Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,155 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
task_categories:
|
4 |
+
- image-segmentation
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
tags:
|
8 |
+
- medical
|
9 |
+
pretty_name: AeroPath
|
10 |
+
size_categories:
|
11 |
+
- 1B<n<10B
|
12 |
---
|
13 |
+
|
14 |
+
---
|
15 |
+
title: 'LyNoS: automatic lymph node segmentation using deep learning'
|
16 |
+
colorFrom: indigo
|
17 |
+
colorTo: indigo
|
18 |
+
sdk: docker
|
19 |
+
app_port: 7860
|
20 |
+
emoji: π«
|
21 |
+
pinned: false
|
22 |
+
license: mit
|
23 |
+
app_file: demo/app.py
|
24 |
+
---
|
25 |
+
|
26 |
+
<div align="center">
|
27 |
+
<h1 align="center">π« LyNoS π€</h1>
|
28 |
+
<h3 align="center">A multilabel lymph node segmentation dataset from contrast CT</h3>
|
29 |
+
|
30 |
+
[![license](https://img.shields.io/github/license/DAVFoundation/captain-n3m0.svg?style=flat-square)](https://github.com/raidionics/LyNoS/blob/main/LICENSE.md)
|
31 |
+
[![CI/CD](https://github.com/raidionics/LyNoS/actions/workflows/deploy.yml/badge.svg)](https://github.com/raidionics/LyNoS/actions/workflows/deploy.yml)
|
32 |
+
<a target="_blank" href="https://huggingface.co/spaces/andreped/LyNoS"><img src="https://img.shields.io/badge/π€%20Hugging%20Face-Spaces-yellow.svg"></a>
|
33 |
+
<a href="https://colab.research.google.com/gist/andreped/274bf953771059fd9537877404369bed/lynos-load-dataset-example.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
|
34 |
+
[![paper](https://img.shields.io/badge/paper-pdf-D12424)](https://doi.org/10.1080/21681163.2022.2043778)
|
35 |
+
|
36 |
+
**LyNoS** was developed by SINTEF Medical Image Analysis to accelerate medical AI research.
|
37 |
+
|
38 |
+
</div>
|
39 |
+
|
40 |
+
## [Brief intro](https://github.com/raidionics/LyNoS#brief-intro)
|
41 |
+
|
42 |
+
This repository contains the LyNoS dataset described in ["_Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding_"](https://doi.org/10.1080/21681163.2022.2043778).
|
43 |
+
The dataset has now also been uploaded to Zenodo and the Hugging Face Hub enabling users to more easily access the data through Python API.
|
44 |
+
|
45 |
+
We have also developed a web demo to enable others to easily test the pretrained model presented in the paper. The application was developed using [Gradio](https://www.gradio.app) for the frontend and the segmentation is performed using the [Raidionics](https://raidionics.github.io/) backend.
|
46 |
+
|
47 |
+
## [Dataset](https://github.com/raidionics/LyNoS#data) <a href="https://colab.research.google.com/gist/andreped/274bf953771059fd9537877404369bed/lynos-load-dataset-example.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
|
48 |
+
|
49 |
+
### [Accessing dataset](https://github.com/raidionics/LyNoS#accessing-dataset)
|
50 |
+
|
51 |
+
The dataset contains 15 CTs with corresponding lymph nodes, azygos, esophagus, and subclavian carotid arteries. The folder structure is described below.
|
52 |
+
|
53 |
+
The easiest way to access the data is through Python with Hugging Face's [datasets](https://pypi.org/project/datasets/) package:
|
54 |
+
```
|
55 |
+
from datasets import load_dataset
|
56 |
+
|
57 |
+
# downloads data from Zenodo through the Hugging Face hub
|
58 |
+
# - might take several minutes (~5 minutes in CoLab)
|
59 |
+
dataset = load_dataset("andreped/LyNoS")
|
60 |
+
print(dataset)
|
61 |
+
|
62 |
+
# list paths of all available patients and corresponding features (ct/lymphnodes/azygos/brachiocephalicveins/esophagus/subclaviancarotidarteries)
|
63 |
+
for d in dataset["test"]:
|
64 |
+
print(d)
|
65 |
+
```
|
66 |
+
|
67 |
+
A detailed interactive demo on how to load and work with the data can be seen on CoLab. Click the CoLab badge <a href="https://colab.research.google.com/gist/andreped/274bf953771059fd9537877404369bed/lynos-load-dataset-example.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> to see the notebook or alternatively click [here](https://github.com/raidionics/LyNoS/blob/main/notebooks/lynos-load-dataset-example.ipynb) to see it on GitHub.
|
68 |
+
|
69 |
+
|
70 |
+
### [Dataset structure](https://github.com/raidionics/LyNoS#dataset-structure)
|
71 |
+
|
72 |
+
```
|
73 |
+
βββ LyNoS.zip
|
74 |
+
βββ stations_sto.csv
|
75 |
+
βββ LyNoS/
|
76 |
+
βββ Pat1/
|
77 |
+
β βββ pat1_data.nii.gz
|
78 |
+
β βββ pat1_labels_Azygos.nii.gz
|
79 |
+
β βββ pat1_labels_Esophagus.nii.gz
|
80 |
+
β βββ pat1_labels_LymphNodes.nii.gz
|
81 |
+
β βββ pat1_labels_SubCarArt.nii.gz
|
82 |
+
βββ [...]
