demo/app.py
24
+ ---
25
+
26
+ <div align="center">
27
+ <h1 align="center">🫁 LyNoS πŸ€—</h1>
28
+ <h3 align="center">A multilabel lymph node segmentation dataset from contrast CT</h3>
29
+
30
+ [![license](https://img.shields.io/github/license/DAVFoundation/captain-n3m0.svg?style=flat-square)](https://github.com/raidionics/LyNoS/blob/main/LICENSE.md)
31
+ [![CI/CD](https://github.com/raidionics/LyNoS/actions/workflows/deploy.yml/badge.svg)](https://github.com/raidionics/LyNoS/actions/workflows/deploy.yml)
32
+ <a target="_blank" href="https://huggingface.co/spaces/andreped/LyNoS"><img src="https://img.shields.io/badge/πŸ€—%20Hugging%20Face-Spaces-yellow.svg"></a>
33
+ <a href="https://colab.research.google.com/gist/andreped/274bf953771059fd9537877404369bed/lynos-load-dataset-example.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
34
+ [![paper](https://img.shields.io/badge/paper-pdf-D12424)](https://doi.org/10.1080/21681163.2022.2043778)
35
+
36
+ **LyNoS** was developed by SINTEF Medical Image Analysis to accelerate medical AI research.
37
+
38
+ </div>
39
+
40
+ ## [Brief intro](https://github.com/raidionics/LyNoS#brief-intro)
41
+
42
+ This repository contains the LyNoS dataset described in ["_Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding_"](https://doi.org/10.1080/21681163.2022.2043778).
43
+ The dataset has now also been uploaded to Zenodo and the Hugging Face Hub enabling users to more easily access the data through Python API.
44
+
45
+ We have also developed a web demo to enable others to easily test the pretrained model presented in the paper. The application was developed using [Gradio](https://www.gradio.app) for the frontend and the segmentation is performed using the [Raidionics](https://raidionics.github.io/) backend.
46
+
47
+ ## [Dataset](https://github.com/raidionics/LyNoS#data) <a href="https://colab.research.google.com/gist/andreped/274bf953771059fd9537877404369bed/lynos-load-dataset-example.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
48
+
49
+ ### [Accessing dataset](https://github.com/raidionics/LyNoS#accessing-dataset)
50
+
51
+ The dataset contains 15 CTs with corresponding lymph nodes, azygos, esophagus, and subclavian carotid arteries. The folder structure is described below.
52
+
53
+ The easiest way to access the data is through Python with Hugging Face's [datasets](https://pypi.org/project/datasets/) package:
54
+ ```
55
+ from datasets import load_dataset
56
+
57
+ # downloads data from Zenodo through the Hugging Face hub
58
+ # - might take several minutes (~5 minutes in CoLab)
59
+ dataset = load_dataset("andreped/LyNoS")
60
+ print(dataset)
61
+
62
+ # list paths of all available patients and corresponding features (ct/lymphnodes/azygos/brachiocephalicveins/esophagus/subclaviancarotidarteries)
63
+ for d in dataset["test"]:
64
+ print(d)
65
+ ```
66
+
67
+ A detailed interactive demo on how to load and work with the data can be seen on CoLab. Click the CoLab badge <a href="https://colab.research.google.com/gist/andreped/274bf953771059fd9537877404369bed/lynos-load-dataset-example.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> to see the notebook or alternatively click [here](https://github.com/raidionics/LyNoS/blob/main/notebooks/lynos-load-dataset-example.ipynb) to see it on GitHub.
68
+
69
+
70
+ ### [Dataset structure](https://github.com/raidionics/LyNoS#dataset-structure)
71
+
72
+ ```
73
+ └── LyNoS.zip
74
+ β”œβ”€β”€ stations_sto.csv
75
+ └── LyNoS/
76
+ β”œβ”€β”€ Pat1/
77
+ β”‚ β”œβ”€β”€ pat1_data.nii.gz
78
+ β”‚ β”œβ”€β”€ pat1_labels_Azygos.nii.gz
79
+ β”‚ β”œβ”€β”€ pat1_labels_Esophagus.nii.gz
80
+ β”‚ β”œβ”€β”€ pat1_labels_LymphNodes.nii.gz
81
+ β”‚ └── pat1_labels_SubCarArt.nii.gz
82
+ β”œβ”€β”€ [...]