|
83 |
+
βββ Pat15/
|
84 |
+
βββ pat15_data.nii.gz
|
85 |
+
βββ pat15_labels_Azygos.nii.gz
|
86 |
+
βββ pat15_labels_Esophagus.nii.gz
|
87 |
+
βββ pat15_labels_LymphNodes.nii.gz
|
88 |
+
βββ pat15_labels_SubCarArt.nii.gz
|
89 |
+
```
|
90 |
+
|
91 |
+
## [Demo](https://github.com/raidionics/LyNoS#demo) <a target="_blank" href="https://huggingface.co/spaces/andreped/LyNoS"><img src="https://img.shields.io/badge/π€%20Hugging%20Face-Spaces-yellow.svg"></a>
|
92 |
+
|
93 |
+
To access the live demo, click on the `Hugging Face` badge above. Below is a snapshot of the current state of the demo app.
|
94 |
+
|
95 |
+
<img width="1400" alt="Screenshot 2023-11-09 at 20 53 29" src="https://github.com/raidionics/LyNoS/assets/29090665/ce661da0-d172-4481-b9b5-8b3e29a9fc1f">
|
96 |
+
|
97 |
+
## [Continuous integration](https://github.com/raidionics/LyNoS#continuous-integration)
|
98 |
+
|
99 |
+
| Build Type | Status |
|
100 |
+
| - | - |
|
101 |
+
| **HF Deploy** | [![Deploy](https://github.com/raidionics/LyNoS/workflows/Deploy/badge.svg)](https://github.com/raidionics/LyNoS/actions) |
|
102 |
+
| **File size check** | [![Filesize](https://github.com/raidionics/LyNoS/workflows/Check%20file%20size/badge.svg)](https://github.com/raidionics/LyNoS/actions) |
|
103 |
+
| **Formatting check** | [![Filesize](https://github.com/raidionics/LyNoS/workflows/Linting/badge.svg)](https://github.com/raidionics/LyNoS/actions) |
|
104 |
+
|
105 |
+
## [Development](https://github.com/raidionics/LyNoS#development)
|
106 |
+
|
107 |
+
### [Docker](https://github.com/raidionics/LyNoS#docker)
|
108 |
+
|
109 |
+
Alternatively, you can deploy the software locally. Note that this is only relevant for development purposes. Simply dockerize the app and run it:
|
110 |
+
|
111 |
+
```
|
112 |
+
docker build -t LyNoS .
|
113 |
+
docker run -it -p 7860:7860 LyNoS
|
114 |
+
```
|
115 |
+
|
116 |
+
Then open `http://127.0.0.1:7860` in your favourite internet browser to view the demo.
|
117 |
+
|
118 |
+
### [Python](https://github.com/raidionics/LyNoS#python)
|
119 |
+
|
120 |
+
It is also possible to run the app locally without Docker. Just setup a virtual environment and run the app.
|
121 |
+
Note that the current working directory would need to be adjusted based on where `LyNoS` is located on disk.
|
122 |
+
|
123 |
+
```
|
124 |
+
git clone https://github.com/raidionics/LyNoS.git
|
125 |
+
cd LyNoS/
|
126 |
+
|
127 |
+
virtualenv -python3 venv --clear
|
128 |
+
source venv/bin/activate
|
129 |
+
pip install -r ./demo/requirements.txt
|
130 |
+
|
131 |
+
python demo/app.py --cwd ./
|
132 |
+
```
|
133 |
+
|
134 |
+
## [Citation](https://github.com/raidionics/LyNoS#citation)
|
135 |
+
|
136 |
+
If you found the dataset and/or web application relevant in your research, please cite the following reference:
|
137 |
+
```
|
138 |
+
@article{bouget2021mediastinal,
|
139 |
+
author = {David Bouget and AndrΓ© Pedersen and Johanna Vanel and Haakon O. Leira and Thomas LangΓΈ},
|
140 |
+
title = {Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding},
|
141 |
+
journal = {Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization},
|
142 |
+
volume = {0},
|
143 |
+
number = {0},
|
144 |
+
pages = {1-15},
|
145 |
+
year = {2022},
|
146 |
+
publisher = {Taylor & Francis},
|
147 |
+
doi = {10.1080/21681163.2022.2043778},
|
148 |
+
URL = {https://doi.org/10.1080/21681163.2022.2043778},
|
149 |
+
eprint = {https://doi.org/10.1080/21681163.2022.2043778}
|
150 |
+
}
|
151 |
+
```
|
152 |
+
|
153 |
+
## [License](https://github.com/raidionics/LyNoS#license)
|
154 |
+
|
155 |
+
The code in this repository is released under [MIT license](https://github.com/raidionics/LyNoS/blob/main/LICENSE).
|