83
+ └── Pat15/
84
+ β”œβ”€β”€ pat15_data.nii.gz
85
+ β”œβ”€β”€ pat15_labels_Azygos.nii.gz
86
+ β”œβ”€β”€ pat15_labels_Esophagus.nii.gz
87
+ β”œβ”€β”€ pat15_labels_LymphNodes.nii.gz
88
+ └── pat15_labels_SubCarArt.nii.gz
89
+ ```
90
+
91
+ ## [Demo](https://github.com/raidionics/LyNoS#demo) <a target="_blank" href="https://huggingface.co/spaces/andreped/LyNoS"><img src="https://img.shields.io/badge/πŸ€—%20Hugging%20Face-Spaces-yellow.svg"></a>
92
+
93
+ To access the live demo, click on the `Hugging Face` badge above. Below is a snapshot of the current state of the demo app.
94
+
95
+ <img width="1400" alt="Screenshot 2023-11-09 at 20 53 29" src="https://github.com/raidionics/LyNoS/assets/29090665/ce661da0-d172-4481-b9b5-8b3e29a9fc1f">
96
+
97
+ ## [Continuous integration](https://github.com/raidionics/LyNoS#continuous-integration)
98
+
99
+ | Build Type | Status |
100
+ | - | - |
101
+ | **HF Deploy** | [![Deploy](https://github.com/raidionics/LyNoS/workflows/Deploy/badge.svg)](https://github.com/raidionics/LyNoS/actions) |
102
+ | **File size check** | [![Filesize](https://github.com/raidionics/LyNoS/workflows/Check%20file%20size/badge.svg)](https://github.com/raidionics/LyNoS/actions) |
103
+ | **Formatting check** | [![Filesize](https://github.com/raidionics/LyNoS/workflows/Linting/badge.svg)](https://github.com/raidionics/LyNoS/actions) |
104
+
105
+ ## [Development](https://github.com/raidionics/LyNoS#development)
106
+
107
+ ### [Docker](https://github.com/raidionics/LyNoS#docker)
108
+
109
+ Alternatively, you can deploy the software locally. Note that this is only relevant for development purposes. Simply dockerize the app and run it:
110
+
111
+ ```
112
+ docker build -t LyNoS .
113
+ docker run -it -p 7860:7860 LyNoS
114
+ ```
115
+
116
+ Then open `http://127.0.0.1:7860` in your favourite internet browser to view the demo.
117
+
118
+ ### [Python](https://github.com/raidionics/LyNoS#python)
119
+
120
+ It is also possible to run the app locally without Docker. Just setup a virtual environment and run the app.
121
+ Note that the current working directory would need to be adjusted based on where `LyNoS` is located on disk.
122
+
123
+ ```
124
+ git clone https://github.com/raidionics/LyNoS.git
125
+ cd LyNoS/
126
+
127
+ virtualenv -python3 venv --clear
128
+ source venv/bin/activate
129
+ pip install -r ./demo/requirements.txt
130
+
131
+ python demo/app.py --cwd ./
132
+ ```
133
+
134
+ ## [Citation](https://github.com/raidionics/LyNoS#citation)
135
+
136
+ If you found the dataset and/or web application relevant in your research, please cite the following reference:
137
+ ```
138
+ @article{bouget2021mediastinal,
139
+ author = {David Bouget and AndrΓ© Pedersen and Johanna Vanel and Haakon O. Leira and Thomas LangΓΈ},
140
+ title = {Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding},
141
+ journal = {Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization},
142
+ volume = {0},
143
+ number = {0},
144
+ pages = {1-15},
145
+ year = {2022},
146
+ publisher = {Taylor & Francis},
147
+ doi = {10.1080/21681163.2022.2043778},
148
+ URL = {https://doi.org/10.1080/21681163.2022.2043778},
149
+ eprint = {https://doi.org/10.1080/21681163.2022.2043778}
150
+ }
151
+ ```
152
+
153
+ ## [License](https://github.com/raidionics/LyNoS#license)
154
+
155
+ The code in this repository is released under [MIT license](https://github.com/raidionics/LyNoS/blob/main/LICENSE).